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1. Introduction  

Treatment of recalcitrant wastewater by advanced oxidation processes (AOPs) is influenced 
by several factors. Due to complexity of the processes, they are difficult to be modelled and 
simulated using conventional mathematical modelling. Artificial neural network is used in 
many areas of science and engineering as a promising tool because of its simplicity in 
simulation, prediction and modelling of process performance (Prakash et al., 2008). The 
chapter presents artificial neural network and training of artificial neural network, advanced 
oxidation processes (AOPs), case studies, conclusions and references.  

2. Artificial Neural Network (ANN) 

The ANN is an artificial intelligence technique that mimics the human brain’s biological 
neural network in the problem solving processes. As humans solve a new problem based on 
the past experience, a neural network takes previously solved examples, looks for patterns 
in these examples, learns these patterns and develops the ability to correctly classify new 
patterns. In addition, the neural network has the ability to resemble human characteristics in 
problem solving that is difficult to simulate using the logical, analytical techniques of expert 
system and standard software technologies (Daosud et al., 2005). 
A neural network is defined as a system of simple processing elements called neurons, 
which are connected to a network by a set of weights. The neuron is a processing element 
that takes a number of inputs, weighs them, sums them up, adds a bias and uses the 
outcome  as the argument for a singule-valued function (transfer function) which results in 
the neuron’s output (Strik et al., 2005). The network is determined by the architecture of the 
network, the magnitude of the weights and the processing element’s mode of operation. At 
the start of training, the output of each node tends to be small. Consequently, the derivatives 
of the transfer function and changes in the connection weights are large with respect to the 
input. As learning progresses and the network reaches a local minimum in error surface, the 
node outputs approach stable values. Consequently, the derivatives of the transfer function 
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with respect to input, as well as changes in the connection weights, are small (Maier and 
Dandy, 1998). 
The different types of neural network based on their incremental complexity are:  feedforward, 
recurrent, stochastic and modular network  (Prakash et al., 2008). The chapter will focus on the 
feedforward network which is widely used in the area of wastewater treatment. 

2.1 Feedforward ANN 

The feedforward ANN is composed of two or more layers of processing elements which are 
linked by weighted connections (Figure 1). The information flow is unidirectional, no 
feedback connections are present and data are presented to input layer, passed on to hidden 
layer and passed on to output layer.  

 

Fig. 1. Feedforward ANN 

2.2 Training of Artificial Neural Network 

According to Artificial neural network tutorial (2008), the learning situation can be 
categorized as the following.  

Supervised learning 

In supervised or associative learning, the network is trained by providing it with input and 
matching output patterns. Backpropagation is a form of supervised training. Using the 
actual outputs, the backpropagation training algorithm takes a calculated error and adjusts 
the weights of the various layers backwards from the output layer to the input layer. It 
means adjusting the weights in neurons with regard to the difference between the outputs 
predicted by the model and the actual outputs (Figure 2).  

Unsupervised learning  

In unsupervised learning or self-organisation, an output unit is trained to respond to 
clusters of pattern within the input. In this paradigm, the system is supposed to discover 
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statistically salient features of the input population. Unlike the supervised learning 
paradigm, there is no a priori set of categories into which the patterns are to be classified; 
rather the system must develop its own representation of the input stimuli.  

Reinforcement learning 

This category of learning may be considered as an intermediate form of the above two types 
of learning. Here the learning machine does some action on the environment and gets a 
feedback response from the environment. The learning system grades its action as good 
(rewarding) or bad (punishable) based on the environmental response and accordingly 
adjusts its parameters. Generally, parameter adjustment is continued until an equilibrium 
state occurs, following which there will be no more changes in its parameters. The self 
organizing neural learning may be categorized under this type of learning. 
 

