We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

3,900
Open access books available

116,000
International authors and editors

120M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
1. Introduction

The performance of infrared InAs homojunction and heterojunction photodiodes (PDs) and possibilities of its improvement are analyzed both theoretically and experimentally. The PDs are diffusion-limited at room temperature. An excess current at low temperatures is analyzed within a model of non-homogeneous p-n junction. The excess current is shown to be caused by tunneling of carriers via deep defect states in the gap. The carrier lifetime in InAs is calculated for radiative and Auger recombination mechanisms using three- and four-band Kane models. Theoretical limits of threshold parameters in homojunction and heterojunction PDs are calculated. Experimentally proved that p⁺-InAsSbP/n-InAs heterojunction PDs can be more effective as sensitive element in gas sensors operated at room temperature in comparison with commercially available PDs. They have more broad spectral response and higher values of the resistance-area product at zero bias voltage.

2. Current status of InAs photodiodes

Mid-wavelength infrared (MWIR) photodetectors, light-emitting diodes (LEDs) and lasers are important components of modern infrared optoelectronic sensors. Despite the fact that MWIR region can be covered by different IV-VI and II-VI photodetectors (e.g., PbS and PbSe photoconductors, HgCdTe photodiodes and photoconductors, InAs PDs are expected to be the best choice from both practical and economic point of view due to mature technology of low-cost InAs substrates. The main advantage of InAs PDs is that they can operate at room and near room temperatures. The elimination of cryogenic cooling system results in significant reduction in cost and more reliable operation of infrared devices on their base. InAs PDs exhibit better noise characteristics at low frequencies and offer superior pulse response for detecting rapid processes in comparison with IV-VI photoconductors. Their characteristics (sensitivity, differential resistance, peak wavelength) can be optimized for specific purposes.

The important fact is that InAs and ternary compounds on its base are also used for manufacture of LEDs (Zotova, 1991; Popov, 1997; Matveev, 2002). The emission and photoresponse spectra of LEDs and PDs can be easily matched at different temperatures. In comparison with II-VI and IV-VI IR detectors, InAs PDs exhibit more stable characteristics. Commercially available InAs PDs are produced by Judson Technologies LLC and Hamamatsu Corporation as single-element structures. Apparently, the multielement structures exist only as laboratory samples. InAs infrared PDs have different applications such as conventional and laser spectroscopy, gas analysis, thermal imaging, remote sensing.
At the same time these PDs are characterized by rather low values of the differential resistance - area product R_0A at room temperature. This seems to be the main reason that InAs infrared photodetectors operate in sub-BLIP regime (Rogalsky, 1995). Further improvement in their performance is possible with a decrease in dark current and suppression of Auger recombination.

3. Preparation of photodiodes and experimental techniques

Homojunction PDs were prepared by short-term (20-30 min) diffusion of Cd into n-InAs substrates at $T=875$ K. The substrates of n-type conductivity were cut from single-crystal ingots grown in joint-stock company "Pure metals plant" (Svetlovodsk, Ukraine). The damaged surface layers were removed by using dynamic chemical-mechanical polishing in 2% Br$_2$-CH$_3$OH solution. Their structural quality was controlled by X-ray diffraction method. In the chemically polished substrates the rocking curves half-width was 25-27°. Electrical parameters were controlled by van der Pauw technique at 295 K. The carrier concentration and mobility were found to be $n=(2\div3)\times10^{16}$ cm$^{-3}$ and $\mu_n=(2\div2.5)\times10^4$ cm2/V×s, respectively. The density of dislocations was in the range $(2\div4)\times10^{14}$ cm$^{-2}$. The substrates with the diffused p-type layer had mirror-like surfaces free of structural damages such as inclusions of impurity atoms. They were characterized by the rocking curve half-width of 32-35°. Typical profiles of Cd atoms in a substrate are shown in Fig.1. As seen, at low values of depth x they can be approximated by two exponential dependences (shown by solid lines in Fig. 1). Similar profiles of impurity atoms were previously observed in GaAs (Grigor'ev & Kudykina, 1997) and explained by generation of non-equilibrium vacancies at the substrate's surface. In such a case, an impurity profile is determined by distribution of vacancies under the surface. The junction depth was determined from the probe thermo-emf measurements during careful chemical etching of diffused layers. Mesa structures were prepared on (111)A side of substrates by chemical etching in 2% Br$_2$-HBr solution. In order to eliminate the surface leakage current mesas were passivated by etching in HNO$_3$-based solution followed by deposition of anode oxide doped with fluorine with thickness of 0.3 μm. After passivation they were covered by thin layer of ZnTe thermally deposited in a vacuum chamber at temperature 150°C.

The heterojunction $p^+\text{InAsSbP}/n\text{-InAs}$ PDs were prepared by LPE technique in IOFFE Physico-Technical Institute, St.-Petersburg Russia (Zotova, 1991; Matveev, 1997; Matveev, 2002). For this purpose, lattice matched InAsSbP epitaxial layers of approximately 3 μm thickness were grown on (111)B surfaces of InAs substrates. The quaternary InAsSbP compound had energy gap of 0.43 eV at $T = 297$ K. The epilayers were doped to about 10^{18} cm$^{-3}$ by addition of Zn to the melt. The substrates were n-type single crystals with electron concentration $n=(2\div3)\times10^{16}$ cm$^{-3}$. In homojunction and heterojunction PDs mesa structures have active area $A=4\times10^{-2}$ cm2 and 1.45×10^{-3} cm2, respectively.

