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1. Introduction

An Intrusion Detection System (IDS) gathers information from a computer or a network, and
analyzes this information to identify possible security breaches against the system or the
network. An observation of various IDSs available in literature shows distinct preferences
for detecting a certain class of attack with improved accuracy, while performing moderately
on the other classes. The availability of enormous computing power has made it possible for
developing and implementing IDSs of different types on the same network. The integration
of the decisions coming from different IDSs has emerged as a technique that could strengthen
the final decision. Sensor fusion can be defined as the process of collecting information
from multiple and possibly heterogeneous sources and combining them to obtain a more
descriptive, intuitive and meaningful result (1).
An analysis of the poorly detected attacks reveals the fact that the attacks are characterized by
features that do not discriminate them much. In this chapter, we prove the distinct advantages
of sensor fusion over individual IDSs. All the related work in the field of sensor fusion has
been carried out mainly with one of the methods like probability theory, evidence theory,
voting fusion theory, fuzzy logic theory or neural network in order to aggregate information.
The Bayesian theory is the classical method for statistical inference problems. The fusion
rule is expressed for a system of independent learners, with the distribution of hypotheses
known a priori. The Dempster-Shafer evidence theory is considered a generalized Bayesian
theory. It does not require a priori knowledge or probability distribution on the possible
system states like the Bayesian approach and it is mostly useful when modeling of the system
is difficult or impossible (2). The improved performance of multiple IDSs using rule-based
fusion and deta-dependent decision fusion has been demonstrated in the work of Thomas
and Balakrishnan (3).
An attempt to prove the distinct advantages of sensor fusion over individual IDSs is done in
this chapter using the Chebyshev inequality. Fusion threshold bounds were derived using
the principle of Chebyshev inequality at the fusion center using the false positive rates and
detection rates of the IDSs. The goal was to achieve best fusion performance with the least
amount of model knowledge, in a computationally inexpensive way. The anomaly-based
IDSs detect anomalies beyond a set threshold level in the features it detects. Threshold bounds
instead of a single threshold give more freedom in steering system properties. Any threshold
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2 Sensor Fusion

within the bounds can be chosen depending on the preferred level of trade-off between
detection and false alarms.
The remaining part of the chapter is organized as follows. Section 2 discusses the related
work of sensor fusion in IDS. In section 3, the modeling of the Intrusion Detection System
is presented. Section 4 includes the modeling of the fusion of Intrusion Detection Systems.
Section 5 contains the experimental results along with the discussions regarding the higher
performance of the proposed fused IDS. Finally, the concluding comments are presented in
section 6.

2. Related work

Tim Bass (4) presents a framework to improve the performance of intrusion detection systems
based on data fusion. A few first steps towards developing the engineering requirements
using the art and science of multi-sensor data fusion as an underlying model is provided in
(4). Giacinto et al. (5) propose an approach to intrusion detection based on fusion of multiple
classifiers. Didaci et al. (6) attempt the formulation of the intrusion detection problem as a
pattern recognition task using data fusion approach based on multiple classifiers. Wang et al.
(7) present the superiority of data fusion technology applied to intrusion detection systems.
The use of data fusion in the field of DoS anomaly detection is presented by Siaterlis and
Maglaris (1). The detection engine is evaluated using the real network traffic. Another work
incorporating the Dempster-Shafer theory of evidence is by Hu et al. (8).
Siraj et al. (9) discuss a Decision Engine for an Intelligent Intrusion Detection System (IIDS)
that fuses information from different intrusion detection sensors using an artificial intelligence
technique. Thomopolous in one of his work (10), concludes that with the individual sensors
being independent, the optimal decision scheme that maximizes the probability of detection
at the fusion for fixed false alarm probability consists of a Neyman-Pearson test at the fusion
unit and the likelihood ratio test at the sensors. The threshold based fusion of combining
multiple IDSs by fixing a certain number of false alarms is discussed in the work of Thomas
and Balakrishnan (11). This is a case of combining the top ranking outputs of each IDS after
removing the duplicate alerts and setting the maximum acceptable false alarm rate.
The other somewhat related works albeit distantly are the alarm clustering method by Perdisci
et al. (12), aggregation of alerts by Valdes et al. (13), combination of alerts into scenarios
by Dain et al. (14), the alert correlation by Cuppens et al. (15), the correlation of Intrusion
Symptoms with an application of chronicles by Morin et al. (16), and aggregation and
correlation of intrusion-detection alerts by Debar et al. (17). In the work of Thomas and
Balakrishnan (3), a sensor fusion architecture, which is data-dependent and different from the
conventional fusion architecture is demonstrated. The focus of the present work is modeling
the fusion of IDSs using threshold bounds in an attempt to optimize both the fusion rule as
well as the sensor rules.