 

Fig. 2. Supervised learning (Artificial neural network tutorial, 2008) 

3. Advanced Oxidation Processes (AOPs) 

AOPs are defined by Glaze et al. (1987) as near ambient temperature and pressure water 
treatment processes which involve the generation of highly reactive radicals (especially, 
hydroxyl radicals (OH�)) in sufficient  quantity to effect water purification. These treatment 
processes are considered very promising methods for the remediation of contaminated 
water and wastewater containing non-biodegradable organic pollutants. Due to the toxic 
characteristics of non-biodegradable organic pollutants, e.g. antibiotics, a wastewater 
containing these pollutants may not suitably be treated by a conventional biological process. 
In addition, separation technologies such as coagulation-filtration, activated carbon 
adsorption and reverse osmosis only transfer the pollutants from one phase to another 
without destroying them. AOPs are promising methods for the remediation of contaminated 
wastewaters containing non-biodegradable (recalcitrant) organic pollutants. AOPs can be 
classified by considering the phase where the process takes place, hence homogenous or 
heterogeneous processes can be differentiated. AOP classification can also consider the 
different possible ways of hydroxyl radical production. In this way, photochemical and non-
photochemical processes can be distinguished. Table 1 shows classification of the most 
important AOPs into photochemical and non-photochemical processes. 
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Photochemical process Non-photochemical process 

Photo-Fenton (UV/Fe2+/H2O2)  Fenton (Fe2+/H2O2) 

UV/O3 O3/H2O2 

UV/H2O2 O3/Ultrasound 

UV/H2O2/O3  Ozonation (O3/OH-) 

Heterogeneous photocatalysis (UV/TiO2) H2O2/Ultrasound 

Table 1. Classification of AOPs as photochemical and non-photochemical processes 

The chapter will focus on the Fenton, photo-Fenton, UV/H2O2, heterogeneous 
photocatalysis and ozonation, and these processes are described in the following sections.  

3.1 Fenton and photo-Fenton processes 

Fenton and photo-Fenton are homogenous advanced oxidation process. The Fundamentals 

of these processes as well as the main factors affecting the process are described below. 

Fundamentals of Fenton Reactions 

The Fenton reaction was discovered by Fenton (1894) and forty year later, the reaction 

mechanism was described by Haber and Weiss (1934). In the Fenton reaction, hydroxyl 

radicals (OH�) are generated by interaction of H2O2 with ferrous salts as in Reaction (1). 

 Fe2+ + H2O2 → Fe3+ + OH� + OH-   (1) 

Generated Fe3+ can be reduced by reaction with exceeding H2O2 to form again ferrous ion 

and more radicals. This second process is called Fenton-like and it is slower than Fenton 

reaction as in Reactions 2 and 3 (Sychev and Isaak, 1995).  

 Fe3+ + H2O2 → HO2� + Fe2+ + H+  (2) 

 Fe3+ + HO2� → Fe2+ + O2 + H+    (3) 

Other important dark reactions involving ferrous ion and hydrogen peroxide in absence of 

other interfering ions and organic substances are shown in Reactions 4-6.  

 Fe2+ + HO2� + H+ → Fe3+ + H2O2 (4) 

 Fe2+ + OH� → Fe3+ + OH- (5) 

 H2O2 + OH� → HO2� + H2O  (6) 

The below listed radical-radical reactions, as well as the auto-decomposition of H2O2 are 

also part of the complex process as shown in Reactions 7-10.  

 2H2O2 → 2H2O + O2 (7) 

 2OH� → H2O2 (8) 

 2HO2� → H2O2 + O2 (9) 

 HO2� + OH� → H2O + O2  (10) 
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Fundamentals of Photo-Fenton Reactions 

Fenton reaction rate is strongly increased by irradiation with UV/visible light (Kiwi et al., 
1994; Huston & Pignatello, 1999). During the reaction, Fe3+ ions accumulate in the system 
and after Fe2+ are consumed, the reaction practically stops. Photochemical regeneration 
(Reaction 11) of Fe2+ ions by photoreduction of Fe3+ ions was proposed (Huston & 
Pignatello, 1999). The newly generated ferrous ion reacts with H2O2 generating a second 
OH� radical and Fe3+ and the cycle continues. 