In order to characterize the prepared PDs, the dark current as well as the high-frequency (1 MHz) barrier capacitance were measured as a function of bias voltage and temperature. The carrier lifetime was determined from the photoconductivity signal decrease recorded by a memory oscilloscope in the temperature range 77-300 K. The investigated samples were illuminated by Nd:YAG pulsed laser with the pulse width around 2 ns. It has been observed that the signal decrease was not exactly exponential; a very fast decrease was observed immediately after the end of illumination followed by an exponential slow decrease. The excess carrier lifetime was associated with the slow decrease. The fast decrease, not typical
for recombination processes, was associated with a high-level excitation of excess carriers. The photoresponse spectra were measured in the short-circuit current mode using grating monochromator and halogen lamp as a source of light. The photoresponse signal was recorded by a lock-in amplifier and processed by a personal computer.

Fig. 1. SIMS profiles of Cd in InAs. The diffusion time is 20 min (1) and 30 min (2).

4. Recombination mechanisms in InAs

The carrier lifetime in narrow-gap semiconductors is determined by a number of recombination mechanisms, such as radiative, Auger and Shockley-Read-Hall recombination. The theory of radiative recombination has been developed by Van Roosbroeck and Shockley (Van Roosbroeck & Shockley, 1959; Blakemore, 1962). Ten types of possible band-to-band Auger recombination processes in n- and p-type semiconductors were determined by Beattie (Beattie, 1962). The Auger 1 recombination mechanism in n-type material with InSb-like band structure was firstly considered by Beattie and Landsberg (Beattie & Landsberg, 1959). The Auger 7 process is important in p-type material if the split-off band can be ignored (Beattie & Smith, 1967; Takeshima, 1972). The role of the split-off band in InAs was firstly recognized by Takeshima (Takeshima, 1972). Since the split-off energy Δ in InAs is close to the energy gap E_g, the Auger S process may be dominant in p-type material. Further investigations of recombination processes in InAs were based on these pioneering works (Blakemore, 1962; Rogalski, 1995).

Three types of Auger recombination mechanisms (Auger 1, Auger 7 and Auger S) have been shown to be important in InAs (Takeshima, 1972; Takeshima, 1975; Rogalski & Orman, 1985). According to Rogalski and Orman, contributions of Auger and radiative mechanism are comparable at room temperatures in samples with the carrier concentration of the order of 10^{16} cm$^{-3}$ The Auger lifetime was theoretically analyzed by Barishev (Barishev, 1964). The well known problem connected with the Auger recombination processes is the uncertainty introduced by the overlap integrals F_1 and F_2. For instance, in n-type InAs the value of $|F_1F_2|^2$ is ranged within an order of magnitude. Appropriate analysis in p-type materials is
even more difficult because of experimental data are rather scarce. An improvement in the
calculation of overlap integrals was done by Gelmont with co-authors. The Auger S and
Auger 7 processes were reexamined for the three- and four-band Kane models of band
structure (Gelmont, 1978; Gelmont, 1981; Gelmont, 1982; Gelmont & Sokolova, 1982). The
SRH recombination process in InAs is investigated insufficiently. On the other hand,
frequently observed large scattering of experimental data in samples with close values of
free carriers density clearly specifies an essential role of this process.
The lifetime in InAs was calculated as a function of temperature and density of carriers. The
calculated lifetime is compared with experimental data available in the literature (Datal,
1979; Wider & Collins, 1974; Andrushko, 1986; Fomin, 1984; Blaut-Blachev, 1975; Bolgov,
1997). For small departure from equilibrium the radiative lifetime is given by
\[
\tau_R = \frac{1}{B(n_0 + p_0)}
\]
where \(n_0 \) and \(p_0 \) are the equilibrium electron and hole concentrations. The capture
probability \(B \) for parabolic conduction and valence bands is given by
\[
B = 5.8 \times 10^{-13} \tau_0 \frac{1}{2} \left(\frac{m_e}{m_e + m_h} \right)^{3/2} \left(1 + \frac{m_e}{m_h} \right) \left(\frac{300}{T} \right)^{3/2} e_\infty
\]
where \(e_\infty \) is the high-frequency dielectric constant, \(m_e^* \) and \(m_h^* \) are the effective masses of
electrons and holes, respectively, the energy gap \(E_g \) is expressed in eV (Rogalski & Orman,
1985). For n-type material the Auger 1 recombination lifetime is equal to (Rogalski, 1995;
Rogalski & Orman, 1985)
\[
\tau_{A1} = \frac{n_1^2}{n(n_0 + p_0) g_{A1}} = \frac{2n_0^2 \tau_A^i}{n_0(n_0 + p_0)}
\]
where \(\tau_A^i \) is the carrier lifetime in the intrinsic material. The Auger 7 lifetime in the limit of
small excitation is equal to
\[
\tau_{A7} = \tau_0 \frac{1}{p_0 / n_0}
\]
where
\[
\tau_A^7 = \frac{p_0}{2 g_{A7}^c}
\]
Analogous equations for the carrier lifetime can be written for the Auger S process. The
effective carrier lifetime is given by
\[
\frac{1}{\tau} = \sum_i \frac{1}{\tau_i}
\]
where \(\tau_i \) is the carrier lifetime determined by the \(i \)th recombination process. The generation
rate for the Auger 1 process \(g_{A1} \) obtained by Beattie and Landsberg is given by
In the three-band Kane model the generation rate is given by

\[g_{A1} = \frac{8(2\pi)^{5/2}e^4m_e^2F_1^2F_2^2n_0^2}{\hbar^3e^2(1+\mu)^{1/2}(1+2\mu)} \left(\frac{kT}{E_g} \right)^{3/2} \exp \left[-\frac{(1+2\mu)E_g}{kT} \right] \] (7)