3. Modeling the Intrusion Detection Systems

Consider an IDS that either monitors the network traffic connection on the network or the
audit trails on the host. The network traffic connection or the audit trails monitored are
given as x ∈ X, where X is the entire domain of network traffic features or the audit
trails respectively. The model is based on the hypothesis that the security violations can be
detected by monitoring the network for traffic connections of malicious intent in the case of
network-based IDS and a system’s audit records for abnormal patterns of system usage in
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the case of host-based IDS. The model is independent of any particular operating system,
application, system vulnerability or type of intrusion, thereby providing a framework for a
general-purpose IDS.
When making an attack detection, a connection pattern is given by xj ∈ ℜjk where j is the
number of features from k consecutive samples used as input to an IDS. As seen in the DARPA
dataset, for many of the features the distributions are difficult to describe parametrically as
they may be multi-modal or very heavy-tailed. These highly non-Gaussian distributions has
led to investigate non-parametric statistical tests as a method of intrusion detection in the
initial phase of IDS development. The detection of an attack in the event x is observed as an
alert. In the case of network-based IDS, the elements of x can be the fields of the network traffic
like the raw IP packets or the pre-processed basic attributes like the duration of a connection,
the protocol type, service etc. or specific attributes selected with domain knowledge such as
the number of failed logins or whether a superuser command was attempted. In host-based
IDS, x can be the sequence of system calls, sequence of user commands, connection attempts to
local host, proportion of accesses in terms of TCP or UDP packets to a given port of a machine
over a fixed period of time etc. Thus IDS can be defined as a function that maps the data input
into a normal or an attack event either by means of absence of an alert (0) or by the presence
of an alert (1) respectively and is given by:

IDS : X → {0, 1}.

To detect attacks in the incoming traffic, the IDSs are typically parameterized by a threshold T.
The IDS uses a theoretical basis for deciding the thresholds for analyzing the network traffic
to detect intrusions. Changing this threshold allows the change in performance of the IDS. If
the threshold is very low, then the IDS tends to be very aggressive in detecting the traffic for
intrusions. However, there is a potentially greater chance for the detections to be irrelevant
which result in large false alarms. A large value of threshold on the other hand will have an
opposite effect; being a bit conservative in detecting attacks. However, some potential attacks
may get missed this way. Using a 3σ based statistical analysis, the higher threshold (Th) is set
at +3σ and the lower threshold (Tl) is set at −3σ. This is with the assumption that the traffic
signals are normally distributed. In general the traffic detection with s being the sensor output
is given by:

Sensor Detection =

{

attack, Tl < s < Th

normal, s ≤ Tl , s ≥ Th

The signature-based IDS functions by looking at the event feature x and checking whether it
matches with any of the records in the signature database D.

Signature − based IDS : X → {1} ∀x ∈ D,

: X → {0} ∀x /∈ D.

Anomaly-based IDS generates alarm when the input traffic deviates from the established
models or profiles P.

Anomaly − based IDS : X → {1} ∀x /∈ P,

: X → {0} ∀x ∈ P.
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4 Sensor Fusion

4. Modeling the fusion of Intrusion Detection Systems

Consider the case where n IDSs monitor a network for attack detection and each IDS makes
a local decision si and these decisions are aggregated in the fusion unit f . This architecture is
often referred to as the parallel decision fusion network and is shown in Figure 1. The fusion
unit makes a global decision, y, about the true state of the hypothesis based on the collection of
the local decisions gathered from all the sensors. The problem is casted as a binary detection

IDS2

IDS1

INPUT .

.

.

.

.

IDSn

FUSION UNIT

OUTPUT (y)
(x)

S1

S2

Sn

Fig. 1. Parallel Decision Fusion Network

problem with the hypothesis “Attack” or “Normal”. Every IDS participating in the fusion has
its own detection rate Di, and false positive rate Fi, due to the preferred heterogeneity of the
sensors in the fusion process. Each IDS indexed i gives an alert or no-alert indicated by si

taking a value one or zero respectively, depending on the observation x.

si =

{

0, normal is declared to have been detected
1, attack is declared to have been detected

The fusion center collects these local decisions si and forms a binomial distribution y as given

by y=s =
n

∑
i=1

si, where n is the total number of IDSs taking part in fusion.

