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1. Introduction 

In the last two decades there has seen an increasing interest in the coupling analysis 
between fluid flow and stress/deformation in fractured rocks, mainly due to the modeling 
requirements for design and performance assessment of underground radioactive waste 
repositories, natural gas/oil recovery, seepage flow through dam foundations, reservoir 
induced earthquakes, etc. Characterization of hydraulic conductivity for fractured rock 
masses, however, is one of the most challenging problems that are faced by geotechnical 
engineers. This difficulty largel y comes from the fact that rock is a heterogeneous geological 
material that contains various natural fr actures of different scales (Jing, 2003). When 
engineering works are constructed on or in a rock mass, deformation of both the fractures 
and intact rock will usually occur as a result of  the stress changes. Due to the stiffer rock 
matrix, most deformation occurs in the frac tures, in the form of normal and shear 
displacement. As a result, the existing fractures may close, open, grow and new fractures 
may be induced, which in turn changes the structure of the rock mass concerned and alters 
its fluid flow behaviours and properties. Theref ore, the fractures often play a dominant role 
in understanding the flow-stress/deformation coupling behavior of a rock system, and their 
mechanical and hydraulic properties have to be properly established (Jing, 2003). 
Traditionally, fluid flow through rock fracture s has been described by the cubic law, which 
follows the assumption that the fractures consist of two smooth parallel plates. Real rock 
fractures, however, have rough walls, variable  aperture and asperity areas where the two 
opposing surfaces of the fracture walls are in contact with each other (Olsson & Barton, 
2001). To simplify the problem, a single, average value (or together with its stochastic 
characteristics) is commonly used to describe the mechanical aperture of an individual 
fracture. A great amount of work (Lomize, 1951;  Louis, 1971; Patir & Cheng, 1978; Barton et 
al., 1985; Zhou & Xiong, 1996) has been done to find an equivalent, smooth wall hydraulic 
aperture out of the real mechanical aperture such that when Darcy’s law or its modified 
version is applied, the equivalent smooth fr acture yields the same water conducting 
capacity with its original rough fracture. It is worth noting that clear distinction manifests 
between the geometrically measured mechanical aperture (denoted by b in the context) and 
the theoretical smooth wall hydr aulic aperture (denoted by b*), and the former is usually 
larger in magnitude than the latter due to the roughness of and filling materials in rock 
fractures (Olsson & Barton, 2001). 
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The ubiquity of fractures significantly complicat es the flow behaviour in a discontinuous rock 
mass. The primary problem here is how to model the flow system and how to determine its 
corresponding hydraulic properties for flow analysis. Theoretically, the representative 
elementary volume (REV) of a rock mass can serve as a criterion for selecting a reasonable 
hydromechanical model. This statement relates to the fact that REV is a fundamental concept 
that bridges the micro-macro, discrete-continuous and stochastic-determinate behaviours of 
the fractured rock mass and reflects the size effect of its hydraulic and mechanical properties. 
The REV size for the hydraulic or mechanical behaviour is a macroscopic measurement for 
which the fractured medium can be seen as a continuum. It is define d as the size beyond 
which the rock mass includes a large enough population of frac tures and the properties (such 
as hydraulic conductivity tensor and elastic compliance tensor) basically remain the same 
(Bear, 1972; Min & Jing, 2003; Zhou & Yu, 1999; Wang & Kulatilake, 2002). Owing to high 
heterogeneity of fractured rock masses, however, the REV can be very large or in some 
situations may not exist. If the REV does not exist, or is larger than the scale of the flow region 
of interest, it is no longer appropriate to us e the equivalent continuum approach. Instead, the 
discrete fracture flow approach may be applied to investigate and capture the hydraulic 
behaviour of the fractured rock masses. However, due to the limited available information on 
fracture geometry and their connectivity, it is not a trivial task to make a detailed flow path 
model. Thus, in practice, the equivalent continuum model is still the primary choice to 
approximate the hydraulic behaviour of discontinuous rocks. 
The hydraulic conductivity tensor is a fu ndamental quantity to characterizing the 
hydromechanical behaviour of a fractured rock. Various techniques have been proposed to 
quantify the hydraulic conductivity tensor, based on results from field tests, numerical 
simulations, and back analysis techniques, etc. Earlier investigations focused on using field 
measurements (e.g. aquifer pumping test or packer test (Hsieh & Neuman, 1985)) to 
estimate the three-dimensional hydraulic conduc tivity tensor. This approach, however, is 
generally time-consuming, expensive and needs well controlled experimental conditions. 
Numerical and analytical methods are also used to estimate the hydraulic properties of 
complex rock masses due to its flexibility in handling variations of fracture system geometry  
and ranges of material properties for sensitivit y or uncertainty estimations. In the literature, 
both the equivalent continuum approach (Sno w, 1969; Long et al., 1982; Oda, 1985; Oda, 
1986; Liu et al., 1999; Chen et al., 2007; Zhou et al., 2008) and the discrete approach (Wang & 
Kulatilake, 2002; Min et al., 2004) are widely applied. In this chapter, however, only the 
equivalent continuum approach is focused for its capability of representing the overall 
behaviour of fractured rock  masses at large scales. 
Among many others, Snow (1969) developed a mathematical expression for the 
permeability tensor of a single fracture of ar bitrary orientation and ap erture and considered 
that the permeability tensor for a network of such fractures can be formed by adding the 
respective components of the permeability tensors for each individual  fracture. Oda (1985, 
1986) formulated the permeability tensor of ro ck masses based on the geometrical statistics 
of related fractures. Liu et al. (1999) proposed an analytical solution that links changes in 
effective porosity and hydraulic conductivity to the redistribution of stresses and strains in 
disturbed rock masses. Zhou et al. (2008) suggested an analytical model to determine the 
permeability tensor for fractured rock masses based on the superposition principle of liquid 
dissipation energy. Although slight discrepancy exists between the permeability tensor and 
the hydraulic conductivity tensor (the former is  an intrinsic property determined by fracture 
geometry of the rock mass, while the latter also considers the effects of fluid viscosity and 
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gravity), when taking into account the fl ow-stress coupling effect, the above models 
presented, respectively, by Snow (1969), Oda (1985) and Zhou et al. (2008) were proved to be 
functionally equivalent for a certain fluid (Z hou et al., 2008). A common limitation with the 
above models lies in the fact that the hydraulic conductivity tensor of a fractured rock mass 
is all formulated to be either stress-dependent or elastic strain-dependent. Consequently, 
material nonlinearity and post-peak dilatancy are not considered in the formulation of the 
hydraulic conductivity tensor for disturbed rock masses. To address this problem, Chen et  
al. (2007) extended the above work and proposed a numerical model to establish the 
hydraulic conductivity for fractured rock masses under complex loading conditions. 
Based on the observation that natural fractures in a rock mass are most often clustered in 
certain critical orientations resulting from their geological modes and history of formation 
(Jing, 2003), characterizing the rock mass as an equivalent continuum containing one or 
multiple sets of planar and parallel fractures with various critical orientations, scales and 
densities turns out to be a desirable approximation. Starting from this point of view, the 
deformation patterns of the fracture network ca n be first characterized by establishing an 
equivalent elastic or elasto-plastic constituti ve model for the homogenized medium. On this 
basis, a stress-dependent hydraulic conductivity  tensor may be formulated for the former 
for describing the hydraulic behaviour of the ro ck mass at low stress level and with overall 
elastic response; and a strain-dependent hydraulic conductivity tensor for the latter for 
demonstrating the influences of  material non-linearity and shear dilatancy on the hydraulic 
properties after post-peak loading. This chapter mainly presents the research results on the 
stress/strain-dependent hydrau lic properties of fractured rock masses under mechanical 
loading or engineering disturbance achieved by Chen et al. (2006), Zhou et al. (2006), Chen 
et al. (2007)  and Zhou et al. (2008).  
The stress-dependent hydraulic conductivity model (Zhou et al., 2008) was proposed for 
estimation of the hydraulic properties of fractured rock masses at relatively lower stress 
level based on the superposition principle of fl ow dissipation energy. It was shown that the 
model is equivalent to Snow’s model (Snow, 1969) and Oda’s model (Oda, 1986) not only in 
form but also in function when considering th e effects of mechanical loading process on the 
evolution of hydraulic properties. This model relies on the geometrical characteristics of 
rock fractures and the corresponding fracture network, and de monstrates the coupling effect 
between fluid flow and deformation. In this model, the pre-peak dilation and contraction 
effect of the fractures under shear loading is also empirically considered. It was applied to 
estimate the hydraulic properties of the rock mass in the dam site of the Laxiwa 
Hydropower Project located in the upstream of the Yellow River, China, and the model 
predictions have a good agreement with the site observations from a large number of single-
hole packer tests. 
The strain-dependent hydraulic conductivity model (Chen et al., 2007), on the other hand, 
was established by an equivalent non-associative elastic-perfectly plastic constitutive model 
with mobilized dilatancy to characterize the nonlinear mechanical behaviour of fractured 
rock masses under complex loading conditions and to separate the deformation of weaker 
fractures from the overall defo rmation response of the homogenized rock masses. The major 
advantages of the model lie in the facts that the proposed hydraulic co nductivity tensor is 
related to strains rather than stresses, hence enabling hydro-mechanical coupling analysis to 
include the effect of material nonlinearity an d post-peak dilatancy, and the proposed model 
is easy to be included in a FEM code, particularly suitable for numerical analysis of 
hydromechanical problems in rock engineering with large scales. Numerical simulations 
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were performed to investigate the changes in hydraulic conductivities of a cube of fractured 
rock mass under triaxial compression and shear loading as well as an underground circular 
excavation in biaxial stress field at the Stripa mine (Kelsall et al., 1984; Pusch, 1989), and the 
simulation results are justified by in-situ experimental observations and compared with 
Liu’s elastic strain-dependent analyt ical solution (Liu et al., 1999). 
Unless otherwise noted, continuum mechanics convention is adopted in this chapter, i.e., 
tensile stresses are positive while compressive stresses are negative. The symbol (:) denotes 
an inner product of two second-order tensors (e.g., a:b=aijbij) or a double contraction of 
adjacent indices of tensors of rank two and higher (e.g., c:d=cijkldkl), and (�…) denotes a dyadic 
product of two vectors (e.g., a�…b=aibj) or two second-order tensors (e.g., c�…d=cijdkl). 