According to Gelmont, in the three-band Kane model the generation rate is given by

\[g_{A1} = \frac{3(2\pi)^{1/2}e^4m_e^2n_e^2}{\hbar^3e^2} \left(\frac{kT}{E_g} \right)^{5/2} \exp \left[-(1+2\mu)E_g/kT \right] \] (8)

For the Auger 7 lifetime the generation rate is

\[g_{A7} = \frac{18m_o(m^*_h/m_o)e^4}{\pi\hbar^3e^2} P_o \left(\frac{kT}{E_g} \right)^{7/2} \exp \left[-(1+m^*_h/m^*_hh)E_g/kT \right] g(\alpha) \] (9)

In the last three expressions, \(\varepsilon \) is the static dielectric constant, \(m^*_h \) and \(m^*_hh \) are the effective masses of light and heavy holes, respectively, \(\mu \) is the ratio of the electron to the heavy-hole effective mass. The generation rate in the Auger S process depends on differences between the split-off and band gap energies. The most frequently used expressions for these energies are as follows (Rogalski & Orman, 1985, Madelung, 1964):

\[E_g = 0.44 - 2.8 \times 10^{-4} T \] (10)

and

\[\Delta = 0.43 - 1 \times 10^{-4} T \] (11)

Since in the temperature range 77 – 300 K the condition \(\Delta > E_g \) is fulfilled, the generation rate is given by (Gelmont, et al., 1982)

\[g_{AS} = \frac{27}{5} \frac{4n^2}{n_i^2} P_o \left[\frac{e^4\hbar^3(m^*_e)^{5/2}(\Delta - E_g)}{e^2(m^*_{hh})^3(m_e)^{5/2}kT^2\Delta^2(E_g + \Delta)} \right] \] (12)

where \(m^*_e \) is the effective mass of holes in the split-off band, \(n_i \) is the intrinsic concentration. The concentration dependences of the carrier lifetime in n-type InAs are shown in Fig. 2 and 3. At low temperature \(T=77 \) K experimental data are well described by the radiative recombination mechanism. The contribution of the Auger 1 recombination increases with an increase in temperature. The pronounced scattering of experimental data at room temperature may be caused by contribution of any SRH recombination process at high temperatures to the measured lifetime. Experimental and calculated dependences for \(p \)-InAs are shown in Fig. 4 and 5. Three recombination mechanisms radiative, Auger 7 and Auger S were taken into account. The main result of theoretical calculations is as follows: the Auger 7 process is dominant recombination process in \(p \)-InAs. The contribution of the radiative mechanism is essential at a concentration of holes around \(10^{16} \) cm\(^{-3} \). The Auger S recombination mechanism is weakly dependent on temperature and its contribution to the lifetime is less important.
Fig. 2. Carrier lifetime vs doping level in n-InAs at 77 K (Tetyorkin, 2007). Solid curves are calculated for recombinations: 1 - radiative, 2 - Auger 1 (Gelmont), 3 - Auger 1 (Beattie and Landsberg, $|F_1F_2|^2$ equals 0.079).

Fig. 3. Carrier lifetime vs doping level in n-InAs at 300 K (Tetyorkin, 2007). Calculated curves are obtained for: 1 - radiative lifetime, 2 - radiative and Auger 1 (Gelmont), 3, 4 - radiative and Auger 1 (Beattie and Landsberg, $|F_1F_2|^2$ equals 0.014 and 0.079, respectively).

Fig. 4. Carrier lifetime vs. hole concentration at $T=77$ K (Tetyorkin, 2007). Calculated curves represent Auger 7 (1), radiative (2) and effective (3) lifetime which includes radiative, Auger 7 and Auger S recombinations.

Fig. 5. Carrier lifetime vs temperature in p-InAs with $p=5\times10^{16}$ cm$^{-3}$ (Tetyorkin, 2007). Calculated curves represent radiative (1), Auger 7 (2), Auger S (3) and effective (4) lifetime.
lifetime calculated for the Auger S mechanism is strongly dependent on the difference between Δ and E_g, this conclusion is based on values which were most often published in the literature.

Careful analysis of experimental values of the carrier lifetime obtained from the early 1960s to our days clearly indicate tendency to their decrease. Gradually they have reaches theoretical limit which is determined by the radiative and Auger recombination processes. Obviously, this result is caused by improvements in technology of InAs single crystals. On the other hand, the SRH recombination process still remains unsufficiently investigated. The role played by deep defects in the carrier transport mechanisms in PDs is analysed below.

5. Carrier transport mechanisms

The carrier transport mechanisms were analysed within one-dimensial analytic model. This model includes current from quasineutral and depletion regions of the junction (diffusion and generation-recombination currents), trap-assisted and band-to-band tunneling across the junction. In the investigated PDs the leakage current was treated as a bulk phenomenon. The diffusion and generation current density was calculated by using the formulas:

$$I_D = q n_1^2 \left(\frac{1}{P_{Dn}} + \frac{1}{P_{Dp}} \right)$$

and

$$I_{GR} = \frac{q n_1 W}{2 \tau_0}$$

where W is the depletion region width, τ_0 is the effective lifetime in the depletion region, D_{Dn}, τ_n and D_{Dp}, τ_p are the diffusion coefficient and the carrier lifetime for electrons and holes, respectively. As a rule, the effective lifetime served as adjusting parameter in calculations.