4.1 The effect of setting threshold

To detect the attack in the incoming traffic, the IDSs are typically parameterized with a
threshold, T. Changing this threshold allows the change in performance of the IDS. If the
threshold is very large, some potentially dangerous attacks get missed. A small threshold on
the other hand results in more detections, with a potentially greater chance that they are not
relevant.
The final step in the approach towards solving of the fusion problem is taken by noticing
that the decision function fi(.) is characterized by the threshold Ti and the likelihood ratio (if
independence is assumed). Thus the necessary condition for optimal fusion decision occurs
if the thresholds (T1, T2, ..., Tn) are chosen optimally. However, this does not satisfy the
sufficient condition. These refer to the many local minima, each need to be checked to assure
the global minimum.
The counterintuitive results at the individual sensors with the proper choice of thresholds
will be advantageous in getting an optimum value for the fusion result. They are excellent
paradigms for studying distributed decision architectures, to understand the impact of the
limitations, and even suggest empirical experiments for IDS decisions.
The structure of the fusion rule plays a crucial role regarding the overall performance of the
IDS since the fusion unit makes the final decision about the state of the environment. While a
few inferior IDSs might not greatly impact the overall performance, a badly designed fusion
rule can lead to a poor performance even if the local IDSs are well designed. The fusion IDS
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can be optimized by searching the space of fusion rules and optimizing the local thresholds
for each candidate rule. Other than for some simple cases, the complexity of such an approach
is prohibitive due to exponential growth of the set of possible fusion rules with respect to the
number of IDSs. Searching for the fusion rule that leads to the minimum probability of error is
the main bottleneck due to discrete nature of this optimization process and the exponentially
large number of fusion rules. The computation of thresholds couples the choice of the local
decision rules so that the system-wide performance is optimized, rather than the performance
of the individual detector.

4.2 Threshold optimization

Tenney and Sandell in their work (21) establish the optimum strategy that minimizes a global
cost in the case where the a priori probabilities of the hypotheses, the distribution functions
of the local observations, the cost functions, and the fusion rule are given. They concluded
that each local detector is optimally a likelihood ratio detector but that the computation of the
optimum thresholds for these local detectors is complicated due to cross coupling.
The global optimization criterion for a distributed detection system would encompass local
decision statistics, local decision thresholds, the fusion center decision statistic, and the fusion
center decision threshold. For each input traffic observation x, the set of n local thresholds
should be optimized with respect to the probability of error. With a fusion rule given by a
function f , the average probability of error at the fusion unit is given by the weighted sum of
false positive and false negative errors.

Pe(T, f ) = p ∗ P(s = 1|Normal) + q ∗ P(s = 0|Attack) (1)

where p and q are the respective weights of false positive and false negative errors.
Assuming independence between the local detectors, the likelihood ratio is given by:

P(s|Attack)

P(s|Normal)
=

P(s1, s2, ..., sN |Attack)

P(s1, s2, ..., sN |Normal)
=

n

∏
i=1

P(si|Attack)

P(si|Normal)
.

The optimum decision rule for the fusion unit follows:

f (s) = log
P(s|Attack)

P(s|Normal)

Depending on the value of f (s) being greater than or equal to the decision threshold, T,
or less than the decision threshold, T, the decision is made for the hypothesis as “Attack”
or “Normal” respectively. Thus the decisions from the n detectors are coupled through a
cost function. It is shown that the optimal decision is characterized by thresholds as in the
decoupled case. As far as the optimum criterion is concerned, the first step is to minimize the
average probability of error in equation 1. This leads to sets of simultaneous inequalities in
terms of the generalized likelihood ratios at each detector, the solutions of which determine
the regions of optimum detection.