2. Stress-dependent hydraulic conductivity of rock fractur es 

In this section, the elastic deformation behaviour of rock fractures at the pre-peak loading 
region will be first presented, and then a stress-dependent hydraulic conductivity model 
will be formulated. The deformation model (or indirectly the hydraulic conductivity model) 
is validated by the laboratory shear-flow couplin g test data obtained by Liu et al. (2002). The 
main purpose of this section is to provide a theory for developing a stress-dependent 
hydraulic conductivity tensor for fractured rock masses that will be presented later in 
Section 4. 

2.1 Characterization of rock fractures 
One of the major factors that govern the flow behaviour through fractured rocks is the void 
geometry, which can be described by several geometrical parameters, such as aperture, 
orientation, location, size, frequency distribution, spatial correlation, connectivity, and 
contact area, etc. (Olsson & Barton, 2001; Zhou et al., 1997; Zhou & Xiong, 1997). Real 
fractures are neither so solid as intact rocks nor void only. They have complex surfaces and 
variable apertures, but to make the flow analysis tractable, the geometrical description is 
usually simplified. It is common to assume that individual fractures lie in a single plane and 
have a constant hydraulic aperture. When the fractures are subjected to normal and shear 
loadings, the fracture aperture, the contact area and the matching between the two opposing 
surfaces will be altered. As a result, the equivalent hydraulic ap erture of the fr actures varies 
with their normal and shear stresses/displa cements, which demonstrates the apparent 
coupling mechanism between fluid flow and stress/deformation (Min et al., 2004). 
The aperture of rock fractures tends to be closed under applied normal compressive stress. The 
asperities of the surfaces will be crushed when their localized compressive stresses exceed 
their compressive strength. As a large number of asperities are crushed under high 
compressive stress, the contact area between the fracture walls increases remarkably and the 
crushed rock particles partially or fully fill the nearby void, which decreases the effective flow 
area, reduces the hydraulic conductivity of the fracture, and even changes the flow paths 
through fracture plane. Fig. 1 depicts the increase in contact area of fractures under increasing 
compressive stresses modelled by boundary element method (Zimmerman et al., 1991). 
The coupling process between fluid flow and shear deformation is more related to the 
roughness of fractures and the matching of the constituent walls. Fig. 2 shows the impact of 
the fracture structure on the shear stress-deformation coupling mechanism. In Fig. 2(a), the 
opposing walls of the fracture are well matche d so that the fracture always dilates and the 
hydraulic conductivity increases under shear load ing as long as the applied normal stress is 
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not high enough for the asperities to be crushed. For the state shown in Fig. 2(c), shear 
loading will result in the closure of the fractu re and the reduction in hydraulic conductivity. 
Fig. 2(b) illustrates a middle state between (a) and (c), and its shearing effect depends on the 
direction of shear stress. When the matching of a fracture changes from (a) to (b) then to (c) 
under shear loading, shear dilation occurs. On the other hand, shear contraction takes place 
from the movement of the matching from (c) to (b) then to (a). In a more complex scenario, 
shear dilation and shear contraction may happen alternately, resulting in the fluctuation of 
the hydraulic behaviou r of the fractures. 
 

  
(a)  (b)  

  
(c)  (d)  

Fig. 1. Variation of contact surface of fractures under increasing compressive stresses (after 
Zimmerman et al., (1991): (a) P=0 MPa; (b) P=20 MPa; (c) P=40 MPa and (d) P=60 MPa 
 

  
(a)  (b)  (c)  

Fig. 2. Shear dilation and shear contraction of fractures: (a) well-matched; (b) fair-matched; 
and (c) bad-matched 
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2.2 An elastic constitutive model for rock fractures 
To formulate the stress-dependent hydraulic conductivity for rock fractures, we model the 
fractures by an interfacial layer, as shown in Fig. 3. The interfacial layer is a thin layer with 
complex constituents and textures (depending on the fillings, asperities and the contact area 
between its two opposing walls). Assumption is  made here that the apparent mechanical 
response of the interfacial layer can be described by Lame’s constant �O and shear modulus �P. 
Because the thickness of the interfacial layer (i.e., the initial mechanical aperture of the 
fracture) is generally rather small comparing to the size of rock matrix, it is reasonable to 
assume that �Hx=�Hy=0 and �Jxy=�Jyx=0 within the interfacial layer.  Then according to the Hooke’s 
law of elasticity, the elastic constitutive relati on for the interfacial layer under normal stress 
�Vn and shear stress �W can be written in the following incremental form: 
 

 

Rock block

Rock block

Interfacial layer

x
y

z

� n

b0

�

�  
Fig. 3. The interfacial layer model for rock fractures 

 n nd 2 0 d

d 0 d

�V � O � P � H
�W � P � J

�c ���­ � ½ � ª � º � ­ � ½
� �® � ¾ � ®� ¾� « � »

� ¯ � ¿ � ¬ � ¼� ¯ � ¿
 (1) 

For convenience, we use u1 to denote the relative normal displacement of the interfacial 
layer caused by the effective normal stress �V’n, �G to denote the relative tangential 
displacement caused by the shear stress �W, and u2 to denote the relative normal displacement 
caused by shear dilation or contraction (positive for dilatant shear, negative for contractive 
shear). Hence, the total normal relative displacement u is represented as 

 1 2u u u� ��  (2) 

The increments of strains, d�Hn and d�J, can be expressed in terms of the increments of relative 
displacements, du1 and d�G, as follows: 

 n 1 0

0

d d ( )

d d ( )

� ���­
�® �  � ��¯

u / b u

/ b u

�H
� J � G

  (3) 

where b0 is the thickness of the interfacial layer or the initial mechanical aperture of the 
fracture. Substituting Eq. (3) in Eq. (1) yields: 

 n n 1

s

d 0 d

d 0 d

k u

k

�V
�W �G

�c�­ � ½ � ª � º � ­ � ½
� �® � ¾ � ®� ¾� « � »

� ¯ � ¿ � ¬ � ¼� ¯ � ¿
  (4) 
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where kn and ks denote the tangential normal stiffness and tangential shear stiffness of the 
interfacial layer, respectively. 

 n 0 s 0( 2 )/ ( ),   �¬ /( )� � � � � �  � �k b u k b u� O � P � P (5) 

Interestingly, kn and ks show a hyperbolic relation with normal deformation and characterize 
the deformation response of the interfacial layer under the idealized conditions that each 
fracture is replaced by two smooth parallel pl anar plates connected by two springs with 
stiffness values kn and ks. As can be seen from Eq. (5), as long as the initial normal stiffness 
and shear stiffness with zero normal displacement, kn0 and ks0, are known, they can be used 
as substitutes for �O and �P. 
Substituting Eq. (2) in Eq. (4) results in: 

 1
n

0 1 2

( 2 )d
d

��
�c� 

� � � �
u

b u u
� O � P

�V   (6) 

 
0 1 2

d
d

b u u
� P � G

�W� 
� � � �

  (7) 

Suppose normal stress �Vn is firstly applied before the loading of shear stress, u1 can be 
obtained by directly integrating Eq. (6): 

 n
1 0 2( ) exp 1

2

�ª �º�c� § � ·
� � � � ��« �»� ¨ � ¸��� © � ¹�¬ �¼

u b u
�V

� O � P
  (8) 

Here, it is to be noted that the elastic constitutive model for the rock fracture leads to an 
exponential relationship between the fracture closure and the applied normal stress, which 
has been widely revealed in the literature, e.g., in Min et al. (2004).  
On the other hand, the shear expansion caused by d�G can be estimated from shear dilation 
angle dm: 

 2 md  tan  du d �G�  (9) 

By introducing two parameters, s and �M, pertinent to normal stress �Vn, we represent the 
dilation angle dm under normal stress �Vn in the form of Barton’s strength criterion for joints 
(Barton, 1976) (�W = �Vn tan(2dm+�Mb), where �Mb is the basic frictional angle of joints): 

 m
1
2

tand arctan
s
�W

�M�ª �º� § � ·�  � �� ¨ � ¸�« �»� © � ¹�¬ �¼
  (10) 

Obviously,  s is a normal stress-like parameter, and �M is a frictional angle-like parameter. But 
to make the above formulation still valid into pre-dilation state (i.e., shear contraction sta te), 
s and �M differ from their initial implications. Later, we will show how they can be back 
calculated from shear experimental data.  
Substituting Eqs. (9) and (10) into (7) yields: 

 2

0 1 2

d 1
d

2
u

arctan
b u u s

�W
�M �W

�P
�ª �º� § � ·�  � �� ¨ � ¸�« �»� � � � � © � ¹�¬ �¼

  (11) 
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By integrating Eq. (11), we have: 

 
2

2 0 1 2

| | | |
( ) exp arctan ln 1 1

2 4

�­ �½� ª � º� § � ·�° �°� § � ·� � � � �� �� �� �� « � »� ¨ � ¸�® �¾� ¨ � ¸� ¨ � ¸� © � ¹� « � »�° �°� © � ¹� ¬ � ¼� ¯ � ¿

s
u b u

s s

� W � W � W
�M

� P � P
 (12) 

By solving the simultaneous equations, Eqs. (8) and (12), we have: 

 
1 0

2 0

(1 )
1
(1 )
1

���­ � �°�° ��
�® ���° � 
�° ���¯

A B
u b

AB
B A

u b
AB

  (13) 

where 

 n 1
2

A exp
�V

� O � P
�c� § � ·

� ��� ¨ � ¸��� © � ¹
  (14) 

 
2

21 1
2 4
| | | | s

B exp arctan ln
s s

� W � W � W
�M

� P � P

� ª � º� § � ·� § � ·� � � � � � � � �� « � »� ¨ � ¸� ¨ � ¸� ¨ � ¸� © � ¹� « � »� © � ¹� ¬ � ¼
  (15) 

Thus, the total normal deformation under normal and shear loading can be obtained, 

 1 2 0
2

1
A B AB

u u u b
AB

� � � �
�  � � �  

��
  (16) 

The actual aperture of the fracture, b = b0+u, is given by: 

 0 0(1 )�  � � �  � � � Fb b u b  (17) 

where 

 
2

1
A B AB

AB
�F

� � � �
� 

��
  (18) 

2.3 Stress-dependent hydraulic conductivity for rock fractu res 
Since natural fractures have rough walls and asperity areas, it is not appropriate to directly 
use the aperture derived by Eq. (17) for describing the hydraulic conductivity of the 
fractures. Instead, an equivalent hydraulic aperture is usually taken to represent the 
percolation property of the frac tures, as demonstrated in Section 1. Based on experimental 
data, the relationship between the equivalent hydraulic aperture  and the mechanical 
aperture has been widely examined in the literature, and th e empirical relations proposed 
by Lomize (1951), Louis (1971), Patir & Cheng (1978), Barton el al. (1985) and Olsson & 
Barton (2001) are listed in Table 1. For example, if Patir and Cheng’s model is used to 
estimate the equivalent hydraulic aperture th at accounts for the flow-deformation coupling 
effect in pre-peak shearing stage, then there is 