 Fe3+ + H2O + hυ → Fe2+ + OH�  (11) 

The main factors affecting Fenton and photo-Fenton processes are summarized below. 

Initial H2O2 Concentration 

Degradation rate of the organics increases with increase of H2O2 concentration. This could be 
explained by the effect of the additionally produced OH� radicals (Zhao et al., 2004). However, 
above a certain H2O2 concentration, the reaction rate levels off and sometimes is negatively 
affected by the increase of H2O2 concentration. This may be due to scavenging of OH� by H2O2 
as in Reaction 6 (Kavitha and Palanivelu, 2005). Therefore, H2O2 should be added at an 
optimal concentration to achieve the best degradation. This optimal H2O2 concentration 
depends on the nature and concentration of the pollutants and the iron concentration. 

Initial Fe2+ Concentration  

Degradation rate of the organics increases with increase of iron concentration; however, 

above a certain iron concentration the efficiency decreases. This may be due to the 

recombination of OH� radicals or increase of turbidity that hinders the absorption of the UV 

light required for the photo-Fenton process. Fe2+ reacts with OH� radicals as a scavenger 

(Reaction 5). It is desirable for Fe2+ or Fe3+ to be as small as possible, so recombination can be 

avoided and iron complex production reduced (Kwon et al., 1999). 

pH  

The Fenton and photo-Fenton processes have a maximum activity at about pH 3. The pH 

value influences the generation of OH� radicals and thus the oxidation efficiency of the 

process. At higher pH, generation of OH� radicals decreases and this is due to the decrease 

of dissolved iron as well as dissociation and auto-decomposition of H2O2 (Zhao et al., 2004). 

At low pH, oxidation efficiency is lower due to solvation of hydrogen   peroxide in presence 

of high concentration of H+ to form stable oxonium ion (H3O2+), thus reducing substantially 

its reactivity with ferrous ions (Kwon et al., 1999). 

Temperature 

Fenton and photo-Fenton processes are generally conducted at ambient temperature. 
However, temperature is a key parameter that has to be taken into account because thermal 
Fenton process is accelerated with increasing temperature (Arasasinghan et al., 1989). But 
high temperature (above 40 ºC) may decompose hydrogen peroxide to oxygen and water as 
in Reaction 7 (Nesheiwat & Swanson, 2000). 

3.2 UV/H2O2 process 

The UV/H2O2 system involves the formation of OH� radicals by hydrogen peroxide 
photolysis and subsequent propagation reactions. The mechanism most commonly accepted 
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for the photolysis of H2O2 is the cleavage of the molecule into hydroxyl radicals as in 
Reaction 12.  

 H2O2 + hυ → 2OH� (12) 

The major drawback of this process is that if the solution presents a strong absorbance, this can 
compete with hydrogen peroxide for the radiation. Thus, cloudy water or water containing 
compounds absorbing UV radiation can present problems in treatment by this method. 

3.3 Heterogeneous photocatalysis 

Heterogeneous photocatalysis is a technology based on the irradiation of a catalyst, usually 
a semiconductor, which may be photoexcited to form electron-donor sites (reducing sites) 
and electron-acceptor sites (oxidizing sites) providing great scope as redox reagents. The 
bands of interest in photocatalysis are the occupied valence band (VB) and the unoccupied 
conduction band (CB), separated by an energy distance referred to as the band gap (Ebg). 
When the semiconductor is illuminated with light of greater energy than that of the band 
gap, an electron is promoted from the VB to the CB leaving a positive hole in the valence 
band as illustrated in Figure 3 (Cardona, 2001). After separation, the electron (e-) and hole 
(h+) pair may recombine generating heat or can become involved in electron transfer 
reactions with other species in solution. 
 

 

Fig. 3. Mechanism of semiconductor photocatalysis (Cardona, 2001). 