The band-to-band tunneling current density was calculated for the triangular barrier model (Sze, 1981).

$$I_{BTB} = \frac{\sqrt{2m_e q^3 F U}}{4\pi^{3/2}E_1^{1/2}} \exp \left[-\frac{4\sqrt{2m_e E^3/2}}{3\hbar F} \right]$$

where F is the electric field in the junction.

The trap-assisted tunneling current in InAs photodiodes was firstly investigated by A. Sukach and V. Tetyorkin (Sukach, 2005; Tetyorkin, 2005). For this purpose, a model of the trap-assisted tunneling developed earlier for HgCdTe photodiodes (Nemirovsky & Unikovsky, 1992; Rosenfeld & Bahir, 1992) was used. This model is based on number of simplifying assumptions, namely: shallow impurities and traps are uniformly distributed in the depletion region; the electric field across the depletion region is constant; transitions of electrons and holes occur via single level in the gap; initial states are occupied and final states are empty; in degenerate diodes the Burstein-Moss shift results in higher potential barriers for thermal and tunnel transitions of carriers. Traps can exchange carriers with the valence and conduction bands by tunnel and thermal transitions. Under these assumptions, the rates of tunneling transitions between the allowed bands and a trap in the gap is given by
\[\omega_v N_v = \frac{\pi^2 q m^*_h F M^2}{h^3(E_g - E_t)} \exp \left(-\frac{4\sqrt{2}m^*_h (E_g - E_t)^{3/2}}{3qhF} \right) \]
\hspace{2cm} (16)

and

\[\omega_c N_c = \frac{\pi^2 q m^*_e F M^2}{h^3 E_t} \exp \left(-\frac{4\sqrt{2}m^*_e E_t^{3/2}}{3qhF} \right) \]
\hspace{2cm} (17)

where the trap energy \(E_t \) is measured from the edge of the conduction band. The matrix element \(M \) between the trap wave function and the conduction band Bloch wave function in silicon is of the order of \(10^{-29} \) (eV)\(^2\) cm\(^3\) (Rosenfeld & Bahir, 1992). Its value can be also estimated by using the formula (Wenmu He & Zeynep Celik-Batler, 1996).

\[M = \frac{2\hbar^2 \sqrt{2}\pi}{m_e} \left(\frac{2m_e}{\hbar^2} \right)^{1/4} \frac{E_g}{E_t^{3/4}} \]
\hspace{2cm} (18)

Then the trap-assisted tunneling current is given by

\[J_{\text{tat}} = qWN_t \left(\frac{1}{\omega_v N_v + c_p p_1} + \frac{1}{\omega_c N_c + c_n n_1} \right)^{-1} \]
\hspace{2cm} (19)

where \(c_p p_1 \) and \(c_n n_1 \) are the rates of thermal transitions. The concentration of traps \(N_t \), trap energy \(E_t \) and capture cross section for electrons and holes \(c_n \) and \(c_p \) are obtained from the fitting calculations.

Typical forward and reverse I-U characteristics of a representative diffused PD are shown in Fig. 6 and 7. It is necessary to note presence of two exponential regions at temperatures \(T \leq 180 \) K, Fig. 6. The slope of the first region measured at lower bias voltages increases with temperature increasing. The second region exhibits an opposite dependence of the slope on temperature. At higher temperatures the only exponential region is observed.

For analysis of carrier transport mechanisms in diffused PDs, the current-voltage characteristics should be corrected to the series resistance \(R_s \). This correction is especially important due to possible formation of high-resistance compensated region. The presence of this region has been proved with capacitance-voltage measurements shown in Fig. 8.

The following peculiarities should be pointed out: experimental curves are linearized in coordinates typical for abrupt p-n junctions; the slope of \(C-U \) dependences is weak function of temperature; the concentration of free carriers determined from their slope is ranged from \(1.5 \times 10^{15} \) at 77 K to \(3.0 \times 10^{15} \) cm\(^{-3}\) at 295 K. These values are approximately one order of magnitude lower than the carrier concentration in the starting material. The high-resistance compensated region results in the capacitance saturation at forward bias voltages. The width of the compensated region, estimated from this saturation, was in the range 2.5 - 3 \(\mu \)m. Since these values substantially exceed the depletion region width (\(W \approx 0.6 \) \(\mu \)m at zero bias voltage), the p-n junction is presumably located inside the compensated region. It has been assumed that the diffused PDs have p\(^+\)-p\(^-\)-n\(^+\)-n\(^-\) junction structure. Experimental I-U characteristics were approximated by exponential dependence.
The ideality coefficient extracted from the slope of R_s-corrected $I-U$ curves is ranged from 5.9 to 1.1 and from 1.6 to 1.1 for the first and second exponential regions in Fig. 6, respectively. The reverse current saturation is observed only at high temperatures for narrow interval of bias voltages. At low temperatures the current-voltage characteristics have a form typical for the soft breakdown.
In the diffusion-limited diode the ideality coefficient $\beta = 1$. So, experimental data shown in Fig.6 and 7 clearly indicate presence of additional currents in the investigated PDs. Based on experimental values of the ideality coefficient, one can conclude that the diffusion current is dominant at room temperature. Predominance of diffusion and generation currents at reverse bias voltages was confirmed by theoretical calculations within the model of symmetrical $p^+-p_o-n_o-n$ junction, Fig.9. As seen, the contribution of the generation current is increased with the reverse bias increasing, Fig.9.