 � > � @1/3*
0 v(1 ) 1 0.9exp( 0.56 / )�  � � � � � �b b C�F   (19) 
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where Cv is the variation coefficient of the mechanical aperture of the discontinuities, which 
is mathematically defined as the ratio of th e root mean squared deviation to the arithmetic 
mean of the aperture. For convenience, Eq. (19) is rewritten as: 

 0
*b b f ( )�E�   (20) 

Obviously, f(�E) is a function of the normal and shear loadings, the mechanical characteristics 
and the aperture statistics of the fractures. 
Thus, the hydraulic conductivity  of the fractures subjected to normal and shear loadings is 
approximated by the hydraulic conductivity of the laminar fl ow through a pair of smooth 
parallel plates with infinite dimensions: 

 
2

12

*gb
k

�Q
�   (21) 

where k is the hydraulic conductivity, g is the gravitational acceleration, and �Q is the 
kinematic viscosity of the fluid. 
An alternative approach to account for the devi ation of the real fractures from the ideal 
conditions assumed in the parallel smooth plate th eory is to adopt a dimensionless constant,  
�9, to replace the constant multiplier, 1/12, in Eq. (21), where 0<�9�d1/12 (Oda, 1986). In this 
manner, the hydraulic conductivity of the fractures is estimated by 

 
2gb

k �9
�Q

�   (22) 

Clearly, the constant, �9, approaches 1/12 with increasing scale and decreasing roughness of 
the fractures. 
Eqs. (21) and (22) show that the hydraulic conductivity of a rock fracture varies 
quadratically with  its mechanic al aperture. The latter depends, by Eq. (18), on the normal 
and shear stresses applied on the fracture. Hence, we call the established model, Eq. (21) or 
(22), the stress-dependent hydraulic conductivity model, and it is suitable to describe the 
hydraulic behaviour of the fractu res subjected to mechanical loading in the pre-peak stage. 
 

Authors Expressions Descriptions 

Lomize (1951) 
1 31 51 0 6 0( )

/* .b b . . e / b
��

� ª � º�  � �� ¬ � ¼ 

Louis (1971) 
1 31 5

m H1 0 8 8( )
/* .b b . . e / D

��
� ª � º�  � �� ¬ � ¼

Patir & Cheng 
(1978) � > � @1/3*

v1 0.9exp( 0.56 / )�  � � � �b b C

Barton, et al. 
(1985) 

2 2 5* .b b JRC���  

Olsson & Barton 
(2001) 

* 2 2.5
0 p

* 1/ 2
mob p

0.75���­ �  � d�°
�®

�  � t�°�¯

b b JRC

b b JRC

�G �G

� G � G
 

b* is the equivalent hydraulic 
aperture of fractures, b the 
mechanical aperture, e the absolute 
asperity height, em the average 
asperity height, DH the hydraulic 
radius, Cv the variation coefficient 
of the mechanical aperture, JRC the 
joint roughness coefficient, JRC0 
the initial value of JRC, JRCmob the 
mobilized JRC, �G the shear 
displacement and �Gp the peak shear 
displacement. 

Table 1. Empirical relations between equivalent hydraulic aperture an d mechanical aperture 
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2.4 Validation of the elastic constitutive model 
The key point of the stress-dependent hydraulic conductivity model is whether the 
established elastic constitutive model can properly describe the variation of mechanical 
aperture under normal and shear loadings at low stress level. Here, we use the results of the 
laboratory test performed by Liu et al. (2002) to validate the mechanical model. The test was 
conducted to study shear-flow coupling properties  for a marble fracture with fillings of sand 
under low normal stresses and small shear displacements.  
The marble specimen for shear-flow coupling test is illustrated in Fig. 4, which was collected 
from the Daye Iron Mine in China. The unia xial compressive strength and density of the 
rock sample are 52.4 MPa and 2.66�u103 kg/m 3, respectively. The specimen was cut into 
round shape and the fracture surfaces were polished, with its size of 290 mm in diameter 
and 200 mm in height. The opposite walls of the fracture were cemented with a layer of 
filtered sands with their diameters ranged from  0.5 to 0.69 mm, and the fracture was further 
filled with the same sands. The initial aperture of the fracture, b0, is about 1.31 mm. 
The coupled shear-flow test were conducted by first applying a prescribed normal stress 
ranging between 0.1 and 0.5 MPa and then applying shear displacement in steps until a 
maximum displacement of about 0.4 mm was reached. During tests, steady-state fluid flow 
rate and normal displacement were continuously recorded. 
With such low normal stresses and small shear displacements, it is reasonable to consider 
that the fracture behaves elastic during the coupled shear-flow test. According to the 
experimental results, the elastic parameters, �O and �P, of the fracture with fillings are 
estimated as �O=1.81 MPa and �P=3.62 MPa. In order to enable Eq. (16) to predict the 
mechanical aperture of the facture under normal and shear loads, the normal stress-like 
parameter, s, and the frictional angle-like parameter, �M, should be further determined. 
Fortunately, both of them can be derived by fitting the experimental curve between normal 
displacement and shear displacement, as plotted in Fig. 5, using Eq. (16) such that the least 
square error is minimized. With th is approach, we obtain that for �Vn=0.1 MPa, s=0.062, 
�M=1.324, and for �Vn=0.4 MPa, s=0.046, �M=1.310. 
Fig. 5 plots the experimental results as well as the model predictions of the relation between 
mechanical aperture and shear displacement of the fracture under constant normal stresses. 
Generally, the proposed elastic constitutive model manifests the behaviour of the fracture 
with fillings during the shear-flow coupling test with low normal and shear loads. Shear 
contraction is observed in the initial 0.06-0.08 mm of shear displacement, which is followed 
by shear dilation in the remaining of the sh ear displacement. This property, which is 
actually ensured by the empirical relation a ssumed in Eq. (9), suggests that the resultant 
model is suitable for phenomenologically descri bing the pre-peak shear-flow coupling effect 
of fractures. 
Fig. 6 further depicts the sensitivity of s and �M on the behaviour of the fracture. In Fig. 
6(a), �M is fixed to 1.324, while s varies from 0.02 to 0.08. As s increases, shear contraction 
more apparently manifests, and the mechanical aperture versus shear displacement 
curves become lower as a whole. On the other hand, the effect of varying �M from 0.524 to 
1.222 but fixing s to 0.062 is plotted in Fig. 6(b). For small value of �M, shear contraction is 
trivial and the curve extends with a larger slope. As �M increases, however, shear 
contraction becomes relatively remarkable and the curve turns relatively flat. T hus, by 
adjusting s and �M, the mechanical and hydraulic behaviours of the fracture can be 
appropriately established. 
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Fig. 5. Mechanical aperture versus shear displacement curve under constant normal stress: 
(a) Normal stress: 0.1 MPa and (b) Normal stress: 0.4 MPa. 
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Fig. 6. The sensitivity of s and �M on the behavior of the fracture: (a) �M=1.324 and (b) s=0.062 
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3. Strain-dependent hydraulic conductivity of rock fractur es 

In this section, we develop an elasto-plastic constitutive model for single hard rock fractures 
with consideration of nonlinear normal deformation and post-peak shear dilatancy, and 
then formulate the strain-depen dent hydraulic conductivity for the fractures under dilated 
shear loading. Compared with the stress-dependent model presented in Section 2, one major 
difference is that the strain-dependent model is capable of describing the influence of post-
peak mechanical response on the hydraulic properties of the fractures. This work is of 
paramount importance in the sense that the theoretical results are directly comparable with 
the experimental data of coupled shear-flow test, e.g. in Esaki et al. (1999). The strain-
dependent hydraulic conductivity tensor can then be developed on this basis, which will be 
presented later in Section 5. 

3.1 An elasto-plastic constitutive model for rock fractures 
The underlying physical model considered is the same with the model plotted in Fig. 3, in 
which a fracture of hard rock is located at the mid-height of a specimen between two intact 
rock blocks. The height of the specimen is denoted by s, and the initial aperture of the 
fracture is b0. When constant normal stress �Vn and increasing shear displacement �G are 
applied on the specimen, typical and idealized curves of shear displacement versus shear 
stress and shear displacement versus normal displacement (i.e. �G~�W curve and �G~u curve) are 
plotted in Fig. 7. The shear stress increases linearly with the shear displacement (linked by 
the initial shear stiffness of the fracture, ks0) until the shear stress approaches the peak, �Wp, 
which is then followed by a shear softening pr ocess in which the shear stress decreases to a 
residual level at a decreasing gradient with increasing shear displacement. For the purpose 
of deriving the hydraulic property of the fracture in post-peak loading section, however, an 
elastic-perfectly plastic �G~�W relationship can be assumed, as shown in Fig. 7(a). 
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Fig. 7. Typical and idealized curves of shear displacement versus shear stress and shear 
displacement versus normal displacement of a fracture subjected to normal and shear loads 