4.3 Dependence on the data and the individual IDSs

Often, the data in the databases is only an approximation of the true data. When the
information about the goodness of the approximation is recorded, the results obtained from
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6 Sensor Fusion

the database can be interpreted more reliably. Any database is associated with a degree of
accuracy, which is denoted with a probability density function, whose mean is the value itself.
In order to maximize the detection rate it is necessary to fix the false alarm rate to an acceptable
value, taking into account the trade-off between the detection rate and the false alarm rate. The
threshold (T) that maximizes the TPrate and thus minimizes the FNrate is given as:

FPrate = P[alert|normal] = P

[

n

∑
i=1

wisi ≥ T |normal

]

= α0 (2)

TPrate = P[alert|attack] = P

[

n

∑
i=1

wisi ≥ T |attack

]

(3)

The fusion of IDSs becomes meaningful only when FP ≤ FPi ∀ i and TP ≥ TPi ∀ i; where
FP and TP correspond to the false positives and the true positives of the fused IDS and FPi

and TPi correspond to the false positives and the true positives of the individual IDS indexed i.
It is required to provide low value of weight to any individual sensor that is unreliable, hence
meeting the constraint on false alarm as given in equation 2. Similarly, the fusion improves
the TPrate as the detectors get weighted according to their performance.

4.4 Modeling the fusion IDS by defining proper threshold bounds

Every IDS participating in the fusion has its own detection rate Di, and false positive rate Fi,
due to the preferred heterogeneity of the sensors in the fusion process. Each IDS indexed i
gave an alert or no-alert indicated by si taking a value of one or zero respectively. The fusion

center collected these local decisions and formed a binomial distribution s as given by s=
n

∑
i=1

si,

where n is the total number of IDSs taking part in the fusion.
Let D and F denote the unanimous detection rate and the false positive rate respectively. The
mean and variance of s in case of attack and no-attack, are given by the following equations:

E[s|alert] =
n

∑
i=1

Di, Var[s|alert] =
n

∑
i=1

Di(1 − Di)

; in case of attack

E[s|alert] =
n

∑
i=1

Fi, Var[s|alert] =
n

∑
i=1

Fi(1 − Fi)

; in case of no-attack
The fusion IDS is required to give a high detection rate and a low false positive rate. Hence
the threshold T has to be chosen well above the mean of the false alerts and well below the
mean of the true alerts. The figure 2 shows a typical case where the threshold T is chosen at
the point of overlap of the two parametric curves for normal and attack traffics. Consequently,
the threshold bounds are given as:

n

∑
i=1

Fi < T <

n

∑
i=1

Di
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Fig. 2. Parametric curve showing the choice of threshold T

The detection rate and the false positive rate of the fusion IDS is desired to surpass the
corresponding weighted averages and hence:

D >

n

∑
i=1

D2
i

n

∑
i=1

Di

(4)

and

F <

n

∑
i=1

(1 − Fi)Fi

n

∑
i=1

(1 − Fi)

(5)

Now, using simple range comparison,

D = Pr{s ≥ T|attack} = Pr{|s −
n

∑
i=1

Di ≤ (
n

∑
i=1

Di − T)|attack}.

Using Chebyshev inequality on the random variable s, with Mean = E[s] =
n

∑
i=1

Di and

Variance = Var[s]=
n

∑
i=1

Di(1 − Di),

Pr {|s − E(s)| ≥ k} ≤ Var(s)
k2

With the assumption that the threshold T is greater than the mean of normal activity,

Pr{|s −
n

∑
i=1

Di ≤ (
n

∑
i=1

Di − T)|attack} ≥ 1 −

n

∑
i=1

Di(1 − Di)

(
n

∑
i=1

Di − T)2
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8 Sensor Fusion

From equation 4 it follows that 1 −

n

∑
i=1

Di(1 − Di)

(
n

∑
i=1

Di − T)2
≥

n

∑
i=1

D2
i

n

∑
i=1

Di

The upper bound of T is derived from the above equation as:

T ≤
n

∑
i=1

Di −

√

n

∑
i=1

Di

Similarly, for the false positive rate, F = Pr{S ≥ T | no-attack}, in order to derive the lower
bound of T,

From equation 5 it follows that

n

∑
i=1

Fi(1 − Fi)

(T −
n

∑
i=1

Fi)
2

≤

n

∑
i=1

Fi(1 − Fi)

n

∑
i=1

(1 − Fi)

The lower bound of T is derived from the above equation as:

T ≥
n

∑
i=1

Fi +

√

n

∑
i=1

(1 − Fi)

The threshold bounds for the fusion IDS is:

⎡

⎣

N

∑ Fi

i = 1
+

√

n

∑
i=1

(1 − Fi),
n

∑
i=1

Di −

√

n

∑
i=1

Di

⎤



.
Since the threshold T is assumed to be greater than the mean of normal activity, the upper
bound of false positive rate F can be obtained from the Chebyshev inequality as:

F ≤
Var[s]

(T − E[s])2
(6)

In a statistical intrusion detection system, a false positive is caused due to the variance of
network traffic during normal operations. Hence, to reduce the false positive rate, it is
important to reduce the variance of the normal traffic. In the ideal case, with normal traffic the
variance is zero. The equation 6 shows that as the variance of the normal traffic approaches
zero, the false positive rate should also approach zero. Also, since the threshold T is assumed
to be less than the mean of the intrusive activity, the lower bound of the detection rate D can
be obtained from the Chebyshev inequality as:

D ≥ 1 −
Var[s]

(E[s]− T)2
(7)

For an intrusive traffic, the factor Di(1 − Di) remains almost steady and hence the variance
given as:

Variance =
n

∑
i=1

Di(1 − Di), is an appreciable value. Since the variance of the attack traffic is
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above a certain detectable minimum, from equation 7, it is seen that the correct detection rate
can approach an appreciably high value. Similarly the true negatives will also approach a
high value since the false positive rate is reduced with IDS fusion.
It has been proved above that with IDS fusion, the variance of the normal traffic is clearly
dropping down to zero and the variance of the intrusive traffic stays above a detectable
minimum. This additionally supports the proof that the fusion IDS gives better detection
rate and a tremendously low false positive rate.

5. Results and discussion

5.1 Test set up

The test set up for the experimental evaluation consisted of a combination of shallow and
deep sensors. Hence, for the purpose of fusion we have incorporated two sensors, one that
monitors the header of the traffic packet and the other that monitors the packet content. The
experiments were conducted with the simulated IDSs PHAD and ALAD (22). This choice of
heterogeneous sensors in terms of their functionality is to exploit the advantages of fusion IDS
(4). In addition, complementary IDSs provide versatility and similar IDSs ensure reliability.
The PHAD being packet-header based and detecting one packet at a time, is totally unable to
detect the slow scans. However, PHAD detects the stealthy scans much more effectively. The
ALAD being content-based will complement the PHAD by detecting R2L (Remote to Local)
and U2R (User to Root) attacks with appreciable efficiency.

5.2 Data set

The fusion IDS and all the IDSs that form part of the fusion IDS were separately evaluated
with the same two data sets, namely 1) the real-world network traffic and 2) the DARPA 1999
data set. The real traffic within a protected University campus network was collected during
the working hours of a day. This traffic of around two million packets was divided into two
halves, one for training the anomaly IDSs, and the other for testing. The test data was injected
with 45 HTTP attack packets using the HTTP attack traffic generator tool called libwhisker
(23). The test data set was introduced with a base rate of 0.0000225, which is relatively realistic.
The MIT-DARPA data set (IDEVAL 1999) (24) was used to train and test the performance of
Intrusion Detection Systems. The network traffic including the entire payload of each packet
was recorded in tcpdump format and provided for evaluation. The data for the weeks one and
three were used for the training of the anomaly detectors and the weeks four and five were
used as the test data. Each of the IDS was trained on distinct portions of the training data
(ALAD on week one and PHAD on week three), which is expected to provide independence
among the IDSs and also to develop diversity while being trained.
Even with the criticisms by McHugh (25) and Mahoney and Chan (26) against the DARPA
dataset, the dataset was extremely useful in the IDS evaluation undertaken in this work. Since
none of the IDSs perform exceptionally well on the DARPA dataset, the aim is to show that
the performance improves with the proposed method. If a system is evaluated on the DARPA
dataset, then it cannot claim anything more in terms of its performance on the real network
traffic. Hence this dataset can be considered as the base line of any research (27). Also, even
after 12 years of its generation, there are still a lot of relevant attacks in the data set for which
signatures are not available in database of even the frequently updated signature based IDSs.
The test data of the DARPA data set consisted of 190 instances of 57 attacks which included
37 probes, 63 DoS attacks, 53 R2L attacks, 37 U2R/Data attacks with details on attack types
given in Table 1.
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10 Sensor Fusion

Attack Class Attack Type

Probe portsweep, ipsweep, queso, ntinfoscan,
mscan, lsdomain, satan, illegal-sniffer