Fig. 9. Measured (dots) and calculated (solid lines) reverse current-voltage characteristics of a diffused PD at 290 K. Calculated curves represent diffusion (1), generation (2) and total (3) current. Parameters used for calculation: $t_o = 1.5 \times 10^{-9}$ s, $n_i = 5.6 \times 10^{14}$ cm$^{-3}$, $\tau_n = \tau_p = 1 \times 10^{-9}$ s, $n_o = p_o = 3 \times 10^{15}$ cm$^{-3}$, $\mu_n = 10^3$ cm2/V×s, $\mu_p = 150$ cm2/V×s, $U_D = 110$ mV (Sukach, 2005).

Large values of the ideality coefficient at low temperatures most probably indicate that the additional current is tunneling. To prove this assumption, band-to-band and trap-assisted tunneling currents were calculated using the above formulas. In order to reduce possible uncertainties in theoretical calculations caused by large amount of unknown adjusting parameters, the trap-assisted tunneling current was calculated for the midgap traps. Such traps with density 10^{13} - 10^{14} cm$^{-3}$ were experimentally obseved in InAs (Fomin, 1984; Kornyushkin, 1996; Kurishev, 2001). The tunneling transitions of light holes were only considered because they have much greater tunneling probability compare to heavy holes. It has been assumed that the electric field strength in the depletion region has maximum value. The correct choice of the electric field strength is important since it appears in the exponent of expressions (15-17). It must be pointed out that previously values of average and maximum electric field were used in theoretical calculations (Rosenfeld & Bahir, 1992; Kinch, 1981). The performed calculations showed that in homogeneous $p^+-p_o-n_o-n$ junctions the band-to-band and trap-assisted tunneling currents are substantially less than the
measured current at reverse bias voltages $U<1$ V. The same result was obtained for asymmetrical p-n junctions in the case of the carrier concentration is less than 10^{16} cm$^{-3}$. The reason of this result is that the electric field in the depletion region is too low to enable effective band-to-band and trap-assisted tunneling. To explain experimental results, models of a non-homogeneous p-n junction with non-uniform distribution of shallow and deep defects in the depletion region should be considered.

In such a junction the electric field and depletion region width are fluctuated. In a model of the band-to-band tunneling current proposed by Raikh and Ruzin (Raikh & Ruzin, 1985; Raikh & Ruzin, 1987), the non-homogeneous distribution of impurities results in fluctuations of the depletion region width and, therefore, the tunneling distance for carriers. The electric conductivity of such a junction is mainly determined by small regions with high local concentration of impurities. Unfortunately, Raikh and Ruzin’s model is valid at large reverse bias voltages $qU > E_g$ and can’t be used for analysis of tunnel current in the investigated PDs at actual low voltages. Large deviation of impurity concentration in local regions of the junction results in increase in the electric field strength over the value typical for uniform distribution of charged defects. There are some arguments that these regions are related with Cottrell’s atmospheres around dislocations (see below). So, it has been assumed that each region has the effective area of the order of 1μm2. Experimentally, atmospheres of impurity atoms around dislocations with similar dimensions were observed in GaAs (Bruk, 1982). The density of regions was assumed to be equal to the density of dislocation in the starting material. The electric field strength F served as an adjusting parameter in calculations. The relation between F and effective concentration of charged defects N is given by

$$F = \frac{qNW}{\varepsilon_0\varepsilon_r}$$

Shown in Fig. 10 the trap-assisted tunneling current was calculated for the following carrier transition paths: traps are exchanged with both bands by thermal and tunnel transitions (curve 1), tunnel transitions of carriers from the valence band to traps followed by thermal and tunnel transitions to the conduction band (curve 2), tunnel transitions of carriers from the valence band to the conduction band (curve 3). The concentration of traps was varied in the range of $10^{13} - 10^{15}$ cm$^{-3}$. The best fit was obtained for concentrations of charged defects in the local regions of the order of 4×10^{16} cm$^{-3}$. This value is more than one order of magnitude higher than the mean concentration of free carriers obtained from the capacitance-voltage measurements. Obviously, the capacitance is determined by the homogeneous part of the junction, whereas the current flows mainly through the non-homogeneous regions. As seen, discrepancies between the calculated characteristics for different transition paths of carriers are not so significant to make an unambiguous choice. However, conclusion about the dominant contribution of the trap-assisted tunneling current at the reverse bias voltages $U < 1$ V seems to be apparent. At higher voltages both band-to-band and trap-assisted tunneling currents have comparable magnitude. The convergence of I-U curves in Fig. 7 < which were measured at different temperatures, clearly indicates tunneling nature of the reverse current at large voltages $U > 1$ V. Despite the fact that the best fit was obtained for the trap-assisted tunneling current, additional investigations of tunneling mechanisms are needed.