The deformation response of a rock fracture subjected to normal and shear loadings includes 
two components: one is the nonlinear closure of the fracture due to normal compression, and 
the other is the opening of the fracture due to shear dilation. Experimental results in Esaki et 
al. (1999) show that in the shearing process under constant normal loading, dilatancy will start 
when the shear stress approaches the peak and it increases at a decreasing gradient with 
increasing shear displacement, as illustrated in Fig. 7(b). As a result, the aperture of the 
fracture and then the hydraulic conductivity  vary with increasing  shear displacement. 
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Therefore, we may consider that shear dilatancy as well as the change in hydraulic 
conductivity accompanies normal and plastic sh ear deformations of the fracture. To deduce 
the hydraulic conductivity of the fracture wi th an averaging method, which will be further 
used later for deriving the hydraulic conductivi ty tensor for fractured rocks, we view the 
specimen with fracture as an equivalent continuous medium, i.e. the hydromechanical 
properties of the fracture are averaged into the whole specimen. As can be seen later, such a 
treatment does not affect our final solution to a single fracture, but it renders valid the small 
strain assumption on the fractures in the presence of post-sliding plasticity. 
For a one-dimensional problem with a single ro ck fracture, the elasto-plastic constitutive 
model can be represented in the following forms: 

 p0
p e

s0s s s sk

�W� G � G � G
� J � J � J�  � � �  � � �  � �  (23) 

 n
n p

n
tan d

sk
�V

�H � \ � J
�c

�  � ��³   (24) 

where �J, �Je and �Jp are the total shear strain, the elastic shear strain and the plastic shear 
strain of the fracture, respectively; �Hn is the normal strain of the fracture; �Wp is the peak shear 
stress of the fracture under effective normal stress �V�cn; kn and ks0 are, respectively, the normal 
stiffness and the initial shear stiffness of the fracture; �G0 is the maximum elastic shear 
displacement upon shear yielding, with �G0 = �Wp/ ks0, as shown in Fig. 7(a); and �\  is the 
mobilized dilatancy angle of the fracture. Note th at in Eq. (24), the first term on the right 
hand side denotes the nonlinear closure of the fracture subjected to effective normal stress 
�V�cn, while the second term denotes the opening of the fracture due to shear dilatancy. 
Existing studies have indicated that shear dilatancy is highly dependent on the plasticity 
already experienced by the fractures and normal stress, and non-negligibly dependent on 
scale (Barton & Bandis, 1982; Yuan & Harrison, 2004; Alejano & Alonso, 2005). The decaying 
process of the dilatancy angle in line with pl asticity can be described by the following 
negative exponential expression through the plastic shear strain, �Jp, or indirectly through 
the plastic shear displacement, �G, on the basis of Eq. (23): 

 �> �@peak 0exp ( )�  � �� �r�\ � \ � G� G  (25) 

where r is a parameter for modelling the rate of decay that �\  undergoes as the plastic shear 
strain evolves. If r=0, then a constant dilatancy angle is recovered. As r�o�f , the dilatancy 
angle quickly decays to zero. �\ peak is the peak dilatancy angle of the fracture in the form of 
(Barton & Bandis, 1982) 

 peak 10
n

log
JCS

JRC�\
�V

�  � ˜
�c��

  (26) 

where JRC and JCS are the roughness coefficient and the wall compressive strength of 
fractures, respectively, and the actual values of them should be scale-corrected (Barton & 
Bandis, 1982). Thus, the dependencies of fracture dilatancy on plasticity, normal stress and 
scale are established through Eqs. (25) and (26). 
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Note that Eq. (25) shares the same shape with the asperity angle proposed for the 
description of shear dilatancy and surface degradation (Plesha, 1987), but the latter is 
represented as a function of the plastic tangential work. With the assumption of elastic-
perfectly plasticity, they are fu lly equivalent for monotonic load ing (Jing et al., 1993). Cyclic 
loading is not a concern in this simple model,  but when cyclic loading is involved, another 
independent function can be associated to the reverse loading that starts from the original 
point, just as the suggestion given in Plesha (1987) for asperity angles in two opposite 
directions, in order to satisfy the thermodynamic restriction condition presented in Jing et 
al. (1993). 
Using the Mohr-Coulomb criteria, the peak shear stress �Wp of the fracture under effective 
normal stress �V�cn satisfies 

 p n tan c�W � V � M�c� � � � �  (27) 

where �M and c are the frictional angle and the cohesion of the fracture. 
Differentiating Eq. (23) yields 

 p
1

d d d
s

�J � J � G�  �    (28) 

Combining Eqs. (24) and (28) results in 

 
0

n
n

n
tan ( )d

�c
� | �  � ��³b s

k

�G

�G

�V
�' � H � \� G� G  (29) 

An interesting phenomenon in Eq. (29) is, as described before, the change in the aperture of 
the fracture, �' b, is irrelevant to the height of the specimen, s. To conveniently use this 
formulation, two remedies  can be further made: 
First, suppose that the hyperbolic variation of kn with the increase of aperture can be 
considered in the following  (Huang et al., 2002): 

 n 0 n0
n

0

b k
k

b
�V�c� � � �

�   (30) 

where kn0 is the initial normal stiffness of the fracture. 
Second, by employing the Taylor series expansion (truncated at the third order term), tan �\  
can be adequately approximated by �\ +�\ 3/3 in radians for a rather large �\ peak, e.g. 30�q. 
From Eq. (29) and the above two remedies, we have 

 0b b�' �F�   (31) 

 0 0(1 )� � � �  � �b b b b�' �F   (32) 

with the parameter, �F, in the following form 

 0 0

3
peak peak( ) 3 ( )n

n 0 n0 0

1
1 e 1 e

9
� � � � � � � �

�­ �½�c �° �°�ª � º � ª � º�  � � � � � �� ��® �¾�¬ � ¼ � ¬ � ¼�c� � � � �° �°� ¯ � ¿

r r
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  (33) 

www.intechopen.com



Stress/Strain-Dependent Properties of Hydraulic Conductivity for Fractured Rocks 

 

17 

3.2 Strain-dependent hydraulic conductivity for rock fractu res 
Rewrite from Eq. (22) the initial hydr aulic conductivity of the fracture, k0, in the following 
form: 

 
2
0

0
gb

k �9
�Q

�   (34) 

Then, the hydraulic conductivity of the fracture under effective normal stress �V�cn and shear 
displacement �G can be described by 

 
2

2
0(1 )�  �  � �

gb
k k�9 �F

�Q
  (35) 

Hence, a theoretical model of the hydraulic conductivity for a single rock fracture is finally 
formulated, which is totally determined by the effective normal stress �V�cn and the shear 
displacement �G, as well as a set of parameters characterizing the behaviour of the fracture 
(i.e. b0, �9, kn0, ks0, �M, c, JRC, JCS and r, which all can be deduced or back-calculated from 
experimental data). 
Note that by Eqs. (35) and (33), the proposed hydraulic conductivity model for rock 
fractures subjected to normal and shear loadings with mobilized dilatancy behaviour 
depends in form on the plastic shear displacement, but from Eq. (23), one observes that the 
model depends indirectly on the plastic shear strain. Thus, we classify the established model 
into the stain-dependent hydr aulic conductivity model. 

3.3 Validation of the proposed model 
Esaki et al. (1999) systematically investigated the coupled effect of shear deformation and 
dilatancy on hydraulic conductivity of rock  fractures by developing a new laboratory 
technique for coupled shear-flow tests of rock fractures. In this section, we validate the 
theory proposed in Section 3.2 using the experimental data reported in Esaki et al. (1999). 
For this purpose, we first briefly introduce th e experiments, and then predict our analytical 
results through Eqs. (31) and (35) by directly comparing with the experimental data. 

3.3.1 The coupled shear-flow tests 
The coupled shear-flow tests were conducted with an artificially cr eated granite fracture 
sample under various constant normal loads and up to a residual shear displacement of 20 
mm (Esaki et al., 1999). The underlying specimen for coupled shear-flow tests is sketched in 
Fig. 3, with its size of 120 mm in length, 100 mm in width and 80 mm in height. The initial 
aperture of the created fracture, b0, is about 0.15 mm. The value of JRC is 9, and the value of 
JCS is 162 MPa, respectively. 
The coupled shear-flow tests were conducted by first applying a prescribed normal stress 
ranging between 1 MPa and 20 MPa and then applying shear displacement in steps at a rate 
of 0.1 mm/s until a maximum shear displacement  of 20 mm was reached. During tests, 
steady-state fluid flow rate, shear loading and dilatancy were all continuously recorded. The 
hydraulic aperture and conducti vity were back-calculated by applying the cubic law, with 
the flow equations solved by using a finite difference method.  
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3.3.2 Determination of the parameters for the proposed mo del 
Some of the experimental values of the mechanical parameters of the fracture specimen 
during the coupled shear-flow tests are listed in  Table 2 (taken from Table 1 in Esaki et al. 
(1999)). Using the data as listed in Table 2, we plot the peak shear stress versus normal stress 
curve in Fig. 8, which can be fitted by a linear equation �Wp=1.058�Vn+0.993 with a high 
correlation coefficient of 0.9999. Therefore, the shear strength of the specimen can be derived 
as �M=46.6�q and c=0.99 MPa, respectively. 
 

�Vn (MPa) �Wp (MPa) ks0 (MPa/mm) 
1 2.06 3.37 
5 6.16 10.65 
10 11.74 11.97 
20 22.10 17.97 

Table 2. Mechanical parameters of the artificial fracture (After Esaki et al. (1999)) 

The initial normal stiffness of the fracture of the specimen, kn0, has to be estimated from the 
recorded initial normal displacement with ze ro shear displacement under different normal 
stresses. From the data plotted in Fig. 9 (which is taken from Fig. 7b in Esaki et al. (1999)), kn0 
can be estimated as kn0=100 MPa/mm by considering the possible deformation of the intact 
rock under high normal stresses. It is to be noted that in the remainder of this section, the 
hard intact rock deformation of the small specimen is neglected, meaning that the normal 
displacement of the specimen mainly occurs in the fracture of the specimen and it is 
approximately equal to the increment of th e mechanical aperture of the fracture. 
Theoretically, the decay coefficient of the fracture dilatancy angle, r, can be directly 
measured from the normal displacement versus shear displacement curves as plotted in Fig. 
9. A better alternative, however, is to fit the experimental curves using Eq. (31) such that the 
least square error is minimized. By this approach, we obtain that  r=0.13 with a correlation 
coefficient of 0.9538. 
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Fig. 8. Peak shear stress versus normal stress curve of the fracture. 
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To obtain the dimensionless constant, �9, in Eq. (35) that relates the mechanical aperture to 
the hydraulic conductivity of th e fracture under testing, further efforts are needed. A simple 
approach is to back-calculate �9 directly using Eq. (34) with initial hydraulic conductivity, k0. 
But similarly, the better alte rnative is to fit the hydraulic conductivity versus shear 
displacement curves, as plotted in Fig. 11 (which is taken from Fig. 7c-f in Esaki et al. (1999)), 
using Eq. (35) such that the least square error is minimized. With such a method, we obtain 
that �9=0.00875. This means that the mechanical aperture, b, and the hydraulic aperture, b*, 
are linked with b*=0.324b, which is very close to the experimental result shown in Fig. 8 in 
Esaki et al. (1999). 
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Fig. 9. Comparison of the fracture aperture analyt ically predicted by Eq. (31) with that 
measured in coupled shear-flow tests. 