DoS apache2, smurf, neptune, pod, mailbomb, back,
teardrop, udpstorm, processtable, arppoison, tcpreset,
crashiis, dosnuke, syslogd, land, selfping, warezclient

R2L dict, guest, ftpwrite, xlock, xsnoop, httptunnel,
framespoof, netbus, netcat, ppmacro, imap, named,

ncftp, phf, sendmail, sshtrojan, snmpget

U2R/ Data perl, xterm, eject, fdformat, ffbconfig, ps, loadmodule, casesen,
nukepw, sechole, yaga, secret, ntfsdos, ppmacro, sqlattack

Table 1. Various attack types in DARPA’99 data set

The large observational data set were analyzed to find unsuspected relationships and was
summarized in novel ways that were both understandable and useful for the detector
evaluation. There are many types of attacks in the test set, many of them not present in
the training set. Hence, the selected data also challenged the ability to detect the unknown
intrusions. When a discrete IDS was applied to a test set, it yields a single confusion matrix.
Thus, a discrete IDS produced only a single point in the ROC space, whereas scoring IDSs can
be used with a threshold to produce different points in the ROC space.

5.3 Evaluation metrics

Let TP be the number of attacks that are correctly detected, FN be the number of attacks that
are not detected, TN be the number of normal traffic packet/connections that are correctly
classified, and FP be the number of normal traffic packet/connections that are incorrectly
detected as attack. In the case of an IDS, there are both the security requirements and the
usability requirements. The security requirement is determined by the TPrate and the usability
requirement is decided by the number of FPs because of the low base rate in the case of a
network traffic.
The commonly used IDS evaluation metrics on a test data are the overall accuracy and F-score.

Overall Accuracy =
TP + TN

TP + FP + TN + FN

Overall Accuracy is not a good metric for comparison in the case of network traffic data since
the true negatives abound.
Precision is a measure of what fraction of test data detected as attack are actually from the
attack classes.

Precision =
TP

TP + FP

Recall is a measure of what fraction of attack class was correctly detected.

Recall =
TP

TP + FN

There is a trade-off between the two metrics precision and recall. As the number of detections
increase by lowering of the threshold, the recall will increase, while precision is expected
to decrease. The recall-precision characterization of a particular IDS is normally used to
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analyze the relative and absolute performance of an IDS over a range of operating conditions.
F-score, which is the harmonic mean of recall (R) and precision (P), scores the balance between
precision and recall. The F-score is given by:

F-score =
2 ∗ P ∗ R

P + R

The standard measures, namely precision, recall, and F-score are grounded on a probabilistic
framework and hence allows one to take into account the intrinsic variability of performance
estimation.

5.4 Experimental evaluation

The fusion element analyzes the IDS data coming from PHAD and ALAD distributed across
the single subnet and observing the same domain. The fusion unit performed the aggregation
of the IDS outputs for the purpose of identifying the attacks in the test data set. It used binary
fusion by giving an output value of one or zero depending on the value of the aggregation of
the various IDS decisions. The packets were identified by their timestamp on aggregation. A
value of one at the output of the fusion unit indicated the record to be under attack and a zero
indicated the absence of an attack.
The fusion IDS was initially evaluated with the DARPA 1999 data set. The individual IDSs
chosen in this work are PHAD and ALAD, two research IDSs that are anomaly-based and
having extremely low false alarm rate of the order of 0.00002. The other reason for the choice
of PHAD and ALAD was that the are almost complementary in attack detection as evident
fom table 2 and table 3. This helps in achieving best results from the fusion process. The

Attack type Total attacks Attacks detected % detection

Probe 37 22 59%

DOS 63 24 38%

R2L 53 6 11%

U2R/Data 37 2 5%

Total 190 54 28%

Table 2. Types of attacks detected by PHAD at 0.00002 FP rate (100 FPs)

Attack type Total attacks Attacks detected % detection

Probe 37 6 16%

DOS 63 19 30%

R2L 53 25 47%

U2R/Data 37 10 27%

Total 190 60 32%

Table 3. Types of attacks detected by ALAD at at 0.00002 FP rate (100 FPs)

analysis of PHAD and ALAD has resulted in a clear understanding of the individual IDSs
expected to succeed or fail under a particular attack. On combining the two sensor alerts and
removing the duplicates, an improved rate of detection is achieved as shown in table 4.
The performance in terms of F-score of PHAD, ALAD and the combination of PHAD and
ALAD is shown in the tables 5, 6 and 7 respectively and figure 3 for various values of false
positives by setting the threshold appropriately. In our experiment we are trying to maximize
the true positive rate by fixing the false positive rate at α0. α0 determines the threshold T by
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Attack type Total attacks Attacks detected % detection