Among the semiconductors, titanium dioxide (TiO2) has proven to be the most suitable for 
widespread environmental applications. TiO2 is biologically and chemically inert; it is stable 
to photo and chemical corrosion, and inexpensive. Furthermore, TiO2 is of special interest 
since it can be photoexcited by natural (solar) UV radiation. This is because TiO2 has an 
appropriate energetic separation between its valence and conduction bands, which can be 
surpassed by the energy of a solar photon. The VB and CB energies of the TiO2 are estimated 

to be +3.1 and −0.1 eV,  respectively, which means that its band gap is 3.2 eV and therefore 
absorbs in the near UV region (λ<387 nm)      

Mechanism of TiO2 Photocatalysis  

Reaction mechanisms of photocatalytic processes have been discussed in the literature (Sadik 
et al., 2007). When a semiconductor such as TiO2 is illuminated by photons having an energy 
level that exceeds their band gap (hv > Ebg = 3.2 eV in case of TiO2), electrons (e-) are excited 
from the valence band to the conduction band and holes (h+) are produced in the valence band 
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(Reaction 13). The photogenerated valence band holes react with either water (H2O) or 
hydroxyl ions (OH-) adsorbed on the catalyst surface to generate OH� radicals which are 
strong oxidants (Reaction 14 and 15). The hydroxyl radical reacts readily with surface 
adsorbed organic molecules, either by electron or hydrogen atom abstraction, forming organic 
radical cations, or by addition reactions to unsaturated bonds (Sadik et al., 2007) (Reaction 16). 
Since the reaction of the holes on the particle interface is faster than electrons, the particles 
under illumination contain an excess of electrons. Removal of these excess of electrons is 
necessary to complete the oxidation reaction, by preventing the recombination of electrons 
with holes. The most easily available electron acceptor is molecular oxygen and in presence of 
oxygen the predominant reaction of electrons is that with O2 to form superoxide ions (�O2−) as 
in Reaction (17). In acidic condition, superoxide ion combines with proton to form a 
hydroperoxide radical and it reacts with conduction band electron to form hydroperoxide ion. 
The hydroperoxide ion reacts with proton to form hydrogen peroxide. Cleavage of hydrogen 
peroxide by the conduction band electrons yields further hydroxyl radicals and hydroxyl ions 
(Reaction 18).  The hydroxyl ions can then react with the valence band holes to form additional 
hydroxyl radicals. Recombination of the photogenerated electrons and holes may occur and 
indeed it has been suggested that preadsorption of substrate (organic substance) onto the 
photocatalyst is a prerequisite for highly efficient degradation.  

 TiO2+ hv  → TiO2 (e- + h+)  (13) 

 h+ + H2O →   H+ + OH� (14) 

 h++ OH− → OH� (15) 

 Organics + OH� → products  (16)  

 e− + O2 →�O2− (17) 

 H2O2 + e- → OH�+OH- (18) 

Main Factors Affecting Photocatalytic  

The main factors affecting photocatalysis reactions are described below. 

Catalyst Concentration  

The reaction rate is affected by the catalyst concentration; however, above a certain 
concentration value the reaction rate becomes independent of catalyst concentration. This limit 
depends on the nature of the pollutant and on the geometry and working conditions of the 
photoreactor corresponding to the maximum catalyst concentration in which all the particles 
are totally illuminated.  Decrease of reaction rate at higher catalyst concentration may be due 
to decrease of light penetration or increase of light scattering (Kansal et al., 2007). 
Agglomeration and sedimentation of catalyst under high catalyst concentration may take place 
and available catalyst surface for photon absorption may decrease (San et al., 2007). 

Temperature and pH 

Experimental studies on dependence of the reaction rate of degradation of organic 
compounds on temperature have been conducted (Evgenidou et al., 2005). Generally, 
increase in temperature enhances recombination of charge carriers and desorption process 
of adsorbed reactant species, resulting in decrease of photocatalytic activity.  
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Nature of the Photocatalyst   

A very important parameter influencing the performance of photocatalyst in photocatalytic 
oxidation is the surface morphology (Dinga et al., 2005). Numerous forms of photocatalyst 
have been synthesized by different methods to arrive at a photocatalyst exhibiting desirable 
physical properties, activity and stability for photocatalytic application (Gao & Liu, 2005). 
Smaller particle size is reported to give higher degradation of organic compounds (Maira et 
al., 2001). 