3.3.3 Validation of the proposed theory 
With the necessary parameters obtained in Section 3.3.2, we are now ready to compare the 
proposed model in Eqs. (31) and (35) with the experimental data presented in Esaki et al. 
(1999). Note that although the experimental data are available for one cycle of forward and 
reverse shearing, only the results for the forward shearing part are considered. The reverse 
shearing process, however, can be similarly modelled. 
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Fig. 9 depicts the relations between the mechanical aperture and shear displacement that were 
measured from the coupled shear-flow tests presented in Esaki et al. (1999) and predicted by 
using the proposed model given in Eq. (31) under different normal stresses applied during the 
testing. It can be observed from Fig. 9 that our proposed analytical model is able to describe 
the shear dilatancy behaviour of a real fracture under wide range of normal stresses between 1 
MPa and 20 MPa by feeding appropriate parameters. Even the fracture aperture increases by 
one order of magnitude due to shear dilation, the analytical model still fitted the experimental 
results well. For practical uses, the slight discrepancies between the analytical results and the 
experimental data are negligible and the proposed model is accurate enough to characterize 
the significant dilatancy behaviour of a real fracture.  
This performance is largely attributed to the dilatancy model introduced through Eqs. (25) 
and (26). The dilatancy angles of the fracture evolving with the plastic shear displacement 
under different normal stresses are illustrated in Fig. 10. The high dependencies of the 
dilatancy angle of the fracture on normal stre ss and plasticity are clearly demonstrated in 
the curves. The peak dilatancy angle, which can be rather accurately modelled by Barton’s 
peak dilatancy relation (Barton & Bandis, 1982), decreases logarithmically with the increase 
of the applied normal stress. For normal stresses of 1 MPa, 5 MPa, 10 MPa and 20 MPa, the 
peak dilatancy angles are 19.9�q, 13.6�q, 10.9�q and 8.2�q, respectively. On the other hand, the 
dilatancy angle undergoes negative exponential decay with increasing plastic shear 
displacement, a process related to surface degradation of rough fractures. 
Fig. 11 shows the hydraulic conductivity versus shear displacement relations that were 
back-calculated from fluid flow  results using the finite diffe rence method from the coupled 
shear-flow tests presented in Esaki et al. (1999) and that are predicted by the proposed 
model given in Eq. (35) under different normal  stresses during testing. As shown in the 
semi-logarithmic graphs in Fi g. 11, the proposed analytical model can well predict the 
evolution of hydraulic conductivity of the te sted rock fracture, with the change in the 
magnitude of 2 orders, during coupled shear-fl ow tests under different normal stresses. The 
ratios of the predicted hydraulic  conductivities to the corresponding experimental results all 
fall in between 0.3 and 3.0, indicating that they are rather close in orders of magnitude and 
the predicted results are suitable for practical use. 
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Fig. 10. Dilatancy angles of the fracture evolving with the plastic sh ear displacement under 
different normal stresses. 
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Fig. 11. Comparison of the hydraulic conductivity analytically predicted by Eq. (35) with 
that calculated from coupled shear-flow  tests with finite difference method. 

4. Stress-dependent hydraulic conductivity tensor of fractu red rocks 

When the response of each fracture under normal and shear loading is understood (see 
Section 2), the remaining problem is how to formulate the hydraulic conductivity for 
fractured rock mass based on the geometry of the underlying fracture network. Fig. 12 
depicts a two-dimensional fracture network (tak en after Min et al. (2004)) in a biaxial stress 
field. As shown in Fig. 12, each fracture plays a role in the hydraulic conductivity of the rock 
mass, and its contribution primarily depends on its stress state, its occurrence, as well as its 
connectivity with other fractures. Also shown in Fig. 12 is the scale effect of the rock mass on 
hydraulic properties. Wh en the size of the rock mass is small, only a few number of 
fractures are included and heterogeneity of the hydraulic conductivity of the rock mass may 
dominate. As the population of factures grows with the increasing size, an upscaling scheme 
may be available to derive a representative hydraulic conductivity te nsor for the rock mass 
at the macroscopic scale. 
Based on the above observations, in this section, we formulate an equivalent hydraulic 
conductivity tensor for fractured rock mass ba sed on the superposition principle of liquid 
dissipation energy, in which the concept of REV is integrated and the applicability of an 
equivalent continuum approach is able to be validated. 

www.intechopen.com



      Developments in Hydraulic Conductivity Research 

 

22 

x�1
x�1

y�1

y�1

n�1
�2

 
Fig. 12. A fracture network (taken after Min et al. (2004)) in biaxial stress field and the scale 
effect of the rock mass 

4.1 Computational model 
Without loss of generality, the global coordinate system X1X2X3 is established in such a way 
that its X1-axis points towards the East, X2-axis toward the North and X3-axis vertically 

upward. A local coordinate system 1 2 3
f f fx x x  is associated with the fth set of fractures such 

that the 1
fx -axis is along the main dip direction, the 2

fx -axis is in the strike, and the 3
fx -axis 

is normal to the fractures, as shown in Fig. 13. 
In order to formulate the stress-dependent hydr aulic conductivity tensor for fractured rock 
masses using the aforementioned elastic constitutive model for rock fractures, the following 
assumptions, similar to Oda (1986), are made in this section: 
1. A cube of volume, Vp, is considered as the flow region of interest, which is cut by n sets 

of fractures. The orientation of each set of fractures is indicated by a mean azimuth 
angle �E and a mean dip angle�D. Other geometrical statistics of the fractures are assumed 
to be available through field measur ements or empirical estimations. 

2. Even though the geometry of real fractures is complex, generally it can be simplified as 
a thin interfacial layer with radius  r and aperture b*. 

3. The rock mass is regarded as an equivalent continuum medium, which means the 
representative elementary volume (REV) exists in the rock mass and its size is smaller 
than or equal to Vp. 
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Fig. 13. Coordinate systems 

4.2 Stress-dependent hydraulic conductivity tensor 
Fluid flow through the equivalent continuum media can be described by the generalized 3-
D Darcy’s law as follows: 

 � KJv   (36) 

where v denotes the vector of flow velocities, J  denotes the vector of hydraulic gradients, 
and K  is the hydraulic conductivity tensor for the rock mass. 
For steady-state seepage flow, the dissipation energy density, e(X1, X2, X3), of fluid flow 
through the media can be represented as (Indelman & Dagan, 1993): 

 T1
2

e � J KJ   (37) 

Hence, the total flow dissipation energy, E, in the rock mass Vp can be calculated by 
performing an integration throughout the whole flow domain: 

 
p p

T1
d d

2V VE e �: �:�  �  � ³ � ³J KJ   (38) 

If REV does exist in the rock mass and its size is smaller than or equal to Vp, by defining J  

to be the vector of the average hydraulic gradient within Vp and K  to be the average 
hydraulic conductivity tensor, Eq. (38) can be reduced to: 

 T
p

1
2

E V� J KJ   (39) 

Suppose that the volume density of the ith set of fractures is Jvi. The number of this set of 
fractures can be estimated by mi = Jvi Vp. 
For permeable rock matrix, the flow dissipation energy shown in Eq. (39) consists of two 
components, i.e., the flow dissipation energy through rock matrix, Er, and the flow 
dissipation energy through crack network, Ec: 

 r cE E E� ��  (40) 
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Er can be represented as: 

 T
r r p

1
2

E V� J K J   (41) 

where rK  denotes the hydraulic conductivity tensor  for rock matrix. If rock matrix is 
impermeable, all elements in rK  vanish. 
To estimate Ec, we introduce a weight coefficient Wij to describe the effect of the connectivity 
of the fracture network on fluid flow: 

 ij ij iW /�[ �[�   (42) 

where �[ij is a stochastic variable denoting the number of fractures intersected by the jth 
fracture belonging to the ith set; and i�[  denotes the maximum number of fractures cut by 
the ith set of fractures. Obviously, 0 �d Wij �d 1 and when �[ij = 0, Wij = 0. This implies that an 
entirely isolated fracture which does not inte rsect any other fracture effectively contributes 
nothing to the hydraulic conducti vity of the total rock mass. 
For the jth fracture belonging to the ith set, a void volume equal to 2 *

ij ijr b�S  is associated with 
it. Then, the flow dissipation energy through it is described as: 

 2
c

*
ij ij ij ij ijE W e r b�S�   (43) 

where eij is shown as follows: 

 T
c c

1
2

� J Jij ij i ie k   (44) 

where kij denotes the hydraulic conductivity of the jth fracture of the ith set, which can be 
calculated by the stress-dependent hydraulic conductivity model, Eq. (21). 

ciJ  denotes the hydraulic gradient within the ith set of fractures: 

 �� ��ci i i�  � � � …J �Å n n J   (45) 

where �G is the Kronecker delta tensor, and ni denotes the unit vector normal to the ith set of 
fractures, with its components n1=sin�Dsin�E, n2=sin�Dcos�E, and n3=cos�D. 
Thus, Ec can be represented as 

 � � � �2 3 T
c

1 112

imn
*

ij ij ij i i
i j

g
E W r b

�S
�Q �  �  

�  � �� …� ¦ � ¦ J �Å n n J   (46) 

From Eqs. (39)-(41), (46) and (20), it can be referred that 

 � � � �3 2 3
r 0

1 112

imn

ij ij ij ij i i
p i j

g
W f ( )r b

V

�S
�E

�Q �  �  

�  � � � � � …� ¦ � ¦K K �Å n n   (47) 

In Eq. (47), n is determined by the orientation of the fr actures, which reflects the effect of the 
orientation of the fractures on the fluid flow. r and b0 represent the size or the scale of the 
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fractures; they retrain the flui d flow through the fractures from  their developing magnitude. 
W is a parameter introduced to show the impact of the connectivity of  the fracture network 
on fluid flow. Finally,  f(�E) is a function used to demonstrate the coupling effect between 
fluid flow and stress state. 
The hydraulic tensor for fractured rock masses given in Eq. (47) is related to the volume of 
the flow region, Vp, which exactly shows the size effect of the hydraulic properties. 
Intuitively, the smaller the Vp size is, the less number of fractures is contained within the 
volume, and thus the poorer th e representative of the computed hydraulic conductivity 
tensor. On the other hand, when Vp is increased up to a certain value, the fractures involved 
in the cubic volume are dense enough and the hydraulic conduc tivity tensor for the rock 
mass does not vary with the size of the volume. This Vp size is exactly the representative 
elementary volume, REV, of the flow region. The Vp size of the flow region is required to be 
larger than REV for estimating the hydraulic conducti vity tensor for the fractured rock 
mass. Otherwise, treating the fractured rock mass as an equivalent continuum medium is 
not appropriate, and the discrete fracture flow approach is preferable. 