In order to clarify the role of the trap-assisted current in diffused PDS effect of ultrasonic treatment on the current-voltage characteristics was investigated (Sukach & Tetyorkin, www.intechopen.com
Representative PDs were subjected to ultrasonic vibration with frequency 5-7 MHz and intensity ~0.4 W/cm² during 1 hour at room temperature. The second two-hour ultrasonic treatment with the same intensity was repeated after 72 hours. At last, experimental measurements were repeated after nine-month storage of PDs at laboratory conditions.

Experimental data are shown in Fig. 11. Drastic increase in the measured forward current was revealed as a result of the second ultrasonic treatment. After nine-month storage the forward current is practically decreased to the starting values. It must be pointed out, that only the part of the current-voltage characteristic associated with the tunneling current is changed under ultrasonic treatment. Because of the pre-threshold intensity regime was used for ultrasonic treatment, experimental results can be explained by transformation of existing complex defects rather than generation of new point defects. Most probably that this transformation is connected with Cottrell’s atmospheres around dislocations which intersect the p-n junction. In accordance with the vibrating string model of Granato-Luecke (Granato & Luecke, 1966), the intensive sonic-dislocation interaction results in an effective transformation of the absorbed ultrasonic energy into the internal vibration states of a semiconductor stimulating different defect reactions. The driving force of relaxation may be deformation and electric fields around dislocations.

![Fig. 11. Forward current vs voltage in a PD before (1) and after two sequential ultrasonic treatments (curves 2 and 3, respectively), and after nine-month storage (4), (Sukach & Tetyorkin, 2009).](image)

The current-voltage characteristics of a representative heterojunction p⁺-InAsSbP/n-InAs PD are shown in Fig. 12 and 13. The abrupt p-n junction formation in heterojunction PDs has been obtained from the barrier capacitance measurements. From the slope of $C^{-2}-U$ characteristics the concentration of free carriers in the range of $(2\pm4)\times10^{16}$ cm⁻³ was determined. These values are in accordance with the electron concentration in the starting material. At two actual temperatures 290 K and 221 K the diffusion potential equals 0.2±0.01 V and 0.27±0.01 V, respectively.

Contrary to a diffused PD, the forward current in a heterojunction PD is characterized by one exponential dependence, Fig. 12. The ideality factor is changed from 1.1 at room temperature to 2.0 at 193 K. Thus, we can conclude that the bulk diffusion and recombination in the depletion region are dominant transport mechanisms at forward
InAs Infrared Photodiodes

Fig. 12. Current-voltage characteristics of a representative heterojunction PD at temperatures, K: 193 (1), 228 (2) and 290 (3) (Tetyorkin, 2005).

Fig. 13. Measured (dots) and calculated (lines) currents in a heterojunction PD at 295 K. Calculated curves represent diffusion (1), generation-recombination (2) and trap-assisted tunneling (3) mechanisms. The fit was obtained for $N_t = 6 \times 10^{13}$ cm$^{-3}$, $n = 4 \times 10^{16}$ cm$^{-3}$, $E_t = E_g/2$, $\tau_o = 6 \times 10^{-8}$ s, $\mu_p = 150$ cm2/V×s. (Tetyorkin, 2005).

biases. At the same time, the reverse current was not saturated even at room temperature. As seen from Fig. 13, it has a form typical for the soft breakdown. The fitting calculation of the reverse current proved primary contribution of generation and trap-assisted tunneling currents at applied reverse bias voltages. The trap-assisted tunneling current was calculated for the following carrier transitions: traps are exchanged carriers with the valence band by thermal and tunnel transition, and with the conduction band by tunnel transitions only. Despite the fact that the fit was achieved for reasonable values of trap concentration and energy, additional investigations are needed to clarify mechanisms of tunneling. In particular, the role played by the dislocation network at the InAs-InAsSbP heterojunction must be thoroughly investigated. At the reverse bias voltages $U > 1.0$ V the band-to-band tunneling seems to be dominant.

5. Performance of InAs photodiodes

5.1 Current sensitivity

The current sensitivity of PDs is given by

$$S_i = \frac{e}{hc} \eta \lambda = \frac{e}{hc} \lambda (1 - R) \beta (1 - \exp(-kd)) \alpha_{p-n}$$

(22)

where η is the quantum efficiency, β is the quantum yield of the internal photoeffect, d is the width of the photodiode’s structure, and α_{p-n} is the collecting coefficient (G.S Oliynuk, 2004). It is known that three regions in the p-n junction can contribute to the photocurrent, namely: two quasineutral regions of p- and n-type conductivity and the depletion region. The excess carriers excited in these regions can be collected by the junction. In the diffused PDs the
current sensitivity $S_i(\lambda)$ is found to be basically determined by the quasineutral p-type region. The quasineutral n-type region contributes mainly to the long wavelength photosensitivity. The contribution of the depletion region is negligibly small in the whole spectral region (G.S Oliynuk, 2004). As seen from Fig. 14, the current sensitivity in the diffused PDs is not less than in commercially available InAs photodiodes.

The broadband spectrum shown in Fig. 15 is explained by contribution of both sides of the heterojunction PD, including heavily doped wide-gap InAsSbP constituent, to the photoresponse (Tetyorkin, 2007). The spectral dependence of photosensitivity in heterojunction PD is superior to homojunction one due to effect of “wide-gap window”.

5.1 Resistance-area product

The differential resistance-area product at zero bias R_0A determines threshold parameters of infrared PDs. Theoretical limitations of threshold parameters in InAs PDs are related to the fundamental (radiative and Auger) recombination processes. The SRH recombination is considered as nonfundamental since it can be reduced by improvement in technology of PDs.