Light Intensity  

Photocatalytic reaction rate depends largely on the radiation absorption of the photocatalyst 
(Curcó et al., 2002). The increase of degradation rate with increase of light intensity during 
photocatalytic degradation have been reported (Qamar et al., 2006).  

3.4 Ozonation  

Ozonation is the oxidation process based on the use of ozone as basic compound. Ozone 
may be used alone or with other compounds such as UV radiation, hydrogen peroxide, 
activated carbon, etc.  Ozone formation in the upper atmosphere is based on the photolysis 
of diatomic oxygen as in the following reaction: 

 O2 + hυ → 2O� (19) 

 O2 + 2O� → O3 (20)  

The first use of ozone was reported at the end of the 19th century as a disinfectant in  water 

treatment plants, hospitals, and research centres such as the University of Paris where the 

first doctoral thesis on ozonation was presented (Le Paulouë & Langlais 1999). Ozone is 

known as a very reactive agent in both air and water and its high reactivity is due to its 

electronic configuration. The half-life of ozone in water is highly dependent on the pH and 

matrix content of the water. For example, the half-life of ozone in distilled water can vary 

from about 102 sec at pH 12 to 105 sec at pH 2 or from 10 sec for secondary wastewater 

effluents to 104 sec for certain ground and surface waters (Hoigné, 1998). The  fundamentals 

of ozonation is beyond the scope of this chapter. 

4. Case studies 

In this section, eight case studies on use of artificial neural network for modelling, simulation 

and prediction of advanced oxidation process (Fenton, photo-Fenton, UV/H2O2, UV/TiO2 and 

Ozonation) performance in recalcitrant wastewater treatment are summarized.  

4.1 The use of Artificial Neural Network (ANN) for modeling of COD removal from 
antibiotic aqueous solution by the Fenton process 

Elmolla et al. (2010) reported the implementation of artificial neural networks (ANNs) for 

the prediction and simulation of antibiotic degradation in aqueous solution by the Fenton 

process. Experimental data sets (120) were divided into input matrix [p] and target matrix 

[t]. The input variables were reaction time (t), H2O2/COD molar ratio, H2O2/Fe2+ molar 

ratio, pH and COD concentration. The corresponding COD removal was used as a target. 

Principal component analysis (PCA) was performed on input data to filter out uncorrelated 
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random data. The data sets were divided into training (one half), validation (one fourth) and 

test (one fourth) subsets, each of which contained 60, 30 and 30 sets, respectively. 

A three-layer backpropagation neural network was optimized to predict and simulate the 

degradation of amoxicillin, ampicillin and cloxacillin in aqueous solution in terms of COD 

removal. Figure 4 shows the optimized network. It was a three-layer ANN with tangent 

sigmoid transfer function (tansig) at hidden layer with (1) neurons, linear transfer function 

 

 

Fig. 4. Artificial neural network optimized structure (Elmolla et al., 2010) 

(purelin) at output layer and Levenberg–Marquardt backpropagation training algorithm 

(LMA). The network was tested and the mean square error was 0.000376. In a comparison 

between ANN predicted results and the experimental results, the correlation coefficient (R2) 

was 0.997 (Figure 5). The sensitivity analysis was conducted using two methods. The first 

one was based on the neural net weight matrix and Garson equation (Aleboyeh et al., 2008). 

Garson (1991) proposed an equation based on the partitioning of connection weights 
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where, Ij is the relative importance of the jth input variable on the output variable, Ni and Nh 

are the numbers of input and hidden neurons, respectively, Ws are connection weights, the 

superscripts ‘i’, ‘h’ and ‘o’ refer to input, hidden and output layers, respectively, and 
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subscripts ‘k’, ‘m’ and ‘n’ refer to input, hidden and output neurons, respectively. The 

second evaluation process was based on the possible combination of variables (Yetilmezsoy 

and Demirel, 2008). Performance of the groups of one, two, three, four, and five variables 

were examined by the optimum ANN structure. The input variables were reaction time (P1), 

H2O2/COD molar ratio (P2), H2O2/Fe2+ molar ratio (P3), pH (P4) and COD concentration (P5). 

Table 2 shows the results of the sensitivity analysis for different combination of input 

variables. 
 

 

Fig. 5. Comparison between predicted and measured values of the output (Elmolla et al., 2010) 

The sensitivity analysis showed that all studied variables (reaction time, H2O2/COD molar 

ratio, H2O2/Fe2+ molar ratio, pH and COD) have strong effect on antibiotics degradation in 

terms of COD removal. In addition, H2O2/Fe2+ molar ratio is the most influential parameter 

with relative importance of 25.8%. The results showed that neural network modelling could 

effectively predict and simulate the behaviour of the Fenton process. 

4.2 The use of Artificial Neural Network (ANN) with oxidation reduction potential for 
dosage control of the Fenton process for color removal from textile wastewater 

Yu et al. (2009) built a Fenton dosage control strategy that uses oxidation reduction potential 

(ORP) monitoring and artificial neural network models for removing color from textile 

wastewater. The input variables were peak value (mV), pH value at the ORP peak, H2O2 

dose Fe2+, dose and H2O2/Fe2+ molar ratio. The corresponding decolorization efficiency was 

used as a target. The data sets (74) were divided into training 46 and testing 24. A three-

layer backpropagation neural network was used to predict and simulate the process. The 

network was tested and the root mean square (RMS) value was 0.053. In a comparison 

between ANN predicted results and the experimental results, the correlation coefficient (R2) 

was 0.97 (Figure 6). Figure 7 shows the proposed Fenton dosage control strategy based on 

the developed artificial neural network control model. 
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Combination Mean square 

error (MSE) 

Epoch Correlation 

coefficient (R2) 

Best linear equation 

P1 365.889 6 0.315 y = 3.71X +880 

P2 276.46 8 0.599 y = 7.44X +763 

P3* 270.141 10 0.616 y = 8.93X +689 

P4 378.575 7 0.395 y = 3.15X +991 

P5 404.727 12 0.284 y = 1,7X +953 

P1+P2 0.500941 7 0.538 y = 0.409X +29.2 

P1+P3 0.451707 8 0.649 y = 0.452X +25.9 

P1+P4 0.65364 9 0.451 y = 0.32X +31.8 

P1+P5 0.714965 6 0.391 y = 0.30X +38 

P2+P3 0.415012 9 0.742 y = 0.528X +25 

P2+P4 0.388861 5 0.764 y = 0.528X +24.3 

P2+P5 0.552496 5 0.636 y = 0.405X +32.1 

P3+P4* 0.304122 9 0.848 y = 0.701X +16.9 

P3+P5 0.571864 10 0.646 y = 0.509X +23.5 

P4+P5 0.755573 5 0.487 y = 0.232X +40.6 

P1+P2+P3 0.313754 16 0.802 y = 0.642X +18.1 

P1+P2+P4 0.2901 14 0.825 y = 0.675X +16.4 

P1+P2+P5 0.453212 10 0.702 y = 0.675X +25.2 

P1+P3+P4 0.141262 25 0.873 y = 0.873X +6.2 

P1+P3+P5 0.43797 10 0.69 y = 0.57X +21.1 

P1+P4+P5 0.583005 16 0.528 y = 0.57X +32.7 

P2+P3+P4* 0.117252 12 0.936 y = 0.849X +9.37 

P2+P3+P5 0.379122 47 0.77 y = 0.579X +23.1 

P3+P4+P5 0.300483 25 0.85 y = 0.695X +17.1 

P1+P2+P3+P4* 0.00278282 34 0.995 y = 0.997X +0.402 

P1+P2+P3+P5 0.270749/0 25 0.818 y = 0.679X +15.7 

P1+P2+P4+P5 0.264695 15 0.832 y = 0.682X +15.8 

P1+P3+P4+P5 0.139748 15 0.912 y = 0.87X +6.27 

P2+P3+P4+P5 0.113608 36 0.915 y = 0.862X +8.92 

P1+P2+P3+P4+P5* 0.000376 20 0.997 y = 0.999X +0.116 

* The best group performances according to number of parameters 
 

Table 2. Evaluation of combination of input variables (Elmolla et al., 2010) 
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Fig. 6. Correlation of measured color removal efficiency and control target for real textile 

wastewater (Yu et al., 2009) 

 

 

Fig. 7. Proposed Fenton dosage control strategy based on the developed artificial neural 

network control model (Yu et al., 2009) 

4.3 The use of Artificial Neural Network (ANN) for modeling of DOC removal from 
polyvinyl alcohol aqueous solution by the photo-Fenton process 

Giroto et al. (2006) reported the implementation of artificial neural network (ANN) for 

modelling of DOC removal from polyvinyl alcohol aqueous solution by the photo-Fenton 

process. Experimental data sets (432) were divided into input matrix [p] and target matrix 
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[t]. The input variables were reaction time (t), initial DOC, Fe2+ and H2O2 concentrations. 

The corresponding DOC removal was used as a target. In a comparison between ANN 

calculated DOC and the experimental DOC, the correlation coefficient (R2) was 0.966  

(Figure 8). 
 

 

Fig. 8. Comparison between calculated and experimental DOC (Giroto et al., 2006) 

4.4 The use of Artificial Neural Network (ANN) for prediction of azo dye decolorization 
by UV/H2O2  

Aleboyeh et al. (2008) developed an artificial neural network model for the prediction and 
simulation of photochemical decolorization of C.I. Acid Orange 7 solution by UV/H2O2 

process. Experimental data sets were divided into input matrix [p] and target matrix [t]. The 
input variables were initial concentration of dye and hydrogen peroxide, the pH of the 
solution and time of UV irradiation. The corresponding decolorization efficiency was used 
as a target. The data sets (228) were divided into training (one half), validation (one fourth) 
and test (one fourth) subsets, each of which contained 114, 57 and 57 sets, respectively. 
 

 

Fig. 9. Comparison between predicted and experimental decolorization (Aleboyeh et al., 
2008) 
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A three-layer backpropagation neural network was used to predict and simulate the process. 
Figure 9 shows the optimized network. It was a three-layer ANN with tangent sigmoid 
transfer function (tansig) at hidden layer with 14 neurons, linear transfer function (purelin) at 
output layer and scaled conjugate gradient algorithm training algorithm. The network was tested 
and the mean square error was 0.004. In a comparison between ANN predicted results and the 
experimental results, the correlation coefficient (R2) was 0.996 (Figure 10). The sensitivity 
analysis was conducted based on Garson equation (Equation 1) and it showed that all studied 
variables (initial concentration of the dye and H2O2, initial pH and reaction time) had 
considerable effects on decolorization. In addition, the initial concentration of H2O2 was the 
most influential parameter in the decolorization process with relative importance of 48.89%. 
 

 

Fig. 10. Comparison between predicted and measured decolorization (Aleboyeh et al., 2008) 

4.5 Decolorization process modeling by neural network  

Guimarães et al. (2008) developed an artificial neural network model for the prediction and 

simulation of photochemical decolorization of acid orange 52 dye solution by the UV/H2O2 

process. The input variables were dye concentration, pH, hydrogen peroxide concentration, 

temperature and time of operation. The corresponding absorbance was used as a target. A 

three-layer backpropagation neural network was used to predict and simulate the process. It 

was a three-layer ANN with tangent sigmoid transfer function (tansig) at hidden layer with 

16 neurons, linear transfer function (purelin) at output layer and descending gradient 

(learngdm) training algorithm. The neural network was trained with 218 samples and 

utilized a configuration with a hidden layer and 16 neurons in the layer, presenting high 

correlation coefficient of (R2) 0.991 (Figure 11). The sensitivity analysis using Garson 

equation (Equation 1) showed that all studied variables (dye concentration, pH, hydrogen 

peroxide concentration, temperature and time of operation) had considerable effects on the 

decolorization.  
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Fig. 11. Comparison between predicted and measured absorbance (Guimarães et al., 2008) 

4.6 The use of Artificial Neural Network (ANN) for prediction of Methyl Tert-Butyl Ether 
(MTBE) degradation by UV/H2O2 process  

Salari et al. (2005) proposed an artificial neural network model for the prediction and 
simulation MTBE concentration during irradiation time in optimized conditions of the 
UV/H2O2 process. The input variables were reaction time (t),  initial concentration of MTBE,  
initial concentration of H2O2 and pH of the solution.  The concentration of MTBE, as a 
function of reaction time ([MTBE]t), was used as a target. The data sets were divided into 
training (one half), validation (one fourth) and test (one fourth) subsets, each of which 
contained 32, 16 and 16 sets, respectively. Figure 12 shows the optimized network. It was a 
three-layer ANN with tangent sigmoid transfer function (tansig) at hidden layer with 14 
neurons  and linear transfer function (purelin) at output layer. The network was tested and  
 

 

Fig. 12. Artificial neural network optimized structure (Salari et al., 2008) 
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the mean square error was 0.0004. In a comparison between ANN predicted results and the 
experimental results, the correlation coefficient (R2) was 0.998 (Figure 13). 
 

 

Fig. 13. Comparison between predicted and experimental results (Salari et al., 2008) 

4.7 The use of Artificial Neural Network (ANN) for prediction of nitrogen oxides 
removal efficiency by TiO2 photocatalysis  

Toma et al. (2004) predicted the photocatalytic removal efficiency of nitrogen oxides (NO 
and NOx) over a TiO2 powder (Degussa P25). The network input layer contained three 
neurons representing powder quantity, irradiation time and surface, respectively. The 
output layer comprised two neurons representing the photocatalytic efficiency in terms of 
NO and NOx. The data of 488 experimental sets were used to feed an ANN structure. Figure 
14 shows the optimized ANN structure characterized by three hidden layers containing 
seven, four and three neurons, respectively. Correlations were learnt from the database with 
a percentage of 98.57%. The overall optimization error was on average less than 5%.  
 

 

Fig. 14. Artificial neural network optimized structure (Toma et al., 2004) 
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4.8 The use of Artificial Neural Network (ANN) modeling of humic substance removal 
from an aqueous solution by ozonation 
Oguz et al. (2008) modelled the removal of humic substances from aqueous solution by 
ozonation. The input variables to the neural network were treatment time (t), initial 
concentration of humic substance, powdered activated carbon dose (PAC), ozone-air flow 
rate, ozone generation potential, pH, temperature and HCO3− ion concentration. The output 
variable was humic substance removal. The best result was obtained from the Levenberg–
Marquardt algorithm, hyperbolic tangent function in the hidden layer and the linear 
activation function in the output layer. As shown in Figure 15, the optimized network 
structure was 8 neurons at the input layer, 1 neuron at the hidden layer and 1 neuron at the 
output layer. In a comparison between ANN predicted values and the observed values, the 
correlation coefficient (R2) was 0.995 with standard deviation ratio 0.065, mean absolute 
error 4.057 and root mean square error 5.4967 (Figure 16).   
 

 

Fig. 15. Artificial neural network optimized structure (Oguz et al., 2008) 
 

 

Fig. 16. Comparison between predicted and observed values (Oguz et al., 2008) 

5. Conclusions 

Artificial neural network is a promising tool for simulation, modelling and prediction of 
advanced oxidation process (AOP) performance. The output of modelling can be used for 
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sensitivity analysis and to study the dynamic behaviour of the AOP. More research should 
be done for application of other artificial intelligent technique such as Neuro-fuzzy for 
prediction as well as control the process. 
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