4.3 Comparison with Snow’s and Oda’s models 
Now we make a comparison between the formul ation of the hydraulic conductivity tensor 
presented in Eq. (47) and the formulation given by Snow (1969) as well as the formulation 
given by Oda (1986). The Snow’s formulation is as follows: 

 � � � �
3

112

n
i

i i
ii

g b
s�Q � 

�  � �� …�¦K �Å n n   (48) 

where si is the average spacing of the ith set of fractures. If we neglect the hydraulic 
conductivity of the rock ma trix and the connectivity of the factures, and define 

 0
1

1
( )

im

i i j ij
i j

b f �Ã b
m � 

� �¦   and   1 2

p 1

im

i i j
j

�Ñ
s r

V
��

� 

� �¦   (49) 

Then, the formulation presented in Eq. (47) is totally equivalent to Snow’s formulation, Eq . 
(48). 
On the other hand, the Oda’s formulation is described by 

 ( )� ��K �Å PkkP�9   (50) 

where P is the fracture geometry tensor, with Pkk = P11+P22+P33. 

 2 3
0 0

( , , )d d d
� f � f

�  � …� ³ � ³ � ³P n n
�º

�Ñ�Ò r b E n r b r b�:   (51) 

where E(n, r, b) is a probability density function of  the geometry of the fractures, �U is the 
number of fracture centers per unit of volume, with �U = mv/ Vp, v im m� �¦ , and �9 is the 
dimensionless scalar adopted to penalize the permeability of real fractures with roughness 
and asperities. Assuming that a statistically valid REV exists and being aware that the 
fracture orientation is a discrete event, the fracture geometry tensor may be empirically 
constructed by the following direct summation 
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v

2 3

p 1

m

i i i i
i

�Ñ
r b

V � 

�  � …�¦P n n   (52) 

Following a similar deduction, it can be inferred that all these three formulations are 
equivalent not only in form but also in func tion, though they are derived from different 
approaches and different assumptions. The formulation presented in Eq. (47) can be directly 
obtained from Snow’s formulation by considering the connectivity and roughness of the 
fractures and integrating the aperture changes under engineering disturbance. The 
discretized form of the Oda’s fo rmulation is much closer to the current formulation, and the 
latter can also be directly achieved from the former by considering the connectivity of the 
fracture network. However, the proposed meth od for formulating an equivalent hydraulic 
conductivity tensor for complex rock mass based on the superposition principle of liquid 
dissipation energy is a widely applicable approach not only to equivalent continuum but 
also to discrete medium. 

4.4 A numerical example: hydraulic conductivity of the  rock mass in the Laxiwa 
Hydropower Project 
In order to validate the theoretical model pres ented in Section 4.2, we investigated the 
hydraulic conductivity of a fractured rock ma ss at the construction site of the Laxiwa 
Hydropower Project, the second largest hydropower project on the upstream of the Yellow 
River. The selected construction site for a double curvature arch dam is a V-shaped valley 
formed by granite rocks, as shown in Fig. 14. The dam height is 250 m, the top elevation of 
the dam is 2460 m, the reservoir storage capacity is 1.06 billion m3 and the total installed 
capacity is 4200 MW. 
A typical section of the Laxiwa dam site is illustrated in Fig. 15. Besides faults, four sets of 
critically oriented fractures are developed in  the rock mass at the construction site. The 
geological characteristics of the fractures are described by spacing, trace length, aperture, 
azimuth, dip angle, the joint roughness coefficient, JRC, of the fractures as well as the 
connectivity of the fracture network (i.e., th e number of fractures intersected by one 
fracture). According to site investigation, th e statistics (i.e., the averages and the mean 
squared deviations, as well as the distribution of the characteristics) of the fractured rock 
mass on the right bank of the valley are listed in Table 3. 
 

 
Fig. 14. Site photograph of the Laxiwa valley 
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Fig. 15. A typical section of the Laxiwa dam site 

 
Length 

(m) 
Aperture 

(mm) 
Azimuth 

(�q) 
Dip 
(�q) 

Connectivity 
Set 

Spacing 
(m) 

avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. 
1 1.45 5 1.5 0.096 0.02 85.3 10 54.5 10 5 3 
2 2.62 3 1.0 0.096 0.02 355.1 20 29.8 5 3 2 
3 10.96 3 1.0 0.096 0.02 287.4 20 61.4 10 3 2 
4 10.96 3 1.0 0.096 0.02 320.2 20 11.9 5 3 2 

Distribution 
logarithmic 

normal 
negative 

exponential
Gama normal normal normal 

*’avg.’ denotes arithmetic mean of a variable,  
‘dev.’ represents root mean squared deviation 

Table 3. Characteristic variables of the fractured rock mass* 

At the construction site of the Laxiwa dam, a total number of 1450 single-hole packer tests 
were conducted to measure the hydraulic proper ties of the rock mass, with 113 packer tests 
for the shallow rock mass on the right bank in 0 ��80 m horizontal depth and 278 packer tests 
for the deeper rock mass. The measurements of the hydraulic conductivity range from 10��5 
cm/s to 10 ��6 cm/s for the shallow rock mass and from 10 ��6 cm/s to 10 ��7 cm/s for the deeper 
rock mass, with in average 4.94�u10��5 cm/s for the former and 3.80 �u10��6 cm/s for the latter, 
respectively (Liu, 1996). On the other hand, in-situ stress tests showed that the geostress in 
the base of the valley and in deep rock mass has a magnitude of 20��60 MPa, with the 
direction of the major principal stress pointing towards NNE. As a result of stress release, 
the release fractures are frequently developed and a high permeability zone of 0��80 m 
horizontal depth is formed in the bank slop e, as shown in Fig. 15. The stress release 
fractures, however, become infrequent in deeper rock mass, and the measured hydraulic 
conductivity is generally 1 ��2 orders of magnitude smaller than the hydraulic conductivity of 
the rock mass in shallow depth away from  the bank slope. Therefore, the hydraulic 
conductivity of the rock mass at the constructi on site of the Laxiwa arch dam is mainly 
controlled by the fracture network and the stress state. 
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Based on these statistics given in Table 3, fracture networks can be generated and calibrated 
for the rock mass at the construction site of the Laxiwa Hydropower Proje ct using the Monte-
Carlo method by assuming that each fracture is a smooth, planar disc, with its center 
uniformly distributed in the simulated area. For each set of fractures, the geometrical 
parameters of any one are sampled by Monte-Carlo method until enough fractures are 
included in the simulated area. Then, a calibration procedure is invoked to check whether the 
generated model satisfies the distribution mode of  the real fracture network. If doesn’t, the 
fracture network will be regenerated until on e matches the distribution mode. With the 
generated fracture network, the actual connectivity can be computed by spatial operation on 
the fractures. But for calibrated fracture networ k, a more convenient approximate approach to 
determine the connectivity of the fracture network, as it is adopted here, is to directly produce  
�[ij in Eq. (42) with the Monte-Carlo method and the characteristics presented in Table 3, then 

Wij is derived from Eq. (42) with i�[ , the maximum number of fractures cut by the ith set of 

fractures. Field measurements are used to estimate i�[ , with 1�[ =11, 2�[ =8 and 3�[ = 4�[ =6 for 
the four sets of fractures, respectively. Fig. 16 illustrates a simulated fracture network with size 
of 20�u20�u20 m.  
On the basis of the fracture network generated above, we compute the hydraulic conductivity 
tensor for the simulated cubic volu me of rock mass with size of 20�u20�u20 m using the method 
given by Snow (1969) and the method presented in Section 4.2, respectively. To show the 
coupling effect of stress/deform ation on hydraulic properties, we consider two scenarios for 
examination. In the first scenario, we consider the fracture network lo cated in the shallow 
depth away from the bank slope, where the impact  of the in-situ stress is negligible. While in 
the second scenario, the fracture network is situated in larger depth, and a typical stress state 
with �Vx=�Vz=10 MPa and �Vy=20 MPa is associated with it. Based on laboratory test results, the 
shear modulus of the fractures is estimated as �P=2 MPa, and then by taking the Poisson’s ratio 
as �Q=0.25, the Lame’s constant is derived with �O=2 MPa. The kinematic viscosity of 
underground water is set to be �Qw=1.14�u10��6 m2/s and the frictional angle-like parameter and 
the normal stress-like parameter are taken as �M=0.4363 and s=�Vn/20.  
 

x
y

z

(a) 
x

y

z

 
(b) 

Fig. 16. A three dimensional fracture network with size of 20 �u20�u20 m generated by using 
the Monte-Carlo method for the rock mass in the Laxiwa Hydropower Project: (a) fracture 
network and (b) traces of the fractures on the surfaces of the simulated area 
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The predicted hydraulic conductivi ty tensor for the examined rock mass is listed in Table 4. 
From Table 4, one observes that for shallow rock mass (where the effect of in-situ stress is 
not considered), the Snow’s method and the method presented in Section 4.2 predict similar 
results and the predicted hydraulic conductivity is in the magnitude of 10 ��5 cm/s and close 
to in-situ hydraulic observations, but the anisotropy in hydraulic conductivity manifests d ue 
to non-uniform distribution of fractures. Comp ared with the hydraulic conductivity of the 
shallow rock mass, the predicted hydraulic cond uctivity for the rock mass in larger depth 
with the same fracture network decreases in 2 orders of magnitude due to the closure of the 
fractures applied by the in-situ stresses, but the anisotropic proper ty of the hydraulic 
conductivity remains, which suggests that the occurrence of the fractures has a significant 
impact on permeability. Taking into consideration the applied stress level, the reduction of 
hydraulic conductivity in orders of magnitude is  very close to the results achieved in Min et 
al. (2004) through a discrete element method, and generally agrees with the in-situ hydraulic 
observations. 
 

Snow’s model (for shallow rock mass) 
  4.78E��05 ��4.76E��07 ��1.71E��05 
��4.76E��07   7.49E��05 ��1.41E��05 
��1.71E��05 ��1.41E��05   4.08E��05 
The proposed model (for shallow rock mass) 
  1.93E��05 ��1.75E��07 ��6.39E��06 
��1.75E��07   2.99E��05 ��5.81E��06 
��6.39E��06 ��5.81E-06   1.64E��05 
The proposed model (for deep rock mass) 
  9.06E��08 ��4.81E��09 ��6.10E��08 
��4.81E��09   1.85E��07 ��1.92E��08 
��6.10E��08 ��1.92E��08   1.10E��07 

Table 4. Predicted hydraulic conductivity tensor of the rock mass at the construction site of 
the Laxiwa dam (cm/s) 

Now, we take for example the rock mass in shallow depth to estimate the REV size of the 
rock mass. For this purpose, the scale of the rock mass is increased gradually from 3�u3�u3 m 
to 40�u40�u40 m with an increment of 1 m in each dimension. In each step, a fracture network 
with prescribed size is generated by using the Monte-Carlo method described above, and it 
is worth noting that this method is somewhat different from the method  used by Min & Jing 
(2003) and Long et al. (1982). For each fracture network, the hydraulic co nductivity tensor is 
calculated from Eq. (47) and then the principal hydraulic conduc tivities are further obtained 
from the hydraulic conductivity  tensor. The relationship between the computed principal 
hydraulic conductivities and the sizes of the rock mass is illustrated in Fig. 17. As we can see 
from Fig. 17, when the block size of the rock mass is smaller than 18�u18�u18 m, the 
population of fractures is not dense enough and the principal hydr aulic conductivities 
fluctuate dramatically. On the other hand , as the size scales up to about 20�u20�u20 m, the 
examined rock mass has included enough fractures and the computed principal hydraulic 
conductivities approach a rather steady state, with k1, k2, k3 estimated to be 2.41�u10��5 cm/s, 
3.59�u10��5 cm/s, 1.08�u10��5 cm/s, respectively. This suggests that the REV does exist in the 
rock mass and the rock mass can be regarded as an equivalent continuum medium as long 
as its size is no less than, e.g., 20�u20�u20 m or 8000 m3. 
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Fig. 17. Hydraulic conductivity versus the volume size of the fractured rock mass 

5. Strain-dependent hydraulic conductivity tensor of fractu red rocks 

On the basis of the strain-dependent model presented in Section 3 for rock fractures, this 
section formulates the strain-dependent hydrau lic conductivity tensor for fractured rock 
masses cut by one or multiple sets of parallel fractures. The major difference between the 
model in this section and the stress-dependent model presented in Section 4 is that the 
former is capable of describing influence of the post-peak mechanical behaviours on the 
hydraulic properties of the rock  masses, and is suited for modelling the coupled processes in 
rock masses at high stress level and in drastic engineering disturbance condition. 

5.1 An equivalent elasto-plastic constitutive model for fr actured rocks 
Consider a fractured rock mass cut by n sets of planar and parallel fractures of constant 
apertures with various orientat ions, scales and densities. The global response of the 
fractured rock mass under loading comes both from weak fractures and from stronger rock 
matrix. Based on this observation, an equivalent elasto-plastic constitutive model can be 
formulated by imposing assumptions on the in teraction between fractures and rock matrix. 
The coordinate systems are defined in the same way with those defined in Section 4.1 (see 
Fig. 13). Denote the unit vector along X i-axis of the global frame as ei (i=1, 2, 3) and the unit 
vector along f

ix  -axis of the fth local frame as f
ie  (i=1, 2, 3). Then, a second order tensor, l f, 

can be defined for transforming physical quantities between the frames, with the 
components in the form of 

 f f
jij il � �˜e e  (53) 

Regarding the fractured rock mass as a continuous medium at the macroscopic scale, it is 
rational to assume that the global strain increment of the fractured rock mass is composed of 
the strain increments of rock matrix and fractures (Pande & Xiong, 1982; Chen & Egger, 
1999), i.e. 
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 R F

F

d d d�  � ��¦� Æ � Æ � Æ  (54) 

where d�H, d�HR and d�HF are the total incremental strain tensor, the incremental strain tensor of 
rock matrix and the incremental strain tensor of fth set of fractures measured in the global 
coordinate system, respectively. Note that a variable with a superscript in upper case (i.e. R 
or F) means that it is measured in the X1X2X3 system, while a variable with a superscript in 
lower case (i.e. f) is measured in 1 2 3

f f fx x x  system, respectively. Unless otherwise specified, 
the superscripts F and f are not summing indices. 
On the other hand, traction continuity has to be  ensured across the fracture interfaces. In the 
global coordinate system, this condition can be strictly represented by (Pande & Xiong, 1982; 
Chen & Egger, 1999) 

 R Fd d d�c �c�  �  � Ô � Ô � Ô  (55) 

where d�V�c, d�V�cR and d�V�cF are the effective incremental stress tensor of the fractured rock 
mass, the effective incremental stress tensor of rock matrix and the effective incremental 
stress tensor of fth set of fractures, respectively. The effective stress tensor �V�c is defined as 

 p�D�c�  � �� Ô � Ô � Å  (56) 

where �V is the total stress tensor (positive for tension), p is the pore water pressure (positive 
for compressive pressure), and �D (�D�d1) is an effective stress parameter. 
Combining the plastic potential flow theory and the consistency conditions of rock matrix 
and fractures, an equivalent elasto-plastic constitutive model can be derived from Eqs. (54) 
and (55): 

 epd :d �c� �Æ S �Ô   (57) 

with 

 ep R,ep F,ep1 1

F

( ) ( )�� ���  � ��¦S C C   (58) 

where Sep is the equivalent elasto-plastic compliance tensor of the fractured rock mass. 
CR,ep in Eq. (58) is the elasto-plastic modulus tensor of rock matrix. Neglecting the 
degradation of rock strength in the vo lume close to fracture intersections, CR,ep can be 
written as 

 

R RR R
R,ep R

RR R
R

Q F
: :

F Q
: : H

� w � w
�…

� c � c� w � w�  � �
� w � w

��
� c � c� w � w

C C
� Ô � ÔC C

C
� Ô � Ô

  (59) 

where CR is the fourth-order elastic modulus tensor of rock matrix, which can be 
represented in terms of the Lame’s constants �O and �P: 

 R ( )�  � � � �ij klijkl ik jl il jkC �Ì� Å � Å � Å � Å � Å � Å�P   (60) 
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FR, QR and HR in Eq. (59) are the yield function, the plastic potential function and the 
hardening modulus of rock matrix, respectively. A non-associative flow rule with elastic-
perfectly plasticity (i.e. HR=0) is adopted for better modeling dilatant behavior of rock 
matrix by virtue of, for example, the Druker-Prager criterion with its cone fully inscribed by 
the Mohr-Coulomb hexagon, defined by functions 

 R 1 2 0F �ÂI J �Ë�c� � � � � �    (61) 

 R 1 2Q I J�E �c�  � �  (62) 

with 

 2
R Rsin / 3(3 sin )�  � ��D � M � M  (63) 

 2
R R R3 cos / 3(3 sin )�  � �c�N � M � M  (64) 

 2sin / 3(3 sin )�  � �R R� E � \ � \  (65) 

where cR and �MR are the cohesion and the friction angle of rock matrix, respectively. 1I �c and 
J2 are the first invariant of the effective stress and the second invariant of the deviatoric 
stress of rock matrix, respectively. �\ R is the mobilized dilatancy angle of rock matrix.  
It should be noted here that in the literatu re, Drucker-Prager criterion has been used by 
many authors to model the elasto-plastic behaviour of intact rock matrix, see Pande & Xiong 
(1982) and Chen & Egger (1999) for example. Although a modified Drucker-Prager yield 
function may be more suitable for this form ulation in order to model plastic deformation 
properties of intact rock such as pressure dependency, strain hardening, transition from 
compressibility to dilatancy and stress path dependency (Chiarelli et al ., 2003), the criterion 
given above may keep the formulation compact and does not lose generality. Other yield 
functions, such as the modified Drucker-Pr ager criterion (Chiarelli et al., 2003) or the 
modified Hoek-Brown criterion (Hoek et al., 1992), can also be integrated into the 
formulation without major ma thematical difficulties. 
With the researches conducted by Yuan & Harrison (2004) and Alejano & Alonso (2005), the 
decaying process of the rock dilatancy angle in line with plasticity can be described by the 
following negative exponential expression through the equivalent plastic strain of rock 

matrix, p
R�H  (Lai, 2002): 

   peak p
R RR Rexp( )r�\ � \ � H�  � �  (66) 

where rR�t0 is a parameter for modelling the decaying process of the dilatancy angle,  and 
peak
R�\  is the peak dilatancy angle of rock matrix and the following expression has been 

proposed by recovering the shape of the peak dilatancy angle of fractures given by Barton & 

Bandis (1982) and by assuming peak
RR�\ �M�  for null confinement pressures (Alejano & 

Alonso, 2005): 
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10R

10 c 3
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1 log 0 1.
� M � V

�\
� V � V

� 
�c� � � �� �

  (67) 

where �Vc is the unconfined compressive strength for intact rock. By Eqs. (66) and (67), the 
dependencies of rock dilatancy on plasticity, confining stress and scale are produced.  

The equivalent plastic strain p�H  is computed by the following: 

 p p p p2
d d d

3
:� H � H�  �  � ³ � ³� Æ � Æ  (68) 

Similarly, CF,ep in Eq. (58) is the elasto-plastic modulus tensor of fth set of fractures 
measured in the X1X2X3 system, which can be calculated from its corresponding elasto-
plastic modulus tensor measured in the 1 2 3

f f fx x x  system, Cf,ep, with the assumption of small 
strain and by imposing the fo llowing tensor transformation: 

 F,ep ,epf f f f f
mnopmi njijkl ok plC l l l l C�   (69) 

with 

 ,ep

f ff f

f f

f ff
f

Q F
: :

F Q
: : H

� w � w
�…

� c � c� w � w�  � �
� w � w

��
� c � c� w � w

C C
� Ô � ÔC C

C
� Ô � Ô

   (70) 

where Cf is the fourth-order tangential  elastic modulus tensor of the fth set of fractures, with 

n3333
f

f fC s k� , s2323 3131
f f

f fC C s k�  �  , and with all other elements  equal to zero. The symbols 
knf, ksf and sf are the normal stiffness, the tangential stiffness and the spacing of the fth set of 
fractures, respectively. The expressions for the elements in Cf mean that the strain of 
fractures is evaluated over the fracture spacing, not over the fracture aperture, thus enabling 
the proposed model to consider the post-slidi ng plasticity of fr actures and nonlinear 
variations of knf and ksf with dilatancy caused by shear loading, without violating the small 
strain assumption. 
Ff, Qf and H f in Eq. (70) are the yield function, the plastic potential function and the 
hardening modulus of the fth set of fractures, respectively. The elasto-plastic behaviour of 
the fractures is treated in a similar fashion as that for the rock matrix, with a non-associative 
Mohr-Coulomb criterion: 

 2 2 tan 0f zxf zyf zf f fF �Õ c� W � V � M�c� � � � � � � �    (71) 

 2 2 tanf zxf zyf zf fQ �W � W � V � \�c�  � � � �  (72) 

where zf�V�c , �Wzxf and �Wzyf are the effective normal stress and the shear stresses on the fracture 
surfaces, respectively. cf, �Mf and �\ f are the cohesion, the friction angle and the mobilized 
dilatancy angle of the fth set of fractures, respectively. Similar to Eq. (66), �\ f is also a 
shrinking function of the equivale nt plastic strain of fractures p

f�H , and depends on normal 
stress and scale as well, in the following form: 
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 peak pexp( )f ff fr�\ � \ � H�  � �  (73) 

where rf is the decaying parameter and peak
f�\  is the peak dilatancy angle of the fth set of 

fractures, respectively, with the latter calculated by Eq. (26).  
Thus at any loading step, as long as the stress increment of the equivalent rock mass, d�V�c, is 
obtained, the local strain pertinent to fth set of fractures can be derived as follows: 

 F,epF 1d ( ) :d�� �c� �Æ C �Ô  (74) 

and 

 Fd d� � Æ � Æf f f
mnij im jnl l    (75) 

The separation of the incremental strain of fractures from that  of the rock mass through the 
proposed equivalent constitutive model plays a significant role in the present study. It 
enables the formulation of strain-dependent hy draulic conductivity that accounts for the 
mobilized dilatancy behaviour, which will be demonstrated in the following section. 

5.2 Strain-dependent hydraulic conductivity tensor for fract ured rocks 
Consider a domain of flow that has been discretized into several sub-domains according to 
rock quality classification. Suppose that each sub-domain contains n sets of fractures, with 
average initial aperture bf0 and spacing sf for the fth set of fractures. Starting from Eq. (22) 
and using the averaging concept for the hydrau lic conductivity over the whole sub-domain, 
the equivalent initial hydraulic conductivity of the fth set of fractures, kf0, in the examined 
sub-domain can be represented as (Castillo, 1972; Liu et al., 1999) 

 
3

0
0

f
f

f

gb
k

s
�9

�Q
�   (76) 

where �9, as pointed out before, is a dimensionless constant introduced to penalize the real 
water conducting capacity of na tural fractures with rough walls, finite scales, asperity areas 
and filling materials. The validity of using a constant value of �9 has been examined by Zhou 
et al. (2006). 
Assuming that the change in spacing sf during modeling is negligible, under normal and 
shear stress loadings we have 

 
3 3

0( )f f f
f

f f

gb g b b
k

s s

�'
� 9 � 9

� Q � Q

��
�  �    (77) 

where �' bf and kf are the increment of the aperture and the equivalent  hydraulic conductivity 
of the fth set of fractures under loading, respectively. Suppose that strain localization (Lai, 
2002; Vajdova, 2003) is not dominantly exhibited in the concerned fractures, it is 
approximately valid that 

 f f zfb s�' �'�H�   (78) 
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where �' �Hzf is the increment of the normal strain of the fth set of fractures, which can be 
directly obtained from Eq. (75). 
Substituting Eq. (78) into Eq. (77) then yields 
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f

f f zf
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b
�'�H

� § � ·
� ¨ � ¸�  � �
� ¨ � ¸
� © � ¹

  (79) 

Following the theory proposed by Snow (1969), a strain-dependent equivalent hydraulic 
conductivity tensor for fr actured rock masses with n sets of fractures is represented by 

 

3

0
0

( ) 1 ( )
f

f f f f zf f f
ff f

s
k k
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�'�H

� § � ·
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� © � ¹

� ¦ � ¦K �Å n n �Å n n   (80) 

where K is the equivalent hydraulic conductivity  tensor of the examined rock mass, and nf is 
the unit vector normal to the fth set of fractures. 
The following significant implications can be observed from the formulation of K in Eq. (80): 
1. K is a cubic function of �' �Hzf, and any variation in �Hzf under loading will trigger the 

change in K, even in orders of magnitude. This exactly accounts for the coupling effect 
of mechanical loading (strain/st ress) on hydraulic properties. 

2. K depends on incremental strains, rather than on stresses, which makes it possible to 
integrate various material nonlinearities in hydro-mechanical coupling analysis. 

3. In addition to cubic relation, the influence of �' �Hzf on K is amplified by sf / bf0, indicating 
that K can be rather sensitive to bf0 and sf. Therefore, techniques for estimating bf0 and sf 
need to be carefully developed, on the basis of laboratory or in-situ hydraulic test data. 

4. The orientations of fractures possibly render K highly anisotropic, even if K is initially 
assumed isotropic, as has been systematically examined, e.g. by Liu et al. (1999). 

5. When implemented in a FEM code, a different K can be associated to each geological 
sub-domain or even to each element, as long as kf0, bf0 and sf for the sub-domains or 
elements can be estimated in advance. 

6. As a nature of the homogenized equivalent continuum approach, the size effect of 
fractures, especially the size-dependency of aperture, is not fully considered in the 
formulation of K for simplicity, even though it ca n be reflected to some degree through 
�9 and scaled JRC and JCS values. The connectivity and the intersection effect of 
fractures, on the other hand, may have a more significant influence on K, but similarly, 
they cannot be properly considered in the equivalent continua without explicit 
representation of fractures. A rough remedy is to process the fracture system in such a 
way that only the connected fracture popula tions are included for conducting analyses. 

To determine K of a fractured rock under any loadin g paths, a coupled hydro-mechanical 
process has to be invoked. With the assumption of incompressible rock matrix and fluid 
(e.g. groundwater), the governing equations for the coupled process of saturated fluid flow 
and deformation are given below as balance equation, geometric equation and fluid flow 
equation, respectively: 

 , 0ij j ,i ip f�V �D�c �� � � �    (81) 
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 � � � �, ,
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2ij i j j iu u�H �  � � (82) 
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  (83) 

where fi and ui are the components of the body force and displacement in the ith direction, 
h=p/ �Jw+z the water head, z the vertical coordinate, �Jw the unit weight of water, and �Hv the 
volume strain of the rock mass. 
In the coupled process given above, mechanical loading or disturbance to the rock mass 
results in change in flow prop erties and flow behaviour throug h Eqs. (80) and (83), while the 
change in flow behavior leads to change in mechanical response of the rock mass through 
Eq. (81). When the coupled process reaches a stable state, the solution to K is also available. 
Now we briefly discuss how to determine kf0, bf0 and sf in Eq. (80) based on laboratory or in-
situ hydraulic test or site investigation data. Obviously, the initial hydraulic conductivity, 
kf0, can be determined by in-situ hydraulic tests. Suppose the initial hydraulic conductivity 
tensor, K0, is known through in-situ hydraulic test , as suggested by Hsieh & Neuman (1985), 
then K0 can be rewritten, from Eq. (80), in the following form: 

 0 0( )f f f
f

k�  � �� …�¦K �Å n n   (84) 

By optimizing Eq. (84), kf0 (f=1, …, n) can be estimated if the number of the sets of critically 
oriented fractures, n, is less than or equal to 6 (i.e. the number of the independent 
components of K0), regardless K0 is assumed to be isotropic or anisotropic. 
The average spacing of the fth set of fractures, sf, can be roughly estimated from the statistics 
of drill holes or scanlines. An alterative, however, is to use RQD (Rock Quality Designation) 
for determining sf, as suggested by Liu et al. (1999), when the value of RQD for a specific 
rock mass is known a priori. 
After the initial hydraulic conductivity, kf0, and the average spacing, sf, of the fractures are 
determined, the mean initial aperture of the fractures, bf0, is ready to be back-calculated from 
Eq. (76). 

5.3 Validation of the proposed model 
5.3.1 Hydraulic conductivity of the surrounding rock o f a circular tunnel in the Stripa 
mine 
Here we compare the proposed method with re sults from a previous study as presented by 
Liu el al. (1999) by applying the method to an excavated circular tunnel with a biaxial stress 
field, �Vx and �Vz. The physical model is illustrated in Fi g. 18, which is actually a manifestation 
of the reality of the Stripa mine in Sweden (K elsall et al., 1984; Pusch, 1989). The following 
description about the tunnel is directly taken from Liu et al. (1999): 
A Buffer Mass Test was conducted in Stripa Mine over the period 1981-1985 (Kelsall et al., 
1984; Pusch, 1989) to measure the permeability of a large volume of low permeability 
fractured rock mass by monitoring water flow into a 33 m long section of the tunnel, as a 
large scale in-situ experiment for the research and development programs of underground 
geological disposal of nuclear wastes of the participating countries of the Stripa Project. The 
radius of the tunnel is about 2.5 m with two ma jor sets of fractures striking obliquely to the 
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Fig. 18. Sketch of a circular excavation in a biaxial stressed rock mass. 

tunnel axis, as shown in Fig. 18. Fracture frequency measured in holes drilled from the 
tunnel was on average 4.5 fractures/m in inc lined holes and 2.9 fractures/m in vertical 
holes. The initial stress field is anisotropic with high horizontal stress component and the 
conductivity of the virgin rock is about 10 ��10 m/s. The excavation of the test drift produced a 
dramatic increase in axial hydr aulic conductivity in a narrow zone adjacent to the periphery 
of the drift. The conductivity increase is  estimated to be 3 orders of magnitude. 
The following assumptions are made in the calculations, with some of them similar to those 
in Liu et al. (1999):  
1. Statically uniform aperture and spacing distributions exist before excavation; 
2. Fracture spacing and continuity ar e not altered by the excavation; 
3. The high obliquity of the two major sets of fractures can be well approximated by two 

orthogonal sets of fractures; 
4. Excavation-induced strain redistribution ma y be adequately captured by the proposed 

equivalent elasto-plastic constitutive model. 
Some of the parameters are directly taken from Liu et al. (1999), while other unavailable 
parameters are assumed, as listed in Table 5, in which the initial mechanical aperture of the 
fractures is back-calculated from Eq. (76) by taking k0=10��10 m/s. Consistent with Liu et al. 
(1999), the far-field stress components are taken as �Vx=20 MPa and �Vz=10 MPa, respectively. 
 

Category Parameter Setting 
Elastic modulus, E 37.5 GPa 
Poisson’s ratio, �Q 0.25 
Cohesion, cR 5 MPa 

Intact rock matrix 

Friction angle, �MR 46�q 
Initial mechanical aperture, b0 0.0075 mm 
Spacing, s 0.27 m 
Normal stiffness, kn 200 GPa/m 
Shear stiffness, ks 100 GPa/m 
Dimensionless constant, �9 0.0067 
Cohesion, cf 0.4 MPa 

Fractures 

Friction angle, �Mf 40�q 

Table 5. Geometrical and mechanical parameters for a circular tunnel 
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