Probe 37 24 65%

DOS 63 39 62%

R2L 53 26 49%

U2R/Data 37 10 27%

Total 190 99 52%

Table 4. Types of attacks detected by the combination of ALAD and PHAD at 0.00004 FP rate
(200 FPs)

FP TP Precision Recall Overall Accuracy F-score

50 33 0.39 0.17 0.99 0.24

100 54 0.35 0.28 0.99 0.31

200 56 0.22 0.29 0.99 0.25

500 56 0.10 0.29 0.99 0.15

Table 5. F-score of PHAD for different choice of false positives

FP TP Precision Recall Overall Accuracy F-score

50 42 0.45 0.21 0.99 0.29

100 60 0.37 0.31 0.99 0.34

200 66 0.25 0.34 0.99 0.29

500 72 0.12 0.38 0.99 0.18

Table 6. F-score of ALAD for different choice of false positives

Fig. 3. F-score of PHAD, ALAD and fusion IDS for different choices of false positives

72 Sensor Fusion - Foundation and Applications

www.intechopen.com



Sensor Fusion for Enhancement

in Intrusion Detection 13

FP TP Precision Recall Overall Accuracy F-score

50 44 0.46 0.23 0.99 0.31

100 73 0.42 0.38 0.99 0.40

200 99 0.33 0.52 0.99 0.40

500 108 0.18 0.57 0.99 0.27

Table 7. F-score and Detection Performance for different choice of false positives for fused
IDS
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Fig. 4. ROC curve of PHAD, ALAD and fusion IDS

trial and error. We have noticed that within two or three trials in our case. This is done with
the training data and hence it is done off line. The improved performance of the combination
of the alarms from each system can be observed in table 7, corresponding to the false positives
between 100 and 200, by fixing the threshold bounds appropriately. Thus the combination
works best above a false positive of 100 and much below a false positive of 200. In each of the
individual IDSs, the number of detections were observed at false positives of 50, 100, 200 and
500, when trained on inside week 3 and tested on weeks 4 and 5. The improved performance
of fusion IDS compared to the two IDSs PHAD and ALAD is also illustrated with the ROC
semilog curve shown in figure 4. The improved performance of the fusion IDS over some of
the fusion alternatives using the real-world network traffic is shown in table 8 and figure 5.

6. Summary

Simple theoretical model is initially illustrated in this chapter for the purpose of showing the
improved performance of fusion IDS. The detection rate and the false positive rate quantify
the performance benefit obtained through the fixing of threshold bounds. Also, the more
independent and distinct the attack space is for the individual IDSs, the better the fusion IDS
performs.
The theoretical proof was supplemented with experimental evaluation, and the detection
rates, false positive rates, and F-score were measured. In order to understand the importance
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Detector/ Total TP FP Precision Recall F-score
Fusion Type Attacks

PHAD 45 10 45 0.18 0.22 0.2

ALAD 45 18 45 0.29 0.4 0.34

OR 45 22 77 0.22 0.49 0.30

AND 45 9 29 0.24 0.2 0.22

SVM 45 21 44 0.32 0.47 0.38

ANN 45 21 61 0.26 0.47 0.28

Fusion IDS 45 22 32 0.41 0.49 0.45

Table 8. Comparison of the evaluated IDSs with various evaluation metrics using the
real-world network traffic

Fig. 5. F-score of the evaluated IDSs using the real-world network traffic

of thresholding, the anomaly-based IDSs, PHAD and ALAD have been individually analyzed.
Preliminary experimental results prove the correctness of the theoretical proof. The chapter
demonstrates that our technique is more flexible and also outperforms other existing fusion
techniques such as OR, AND, SVM, and ANN using the real-world network traffic embedded
with attacks. The experimental comparison using the real-world traffic has thus confirmed the
usefulness and significance of the method. The unconditional combination of alarms avoiding
duplicates as shown in table 4 results in a detection rate of 52% at 200 false positives, and
F-score of 0.4. The combination of highest scoring alarms as shown in table 7 using the DARPA
1999 data set results in a detection rate of 38% and threshold fixed at 100 false positives, and
F-score of 0.4.
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