In the diffusion-limited asymmetrical p^*-n junction the product R_0A is given by

$$ (R_0A)_D = \frac{(kT)^{1/2} n_o^{3/2} n_p^{3p}} {q^{3/2} n_p^{1/2}} 1/2 $$

\[(23) \]
In the case of generation-recombination current it can be expressed as

\[(R_oA)_{GR} = \frac{4(kT/q)}{q \eta W/\eta_0}\]

(24)

The last formula is obtained by differentiating the well known expression

\[I = I_o \exp(eU/2kT)\]

\[I_o = q \eta_i W/2 \tau_o\]. Since experimental data were obtained at zero and small forward voltages (<10 mV) the depleted region width \(W\) was assumed to be independent on \(U\).

Fig. 16. Experimental (dots) and calculated (solid line) data dependences of \(R_oA\) vs. temperature in symmetrical p-n junction (\(p=n=3 \times 10^{15}\) cm\(^{-3}\)) for diffusion mechanism of carrier transport. (Tetyorkin, 2007)

Fig. 17. Experimental (dots) and calculated (solid lines) dependences of \(R_oA\) vs. temperature in InAs p'-n (1) and n'-p (2) junctions. Calculated dependences were obtained for diffusion current (1,2) and recombination current in the depletion region (3). The doping level is equal to \(3 \times 10^{16}\) (1) and \(5 \times 10^{16}\) (2) cm\(^{-3}\). Also shown is the \(R_oA\) product for diffusion and generation-recombination current in p'-n junction with \(n=3 \times 10^{16}\) cm\(^{-3}\) (4). Experimental data are measured in a p'-n heterojunction PD with \(n=3 \times 10^{16}\) cm\(^{-3}\) (Tetyorkin, 2007)

The measured and calculated values of \(R_oA\) in symmetrical homojunction and asymmetrical heterojunction PDs are shown in Fig.16 and 17. The electron and hole mobility used in the calculation were approximated by the dependence \(\mu(T) = \mu_0(T/300)^{0.5}\), where \(\mu_0\) is the mobility at \(T=300\) K. The effective lifetime was assumed to be determined by radiative and Auger 1 (Gelmont) recombination mechanisms. Since the electron mobility in InAs exceeds the hole mobility by approximately two orders of magnitude, the diffusion-limited PDs of p'-n type can potentially have the highest values of \(R_oA\), Fig.17. The calculated values of the current sensitivity \(S_i\), differential-resistance product \(R_oA\) and specific detectivity are summarized in Table. The current sensitivity and detectivity was calculated for the peak wavelength \(\lambda_p\). It should be pointed out that typical values of the specific detectivity in the investigated heterojunction PDs are of the order of \(2 \times 10^9\) cm×Hz\(^{1/2}\)×W\(^{-1}\). Approximately the
same values of detectivity were obtained in commercially available PDs. However, at room
temperature the resistance-area

<table>
<thead>
<tr>
<th>Parameters of InAs photodiodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_0</td>
</tr>
<tr>
<td>°C</td>
</tr>
<tr>
<td>22</td>
</tr>
<tr>
<td>-85</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>-196</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>-196</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

product in the heterojunction PDs is five times higher. Taking into account their broadband
spectral response, one can conclude that the heterojunction PDs can be more effective as
sensitive element in gas sensors operated at room and near-room temperatures. The
ultimate parameters shown in Table were calculated for the generation-recombination
limited $p^+-p^-n^-n$ junction with $n_o=p_o=3$·1015 cm$^{-3}$. The current sensitivity and specific
detectivity were calculated using the formulas (22) and (24) for the experimentally measured
parameters $W=0.63$ μm and $\tau_o=8$·108 s. It is assumed that the quantum efficiency was equal
to 1.0. At 77 K the intrinsic concentration in InAs is 2.1·1015 cm$^{-3}$. Parameters of PDs produced
by Judson and Hamamatsu were taken from their web sites. As seen, in the generation-
recombination limited PDs BLIP mode of operation can be realized.

6. New trends in development of InAs-based infrared detectors

InAs PDs are usually fabricated from bulk single crystalline wafers. The p^-n^- junctions are
formed by ion (e.g. Be) implantation or Cd diffusion. Obviously, further progress in
development of InAs infrared detectors including multielement structures is closely
connected with technology of epitaxial films. Different epitaxial techniques including liquid-
phase epitaxy (LPE), gas-phase epitaxy (GPE) and molecular-beam epitaxy (MBE) were
used in different laboratories for growth of InAs-based epitaxial films. Currently, their
quality has not reached the level of maturity required for manufacture of electronically
scanned multielement structures. As a rule, the as-grown LPE films has a high concentration
of residual impurities which affect the lifetime and mobility of carriers. The low
concentration of residual impurities in epitaxial layers is a crucial condition for
improvement in performance of InAs-based infrared detectors. Effect of gadolinium doping
on quality of InAsSbP epitaxial films was demonstrated (Matveev, 2002). It is known that the
rare earth impurity doping results in a gettering effect in semiconductors. Epitaxial films
grown by LPE technique from the melt doped with gadolinium exhibited better
photoluminescence efficiency and higher mobility of carriers. As a result, the diffusion-
limited InAs/InAsSbP heterostructure PDs with improved characteristics were
manufactured (Matveev, 2002).
InAs PDs were also grown by molecular beam epitaxy (MBE) on alternative GaAs and GaAs-coated silicon substrates (Dobbelaere, 1992). The relatively high doping level (>10^{16} cm^{-3}) in the active region was used for the junction formation. The PDs were diffusion-limited at temperatures as low as 160 K. At 77 K the dominant current is expected to be the defect-assisted tunneling current. Also, in these PDs rather high detectivity of the order of 7 \times 10^{11} cm Hz^{1/2} W^{-1} was achieved at the peak wavelength 2.95 \mu m. In opinion of the authors these results clearly demonstrate the feasibility of the monolithic integration of InAs infrared detectors and GaAs or Si read-out electronics.

The cut-off wavelength in InAs PDs is 3-4 \mu m which is not enough to cover the atmospheric windows 3-5 entire \mu m. Therefore, ternary compounds InAsSb with more narrow bang gap were extensively investigated as a material for infrared detectors with longer cut-off wavelength. InAsSb epitaxial films were grown on GaAs substrates by MBE in IMEC, Belgium (Merken, 2000). Linear and two-dimensional focal-plane arrays with 256x256 pixels were realized. At room temperature the product R_oA was limited by the combined generation-recombination and diffusion currents.

Multielement InAs MOS capacitors were developed in A.V. Rzhanov Institute of Semiconductor Physics, Russia (Kuryshev, 2009). Auotoepitaxial films were grown on n-InAs substrates. The films were characterized by the electron concentration (1-5) \times 10^{15} cm^{-3} and the carrier lifetime 0.3-1.8 \mu s at 77 K. The SiO_2 gate oxide with thickness of the order of 130 nm was deposited on a previously grown 15 nm thick anode oxide doped with fluorine. The surface states density of the order of to 2 \times 10^{10} cm^{-2} eV^{-1} was obtained compare to 3 \times 10^{11} cm^{-2} eV^{-2} in undoped films. Linear (1x384) and two-dimensional (128x128, 256x256) focal-plane arrays have been made. The specific detectivity in typical 128x128 assembly with pixel size 40x40 \mu m was 3 \times 10^{12} cm Hz^{1/2} W^{-1} (\lambda=2.95 \mu m) at 80 K. Infrared devices (thermal imaging camera, microscope and spectrograf) with improved characteristics were designed. A new type PDs based on InAs/GaSb superlattices have been recently developed in several laboratories (Rehm, 2006). They were grown by MBE on GaSb substrates. The PDs have p-i-n structure with the type-II short-period superlattice intrinsic region embedded between highly doped contact layers. The superlattice material has some advantages over bulk InAs. The band gap of the superlattice can be varied in a range between 0 and about 250 meV. The Auger recombination can be significantly suppressed, since electrons and holes are spatially separated in neighboring layers. In the single-element test diodes with the cut-off wavelength 5.4 \mu m at 77 K values of R_oA = 4 \times 10^5 \Omega \cdot cm^2 were measured. The diodes were limited by generation-recombination currents and show background limited performance. The quantum efficiency as high as 60% and current responsivity of 1.5 A/W were achieved. High-performance 256x256 focal plane arrays on InAs/GaSb superlattice PDs were manufactured designed for 3-5 \mu m and 8-12 \mu m spectral regions (Rehm, 2006; Hill, 2008). Excellent thermal images with noise equivalent temperature difference below 10 mK were realized. Despite these advantages, several problems such as the surface leakage current, band-to-band and trap-assisted tunneling currents should be solved for improving the superlattice PDs performance.

7. Conclusions

1. The carrier lifetime is investigated in n- and p-type InAs as a function of carrier concentration and temperature. It is proved that experimental data can be correctly explained by radiative recombination mechanism in both n- and p-type InAs at
temperatures close to 77 K. The lifetime in p-InAs is determined by three recombination mechanisms - radiative, Auger 7 and Auger S. The role of the Auger S recombination in p-InAs seems to be overestimated in the developed theoretical models. The contribution of the Shockley-Read-Hall recombination should be clarified. It is shown that the developed models of recombination can correctly predict the most important parameters of InAs-based infrared PDs.

2. The diffused homojunction PDs have threshold parameters comparable with commercially available ones. It is proved that $p^+-InAsSbP/n-InAs$ heterojunction PDs may be more suitable for application in gas sensors which are operated at room temperature. The threshold parameters in conventional PDs may be improved by suppression of the Auger recombination and reduction of the trap-assisted tunneling current.

3. Furter progress in manufacture of conventional single-element PDs is most likely associated with epitaxial films grown on InAs or alternative substrates. Linear and two-dimensional photodiode arrays based on InAs bulk technology which can be attributed to the second generation infrared detectors are in the early stage of development.

4. The results achieved in InAs/GaSb type-II superlattice PDs confirm that InAs-based technology is now competitive for manufacture infrared devices with high performance.

8. References

www.intechopen.com

Photodiodes, the simplest but most versatile optoelectronic devices, are currently used in a variety of applications, including vision systems, optical interconnects, optical storage systems, photometry, particle physics, medical imaging, etc. Advances in Photodiodes addresses the state-of-the-art, latest developments and new trends in the field, covering theoretical aspects, design and simulation issues, processing techniques, experimental results, and applications. Written by internationally renowned experts, with contributions from universities, research institutes and industries, the book is a valuable reference tool for students, scientists, engineers, and researchers.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:
