
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

0

Using the iDTV as the Center of

an Ubiquitous Environment

Orlewilson B. Maia, Nairon S. Viana and Vicente F. de Lucena Jr
Universidade Federal do Amazonas (UFAM)

Brazil

1. Introduction

The characteristics of the new interactive Digital Television (iDTV) systems are assuming a
very important role in modern life. In fact, these features are being increasingly expanded,
from simple signal decoders to sophisticated devices that allow the execution of interactive
applications related to the content displayed, providing services of all kinds like Internet
access, TV-Banking, TV-Mail, TV-Commerce, TV-Health, Games and so on. Moreover,
recently, the main iDTV features have been used to integrate themselves with other consumer
electronics (CE) devices in intelligent and ubiquitous environments. This new trend improves
the user’s experience with Digital Television and introduces several challenges for integrating
heterogeneous devices, centralizing their services through a common iDTV set.
Nowadays one possible way of expanding the functionalities of a Set-Top Box (STB) is to
connect it with other devices equipped with computational power such as some popular
electronic equipments of a Home Network system. The firsts ideas were related to establishing
a communication link between Digital TV and CE devices through one central processing unit
of the Home Network, also known as Home Gateway (see Figure 1(a)). Another possibility
is to integrate these two devices on a single platform, using the STB as a Home Gateway (see
Figure 1(b)).

(a) Digital TV interacts with an ubiquitous environment
through a Home Gateway

(b) Digital TV interacts with an
ubiquitous environment directly

Fig. 1. Two ways for integrating iDTV in an Ubiquitous Computing Environment

Several scenarios can be provided by the use of Digital TV (DTV) receivers as Home
Gateways. One possible example is the administration of a smart home through the iDTV,
performing common tasks in the ubiquitous environment, such as the control of doors,

12

www.intechopen.com

cameras, temperature sensors and security applications. In a more specific scenario the iDTV
multimedia content can be synchronized with the television program. For example, the user
is able to print a document linked to a TV show or to control the environment synchronized
with audio/video transmission while a he/she is watching a movie.
Indeed, based on the tecnology available nowadays, other useful real life scenarios where
the iDTV set is the information center in an ubiquitous environment can be created. For
example, when Maria arrives at home, the TV recognizes her through her mobile phone and
recommends a list of programs that she could watch based on her known profile. After that,
she chooses a movie program. A few minutes later, Maria decides to eat something and moves
to the kitchen carrying her mobile phone. At this moment, she is recognized by a TV set
located in the kitchen that starts automatically to show the movie she was watching in the
living room.
These scenarios bring to the market new possibilities of developing convergent applications,
for instance in Brazil, where most people (over 97.1 %, according to a recent research from
the Brazilian National Agency of Electrical Energy, ELETROBRAS, performed from 2005 to
2007 (ELETROBRAS, 2011)) use the TV quite frequently and are large consumers of services.
Additionally, the iDTV can be used not only for providing conventional services (like TV-Mail
or TV-Commerce), but also for accessing services of devices in a Home Network. This allows
content sharing among iDTV and mobile phones, which is another potential field in the
Brazilian market (ANATEL, 2010).
The goal of this study is to present some research results about the relationship between
Digital TV and electronic devices in ubiquitous environments and to describe a collaboration
model between Home Networks and iDTV Systems based on the Brazilian standard. We
present a platform built over a common software environment for Digital TV and Home
Network applications. With this platform it is possible to create several use cases scenarios,
specially those related to composed services, i.e., those who integrate services from various
devices to improve the user’s experience with the connected ubiquitous home. The platform
considers some issues of software environments for iDTV and Home Network, and tries to
offer to the programmer an appropriate environment for rapid development of applications,
in a level that isolates the main software components of the two environments. This study,
from the overall technologies to the specification of the platform, will be described in the next
sections.

2. Overview of digital TV and home networks

2.1 Digital TV

Ever since the first TV channel (BBC London in 1936), the TV went through several changes.
The first most significant occurred in 1950 with the emergence of the color TV Sets and the
growing of program options to the viewers (Schwalb, 2004). In the 1980s came the first digital
production islands. A consequence of this was the transmission of digital content which were
decoded in devices called Set-Top Boxes (STBs) in order to enable an analog TV to show the
digital content.
According to Morris & Smith-Chaigneau (2005), the Digital TV (DTV) offers many advantages,
such as the delivering of more programs in the same transmission band; the improvement
of audio and video quality; the absence of interference at reception; and the emergence of
interactive services and applications.

226 Ubiquitous Computing

www.intechopen.com

2.1.1 Interactive digital TV

Originally the TV does not provide interactivity to the viewers, i.e., the viewers watch the
content of the programs and there is no interaction between them; the viewers only turn
on/off the TV or switch the channel. Over the years, some television programs started using
telephone lines to ask the viewers their opinion about the content being watched. With the
advent of the DTV, services and interactive applications are created to allow the viewers to
interact with the programs through an application broadcasted with the progams. This kind
of interactivity allowed the emergence of the new interactive Digital TV (iDTV).
According to Schwalb (2004) and Morris & Smith-Chaigneau (2005), the iDTV can be classified
as Enhanced TV with texts, graphic elements and improvement of audio and video quality;
Internet on TV where the Internet can be accessed through the TV; personalized TV where the
TV is adapted according to the viewer’s profile; Personal Video Recorder (PVR) where the TV
content is recorded from a genre, title or schedule; Walled Garden, a portal from which the
user can browse for some desired iDTV application; Games, where the viewers use the TV to
play a game or to connect with other players located connected in network; Electronic Program
Guide (EPG), similar to the Walled Garden, but it has more details about the channels; and
Teletext which shows information (economics, wheater, last news and so on) provided by the
broadcasters in a text format.
Another issue that enables the use of interactivity for viewers is the usage of the return
channel. The return channel is used to send a request from a viewer through an iDTV
application (such as ordering pizza or answering a question from a quiz) to the broadcaster
over the Internet or a phone line, for example. Thus, the viewers can interact with the
broacasters returning a feedbak about their content programs.

2.1.2 Components of an interactive digital TV system

An iDTV System is generaly composed by the following components: the broadcaster, the
receiver, the broadcast network, and the communication link (see Figure 2). These components
or subsystems deal with the digital information as services, audio/video/data elementary
packets that compose a program channel. The services are phisically organized as a Transport
Stream (TS) in which some operations are performed, such as coding and multiplexing defined
by ISO-IEC 13818-x (ISO, 2000).
The broadcaster is represented by a TV channel or another entity able to perform the editing,
formatting and distribution of content throught the broadcast network. This process involves
steps of audio/video encoding (ISO-IEC 13818-1,2), data/application insertion (Digital
Storage Media Command Control standard, ISO-IEC 13818-6) (ISO, 2002) and multiplexing
(ISO-IEC 13818-2). In this stage, the data that will be broadcasted is in TS format (defined
by MPEG-2 Systems). The last stage is the modulation to the broadcast network which will
depend on the iDTV standard assumed. The broadcast could be done by three ways: cable,
terrestrial or satellite.
When the digital signal is received, the STB performs the reverse process on the TS. The signal
received is demodulated, demultiplexed and delivered to the audio/video/data decodificator
which processes and displays the content in a TV screen. An important feature of the STB is
the support for executing interactive applications which may or may not be related to the
audio/video content and allow sending information back to the broadcasters. This feature is
enabled in a iDTV System by the return channel.

227Using the iDTV as the Center of an Ubiquitous Environment

www.intechopen.com

Fig. 2. General iDTV Components

2.1.3 Digital TV systems and middlewares

The main entities involved on iDTV business joined efforts to create specifications or reference
models for iDTV in order to guarantee the interoperability among hardware manufactures,
businesses and iDTV applications developers. Each specification has some particular
caracteristic related to the regions they were developed. The main specification systems for
iDTV are the American Advanced Television Systems Committee (ATSC)(ATSC, 2009), the
European Digital Video Broadcast (DVB)(DVB, 2010), the Japanese Integrated Services Digital
Broadcasting (ISDB)(ISDB, 2011), and more recently the Brazilian International Standard for
Digital TV (ISDTV)(ISDTV, 2011).
In a generic architecture for the receiver, the main interface between the iDTV applications and
the devices themselves is a component named middleware which consists of a set of Application
Programming Interfaces (APIs) that provides a platform-independent execution environemt for
iDTV applications. Thus, the middleware ensures portability between STBs and provides
less effort for developing iDTV applications because the developers do not need to worry
about how to access the low level receiver functionalities. The main existing standards for
middlewares in the world are the European Multimedia Home Platform (MHP) (MHP, 2010);
the American Advanced Common Application Platform (ACAP) (ACAP, 2009); the Japanese
Association of Radio Industries and Businesses (ARIB) (ARIB, 2009); and the Brazilian Ginga
(ITU-T, 2009).
The execution environment used in MHP is based on the Java Virtual Machine. A DVB
application developed in this environment is called DVB–J. Moreover, the MHP 1.1 allows
the usage of a declarative language similar to HTML called DVB–HTML. These types of
applications have the capabilities of downloading and storing iDTV applications (in storage
devices like USB Flash Drive or Hard Disc), access smart cards readers, and control iDTV
applications over the Internet.
Similar to MHP, ACAP enables the usage of declarative languages as XHTML-based or
ECMAScript. However, applications developed to this middleware are not complatible
to MHP. To overcome this problem, a stable subset of API was extracted from MHP and
defined as a standard common API, assuming interoperability among applications built in

228 Ubiquitous Computing

www.intechopen.com

any middleware. This interoperable platform is called Globally Executable MHP (GEM). All the
middleware specifications are supposed to have a GEM-compliance subset.
ARIB is composed by ARIB STD-B24 standard (Data Coding and Transmission Specification
for Digital Broadcasting) which allows the development of declarative iDTV applications
through the Broadcast Markup Language (BML).
Ginga is the middleware of the International Standard for Digital Television (ISDTV), the
Brazilian Digital TV System. The specification is compliant with ITU J.200, J.201 and J.202
recommendations by providing an environment that supports declarative and procedural
content, using an execution machine for Java-based applications (xlets) and a presentation
machine for the treatment of declarative content based mainly on NCL (Nested Context
Language) (Soares et al., 2007). In the Ginga software stack, a core structure (Ginga Common
Core) is responsible for providing services that integrate the two environments. This part of
the stack contains common content decoders that serve both the Ginga-NCL and the Ginga-J
as well as implements a bridge mechanism to enable interaction between Java applications
and NCL documents.
The first specifications released for Ginga-J defined the middleware as a set of 3 API’s
(named Green, Yellow and Blue), each one of them grouped some common functionalities
for iDTV APIs (media management, life cicle control through JavaTV, return channel, and
so on). This specification had a special feature of a device support API integrated to the
middleware, which allowed sharing content among the iDTV and other devices. Currently,
the Ginga-J specification has changed, and some of these APIs were replaced by the JavaDTV
standard (ABNT NBR 15606-4, 2010), especially those related to GEM compliance. In spite of
these modifications in Ginga-J, the basic functionalities of a Java-based iDTV programming
environment were maintained, such as the xlet lifecycle model, media management, and the
inter-xlet communication mechanism.
The Ginga-NCL provides a presentation engine for multimedia content based on scripts. The
logical subsystem of Ginga-NCL handles documents in the pattern of the NCL language.
NCL was designed for presentation and synchronization of multimedia content, based on
NCM (Nested Context Model). Other types of content supported by Ginga-NCL are the
ECMA Script, CSS and XHTML. Ginga-NCL also offers support for treatment of procedural
content, through the implementation of the Lua API (Soares et al., 2007), allowing developers
to construct audiovisual programs and to insert some sort of dynamic programming. The
support for content (such as scripts, Lua, JPEG, PNG, and MPEG) is guaranteed by the
Adapter, a component located on Ginga Common Core. Ginga-NCL also provides a device
support mechanism, mainly related to sharing multimedia content among iDTV and mobile
devices (Soares et al., 2009).
A summary of the procedural/declarative technologies available for the middleware
specifications presented before is depicted in Table 1.

2.2 Home networks

The emergence and growth of the communication technologies enabled the interconnection of
multiple devices located in a residence creating a smart home environment (Dixit & Prasad,
2008). This kind of home environment is characterized by allowing users to control, access
and share information through these devices. Some applications can be cited, as for example,
scheduling an air conditioner to turn on automatically when the environment temperature is
above 25 celsius degrees.

229Using the iDTV as the Center of an Ubiquitous Environment

www.intechopen.com

Middleware iDTV Declarative Procedural

System Environment Environment

ACAP-X ACAP-J

ACAP ATSC [ATSC A-101 2005] [ATSC A-101 2005]

(American) Languages: XHTML like and Language: Java

ECMAScript

DVB-HTML MHP

MHP DVB [ETSI TS 102 812 v 1.2.2 2006] [ETSI TS 102 812 v 1.2.2 2006]

(European) Languages: XHTML like and Language: Java

ECMAScript

ARIB-BML Optional

ARIB ISDB [ARIB B-24 2004] (GEM [ETSI TS 102 819 v 1.3.1 2005])

(Japonese) Languages: BML(XHTML like) Language: not implemented

and ECMAScript

Ginga-NCL Ginga-J

Ginga ISDTV [ABNT NBR 15606-2 2009] [ABNT NBR 15606-4 2010]

(Brazilian) Languages: NCL and Lua Language: Java

Table 1. Declarative and procedural environments of iDTV middlewares

Furthermore, advanced types of systems may be constructed, in a near future such as those
who have the ability to learn from user’s everyday activities at home and, using artificial
intelligence techniques, create an adaptable environment based on the user profiles. For
example, when someone arrives at home, the environment recognizes his/her profile and
sends a message to the stereo system which selects his/her favorite music track. Another point
that have contributed to the creation of these kind of environment was the popularization of
wireless communication which enabled the interconnection of several devices located in a
home.

2.2.1 Open standards used in a home network

The Universal Plug-and-Play (UPnP) technology provides communication between electronic
devices as well as the sharing of services, without the need of human intervention and
configuration (Miller et al., 2001). The architecture has zero configuration support and
the services discovery is automatic. A Device Control Protocol (DCP) was created for
interconnection of electronic devices. Another important feature is that each manufacturer
can create its own API and describe their services by an Extensible Markup Language (XML)
file.
Jini, for example, is a middleware that offers APIs for the development of services, as well as
network protocols allowing the data sharing among electronic devices with different types
of communication technologies (Gupta et al., 2002). Each device supplies an interface to
access available methods. Thus it ensures standardization and the sharing of services among
them. This interface is represented by a Java object that implements its methods. The Remote
Method Invocation (RMI) is used to access its methods through invoke and lookup commands.
The Home Audio Video Interoperability (HAVi) specification is used for sharing multimedia
content between audio and video devices through FireWire (IEEE 1394) and their managment
is centered on TV. To do so, a set of APIs and a middleware were created to implement
functions, such as detect the devices in a Home Network, install the interfaces, and guarantee
the interoperability between the devices (HAVi, 2001). The HAVi main features are that any

230 Ubiquitous Computing

www.intechopen.com

device can control other device, each device has a Java interface which is available to other
devices, the updates are done via download, and it gives support for legacy systems and
Plug-and-Play (Marshall, 2001).
One of the most known specifications for Home Networking is the Open Services Gateway
initiative (OSGi). The framework supports applications from modular units known as
bundles. In fact it controls the bundles life-cycle (adding, removing and replacing bundles at
run-time) and verifies the dependencies between them (Tavares & Valente, 2008). Each bundle
is represented as a service in the OSGi architecture. The services are registered in the OSGi
Service Registry, which allows the discovery and access of services in an OSGi environment
(Marples & Kriens, 2001).

2.2.2 Communications technologies used in a home network

In a home, there are different types of CE (TV, mobile phone, digital camera, and so on) that
have a communication technology which allows to exchange information among them. This
trend is followed by the growth in the usage of some communication technologies (Bluetooth,
Universal Serial Bus (USB), Firewire etc). Among the most promising communication
technologies commonly used in a Home Network, the two types above deserve a special
attention: Wireless Networks and No New Wires Networks.
Wireless networks, such as IEEE 802.15 (Bluetooth), IEEE 802.15.4 (ZigBee) and IEEE 802.11x
(WiFi), have grown significantly in recent years because of their convenience in easily
connecting with new placed devices, the integration with several types of devices, and
the gradually low cost of these solutions. They provide a transmission rate from 115Kbps
(ZigBee) to 54Mbps (802.11g), measurable Quality of Service (Bluetooth and Zigbee), and a
transmission range from 1m (Bluetooth) to 1.6 km (ZigBee). This kind of network is very
useful in a home environment because of the typical distance between the CE devices, which
is, in general, between 1m and 50m, its ability to communicate with more than one device
at the same time, and, most importantly, because of the lack of cables that facilitates the
replacement of devices.
The No New Wires Networks reuses the existent wired infrastructure of the house, such as
the electrical wiring (HomePlug) and phone line (HomePNA) to establish a communication
mechanism. As a matter of fact, the electrical wiring used is not considered an apropriate
network media for data transmission because of its noise, the presence of interference, and
fading. However, the emergence of new techniques in digital signal processing and code
error control has allowed the increase of data rate transmission through the power lines
and the reduction of noise (Lin et al., 2002). The main features of these networks are data
rate transmission between 10 Mbps (HomePNA) and 14 Mbps (HomePlug), transmission of
multimedia contents and connection of up to 50 devices in the same network. Nevertheless,
there are some technical difficulties in building these networks, such as scalability of the
number of connected devices in the network and security issues in data traffic (Zahariadis
et al., 2002).

3. State of the art

The design of solutions incorporating electronic devices with some communication
technology that promotes the exchange of information among them has been the topic of
research in several recent works. These works diverge on their respective adopted approaches.
Three different aspects of these approaches were analyzed: the way a device communicates

231Using the iDTV as the Center of an Ubiquitous Environment

www.intechopen.com

with others, the specification used to manage electronic devices, and the collaborative ways
between iDTV and Home Gateway.
When talking about the diversity communication mechanisms, we may cite Kanma et al.
(2003), which describes a scenario where a cellular phone communicates with electronic
devices, such as an air conditioner and a washing machine, over Bluetooth. To do so, adapters
with integrated Bluetooth technology through device’s serial ports (RS 232) were developed.
Some services were deployed, including the monitoring and remote controlling, updating
of the adapter software, diagnosing of the failures, and getting technical information on the
electronic devices. The need to create new adapters to each new device that joins to the
network is a significant disadvantage.
The work described in Al Mehairi et al. (2007) used Short Message Service (SMS) to request
different kinds of services from a Home Server that controls/monitors electronic devices
through Bluetooth. To do so, in the SMS, the device and command names (turn on/off lamp,
for example) were informed. In this approach, the Home Server receives the command and
sends the information to the appropriate device. As a disadvantage of this work we may cite
the fact that SMS is a payed service.
Considering the specification used for managing electronic devices, the work in Kim et al.
(2007) used OSGi in a Residential Gateway to create a common ground for electronic devices
from a wide range of communication technologies. In this work the electronic devices are
managed remotely through a Web page available by the Residential Gateway. This proposal
was focused on the use of limited resources, such as low data rate transmission and low energy
consumption.
Another possibility may be illustrated by a scenario where UPnP and Jini specifications
communicate with OSGi by offering a large scope to manage electronic devices (Dobrev
et al., 2002). In this context, two components were created, a Jini Driver and an UPnP Base
Driver. These components offer an access interface to registered services in OSGi environment.
Thus, it is possible to create several applications, such as accessing a printer from Jini or a
digital camera from UPnP. This way, when a device (a PC or cellular phone, for example)
requests some service, such as printing a text or getting photos from a digital camera, the
OSGi communicates with Jini requesting the printing of a text, or with UPnP requesting the
content from a digital camera.
Some works related to the possible colaborative mechanims suggest the use of the TV-Sets as
Residential Gateways mainly due to the emergence of the DTV and its potential for integrating
other electronic devices in the Home Network. One of the first ideas was to create a protocol
layer to control multimedia devices (audio and video) through HAVi specification (Marshall,
2001).
In Tkachenko et al. (2005) a framework named DTV-HNF (Digital TV - Home Network
Framework) is described. This framework enables managing access requests from iDTV
applications to available services from electronic devices on the Home Network. However,
only iDTV applications access electronic devices services and there is a possibility of
communication failure between iDTV and the Residential Gateway because of the technical
nature of the communication used (TCP/IP).
To overcome these difficulties, the approaches in Cabrer et al. (2006), Bae et al. (2006),
Yang et al. (2007), Redondo et al. (2007) and Lin et al. (2008; 2009) describe a collaboration
mechanism between iDTV and Residential Gateway in the same environment, i.e., in the
same device are included features from the iDTV and from the Residential Gateway. Other

232 Ubiquitous Computing

www.intechopen.com

characteristic of these works is the bidirectional communication, i.e. an iDTV appl ication can
access a service from an electronic device and vice-versa.
In Cabrer et al. (2006) and Redondo et al. (2007) a new kind of application named XBundLET
was created, which has features of MHP applications (xlet) and OSGi services (bundle).
XBundLET is in compliance with xlets and bundles specifications: it is managed by an
Application Manager and communicates with other xlets through Inter-Xlet Communication
(IXC). At the same time provides services to other bundles and/or invokes services from other
bundles through OSGi Service Registry.
A convergent architecture between data broadcasting and home networking services is
proposed in Bae et al. (2006), based on the ACAP middleware and the UMB (Universal
Middleware Bridge) protocol stack. This model has two sets of software components; a
Service Proxy under the ACAP architecture and a Service Broker on the UMB stack. These
components establish connections through the Simple Service Discovery Protocol (SSDP)
enabling the discovery and use of network services for ACAP-J applications.
The proposal in Yang et al. (2007) implements a collaborative model that modifies as little as
possible the characteristics of the MHP and OSGi native components. The work defines bridge
structures between the two platforms that allow the passing of context parameters from MHP
xlets to OSGi bundles and vice-versa. These structures exploit the Java Class Loader features,
as well as implement a security mechanism to ensure that unauthorized access will not occur.
Although, this model is simpler than the previous ones, its main disadvantages are that the
developers of both xlets and bundles need to know the new components, besides the need
to export bridge-components as Java Virtual Machine (JVM) static libraries outside the MHP
and OSGi environments.
The approach of Lin et al. (2008) used components under the Wrapper and Broker design
patterns, to isolate iDTV and Home Network software components. MHP xlets and OSGi
bundles communicate with specific proxies for each platform, implemented within a Broker
bridge component. This model has the MHP Application Manager as an OSGi service,
through MHPAPPmanager bundle. Inside this bundle are the Broker component and the
proxies. A significant disadvantage is the need to modify the MHP and OSGi components to
support this new model, which just increases its complexity. The work of Lin et al. (2009) is an
extension of the previous one. It presents a general classification of MHP-OSGi architectures,
designing some of them in order to make a qualitative/quantitative comparison, considering
issues of resources consumption, time for loading components, startup time, etc.

4. Integrating digital TV in an ubiquitous environment

The iDTV usage as a part of the ubiquitous environment is a topic of recent research.
The collaboration strategies presented in Section 3 offer software platforms to build new
application scenarios to the home user. One possible trend, analysed by Maia et al. (2009), is to
extend a software platform for iDTV in order to increase the scope of these new applications.
This way, it is possible to create from monitoring/controlling to more ubiquitous related
scenarios, such as personalizing the home configuration to the user preferences.
To deliver ubiquitous services to the Brazilian iDTV, it is desired to create an integration
mechanism between the Ginga middleware and some Residential Gateway specification
(OSGi, Jini or UPnP) that can live together in only one CE device. In the literature, there
is the work of Viana et al. (2009) which shows an introductory idea of such integration.
Moreover, some features from the DTV middleware can be used, such as spatial-temporal
synchronization between media (video, audio, text) and electronic devices.

233Using the iDTV as the Center of an Ubiquitous Environment

www.intechopen.com

In this section will be described one constructed component-based model for the Brazilian
DTV middleware Ginga and the OSGi framework. The proposed model explores the features
of the two Ginga environments (Ginga-J and Ginga-NCL) offering software components that
interact with applications (xlets) or declarative content (NCL), exporting its features to the
OSGi domain. The components and the two Ginga-OSGi approaches (GingaJ-OSGi and
GingaNCL-OSGi) will be shown in details. Similarly, it should be possible for Ginga-J and
Ginga-NCL applications accessing OSGi services to have interactive control over devices in
Home Networks.
The general architecture of the model is shown in Figure 3. In this figure are Ginga-J,
Ginga-NCL and OSGi components and the software bridge between them. Some features for
the new Ginga-OSGi platform have been identified to meet the needs of integration between
Home Networks and the Brazilian Digital TV. They are:

• Allowing the registry and the discovery of OSGi services in a Home Network – Services
are the basis of the OSGi model. A service is the interface to operations provided by the
networked devices. The service discovery in a Home Network is a key step for integrating
it with iDTV applications.

• Interoperation between OSGi services and Ginga functionalities – The environment must
allow Ginga to access OSGi services. That is a difficult task because it requires an effort to
integrate these different software platforms. Similarly, this model should enable the access
of Ginga functions by OSGi.

• Providing a useful description of the services to the user – Service description is the key
to success in attracting a user. In addition to the information provided by OSGi services,
such as name, version, and provider, other information should be released, such as device
name and methods description.

Fig. 3. General Ginga-OSGi Architecture.

The developed strategy considers mechanisms for collaboration between Ginga and OSGi.
The two Ginga-OSGi approaches (GingaJ-OSGi and GingaNCL-OSGi) will be described in
the next sections.

234 Ubiquitous Computing

www.intechopen.com

4.1 GingaJ-OSGi model

The procedural approach is in line with the desired requirements previously mentioned, and
follows a model supported by components of the basic modules of Ginga-J and OSGi APIs.
Therefore the model can be extended to other middleware like MHP. Indeed, it is based on the
approaches of Cabrer et al. (2006), Yang et al. (2007), Lin et al. (2008) and Redondo et al. (2007),
providing components that act as interfaces between the two frameworks. However, for this
model, it was tried to change as little as possible both environments so that the xlets/services
programmers do not need to know complex mechanisms of the platform.
The software layer of GingaJ-OSGi presents seven components that enable the flow of service
objects between the two areas following one common pattern. The whole interaction process
is focused in the registering of entities for Ginga-J features (IXCRegistry) and OSGi services
(Service Registry). Once some Ginga-J functionality has been registered in the IXCRegistry,
a component notifies the OSGi side through the registration of a corresponding service.
Similarly, every time a bundle registers its service in OSGi, another entity will pass the service
reference for the Ginga-J side. These entities act as listeners in both environments and the
objects are registered through a generic interface following the Proxy and Decorator design
patterns as described in Gamma et al. (1995). They protect the direct access to methods of
the object, providing new methods for accessing the object with security, using features of the
Java Reflection API. The seven developed components are:

• GingaJ-OSGiRegister – This component exports Ginga-J features as services in the OSGi
domain. It implements a listener to registry events in the IXCRegistry (bind, unbind,
rebind). GingaJ-OSGiRegister gets the Ginga-J and OSGi contexts through ContextBridge.
Thus, it registers the Ginga-J functionality as an OSGi service using a WrappedProxyObject.
This is done by accessing a service provided by the GingaJ-OSGiBundle component.

• GingaJ-OSGiBundle – This component provides a service in the Service Registry through
which it is possible the registering of WrappedProxyObject objects relating to interfaces of
the Ginga-J. This is necessary because since the GingaJ-OSGiRegister component is not a
bundle, it is not authorized to directly register OSGi services.

• OSGi-GingaJRegister – Supports the reverse process, it implements a listener to registry
events in the OSGi Service Registry and accesses the ContextBridge to export the OSGi
service as a WrappedProxyObject related to the functionality to be registered on the Ginga-J
IXCRegistry.

• XletContextExporter – This is an xlet that exports a singleton XletContext object (in
textitjavax.tv.xlet package) to the ContextBridge.

• BundleContextExporter – It is a bundle that exports a singleton BundleContext object (in
textitorg.osgi.framework package) to the ContextBridge.

• ContextBridge – This is a bridge component that allows accessing xlet/bundle
contexts. This component receives context objects from XletContextExporter and
BundleContextExporter, making these context objects available in the environment.

• WrappedProxyObject – That is a generic object that implements an interface
(WrappedProxyInterface) which has methods for protecting the services that are being
registered (into Service Registry or IXCRegistry).

These components, which are the basis of GingaJ-OSGi platform, operate with the aim
of ensuring two interaction mechanisms between the platforms: OSGi services should
be accessed by Ginga-J applications, and OSGi applications should access functionalities
exported by Ginga-J. The two mechanisms are described in the following subsections.

235Using the iDTV as the Center of an Ubiquitous Environment

www.intechopen.com

4.1.1 Accessing OSGi services through Ginga-J applications

As ilustrated in Figure 4, this mechanism is supported by four components:
XletContextExporter, BundleContextExporter, ContextBridge and OSGi-GingaJRegister.
Once the system is launched, the Application Manager defines a mechanism based on Java
class loaders for activating XletContextExporter and BundleContextExporter. When these two
objects are initialized, their contexts are passed to the Singleton object ContextBridge which
remains active until the shutdown of the framework. At this point, the OSGi-GingaJRegister
is waiting for notification of any OSGi service registration, through a ServiceListener
object (in org.osgi.framework package). When a bundle registers its service in the OSGi
(step 1), a reference is retrieved by the OSGi-GingaJRegister (step 2). The reference object
(ServiceReference) provides methods for accessing some properties of the service through
a query language expressed in Lightweight Directory Access Protocol (LDAP) (Howes,
1997). The OSGi-GingaJRegister has a key method that passes the service object to a
WrappedProxyObject instance (step 3), which in turn is passed to IXCRegistry (step 4).
This way, all access to the service object from Ginga-J applications is protected by the
WrappedProxyObject, as outlined before. Thus the xlet, after retrieving the service object from
IXCRegistry (step 5), needs only to know the name, the parameters and the types of the
desired method in the service.

Fig. 4. Exporting OSGi services to Ginga-J domain

4.1.2 Accessing Ginga-J functionalities through OSGi bundles

To register xlet functionalities on the OSGi Service Registry, there are five components:
XletContextExporter, BundleContextExporter and ContextBridge, GingaJ-OSGiRegister, and
GingaJ-OSGiBundle(see Figure 5).
Once XletContextExporter, BundleContextExporter and ContextBridge are initialized, the xlet
must register an interface in IXCRegistry (step 1). At this point a Singleton object,
GingaJ-OSGiRegister is listening to events on the IXCRegistry (BIND, REBIND and UNBIND,
which means that an interface has been registered, updated or removed, respectively) (step 2).
From this point the process is similar to the previous one: the GingaJ-OSGiRegister activates
a WrappedProxyObject to protect the methods of the object registered in IXCRegistry (step 3).
After that, the GingaJOSGiRegister accesses a service from GingaJ-OSGiBundle to register the
WrappedProxyObject as an OSGi service (step 4). A client bundle for this service needs to know

236 Ubiquitous Computing

www.intechopen.com

how to get a ServiceReference for the WrappedProxyObject (step 5). A bundle that needs to
access a method of the interface registered in IXCRegistry must pass the name, types and
parameters to WrappedProxyObject which will automatically invoke the method. In this way,
the bundle is enabled for using a Ginga-J functionality without directly interacting with the
middleware.

Fig. 5. Exporting Ginga-J funcionalities as OSGi services

4.2 GingaNCL-OSGi Model

The software layer created on the GingaNCL-OSGi platform has components that enable
the passing of objects related to services between the OSGi and Ginga-NCL environments.
Two Ginga-NCL Adapters are working as bridge components. An Adapter is a Java-based
component that acts as a container for presenting the media in the interactive audiovisual
NCL document. For each Adapter a specific region on the iDTV screen can be declared, having
its properties defined by the Descriptor, that is associated with a Player component for playing
the media. The six types of components presented in the GingaNCL-OSGi software layer are:

• DeviceBundle – This component represents a device located on the Home Network. The
information contained in its Manifest file is used to describe it, such as the vendor, the
interface name, and the service description. Moreover, a Property file is created to offer a
useful description of its services, such as device name, and a description of the available
methods.

• ListenerServerBundle – That is a component that listens to the registration of DeviceBundle
services in the Service Registry and stores the information contained in the Manifest and
Property files in the XML format.

• Communication Bridge – It is composed of two Java static classes (BundleContextBridge and
GingaNCLContextBridge). These Java classes store a bundle context and a Ginga-NCL
object, respectively, and enable the communication between Ginga-NCL applications and
OSGi bundles.

• ExporterBundle – For a Ginga-NCL application to access some DeviceBundle services, it is
necessary to get its reference on the Service Registry. To do so, this component exports its
bundle context to BundleContextBridge. In this way, the Ginga-NCL application can use the
OSGiAdapter for accessing the OSGi services.

237Using the iDTV as the Center of an Ubiquitous Environment

www.intechopen.com

• GingaNCLBundle – This bundle component registers a Ginga-NCL application as a service
after getting the Ginga-NCL object stored in the GingaNCLContextBridge. After that, any
DeviceBundle can access the Ginga-NCL services by retrieving its references on the Service
Registry.

• Extended Adapters and Players – Two new Adapters were created, the OSGiAdapter and
the GingaNCLAdapter. The first one is responsible for getting a bundle context stored
in the BundleContextBridge and accessing the registered services by requesting to the
ListenerServerBundle. After that, the OSGiAdapter accesses a DeviceBundle and uses its
services. The last one exports a Ginga-NCL object to the GingaNCLContextBridge enabling
the GingaNCLBundle to register it as a service on the Service Registry. Thus, a DeviceBundle
can access this service to communicate with a Ginga-NCL application.

By using these components, the Ginga-NCL and OSGi characteristics were not modified, i.e.
Ginga-NCL applications are accessed by OSGi bundles through a service that represents it in
the OSGi environment and OSGi services are accessed by Ginga-NCL applications through
their discovery in the Service Registry. The following subsections describe the proposed
communication mechanism between Ginga-NCL applications and OSGi.

4.2.1 Accessing OSGi services by Ginga-NCL applications

In Figure 6 is shown how Ginga-NCL applications access OSGi services. The
following components are presented: ListenerServerBundle, DeviceBundle, ExporterBundle,
BundleContextBridge, and OSGiAdapter.

Fig. 6. Mechanism of exporting OSGi services to the Ginga-NCL domain.

When the system is launched, ListenerServerBundle registers its services in Service Registry
(step 1). One of its functions is to provide a list of available services in the Service Registry
in an XML format. To do this, it awaits the registration of new services on the Service
Registry through a Listener. When a DeviceBundle registers its service, ListenerServerBundle
gets some information contained on its Manifest and Properties files (step 2). Thus, this more
detailed information helps the choosing of services by the users. To ensure that the services
described in XML format by ListenerServerBundle are viewed by Ginga-NCL applications,
another bundle named ExporterBundle is used, which exports its context to a bridge-structure
named BundleContextBridge (step 3). With this, the OSGiAdapter gets a bundle context stored

238 Ubiquitous Computing

www.intechopen.com

on the BundleContextBridge (step 4). After that, OSGiAdapter uses this context to get the desired
service from ListenerServerBundle by searching In the Service Registry (step 5) and displaying
on the TV screen the available services (step 6). Finally, the OSGiAdapter informs to the
ListenerServerBundle to invoke the service chosen by the viewer (step 7).

4.2.2 Accessing Ginga-NCL applications by OSGi bundles

Figure 7 shows how the OSGi bundles access Ginga-NCL applications. The following
components are involved: GingaNCLAdapter, GingaNCLBundle, DeviceBundle and
GingaNCLContextBridge.

Fig. 7. Mechanism of exporting OSGi services to the Ginga-NCL domain.

When a GingaNCLAdapter Player executes a media object, GingaNCLAdapter exports a
GingaNCL object to GingaNCLContextBridge (step 1). In this bridge-structure another Java
static class named GingaNCLContextBridge is created, which stores the GingaNCL object. After
that, GingaNCLBundle gets this object (step 2) and registers it in the Service Registry as a
service (step 3). Finally, when a DeviceBundle needs to use this service, it is invoked after being
searched in the Service Registry (step 4). In this way, the DeviceBundle sends an information to
a specific region described on the NCL document through a correspondent GingaNCL object
(step 5).

5. Implementation and experiments

The prototype was implemented in a PC platform with Intel Pentium 1.3GHz, 512MB RAM,
80GB HD, with WiFi, Serial RS-232 and USB interfaces. The operating systems was Windows
XP SP2, with the Java 2 Platform Standard Edition 1.4.2_17 and 1.6.0_07. The PC simulates a
single STB-HG (Set-Top Box Home Gateway) platform. The procedural part of the model used
components of the XleTView 0.3.6 platform (XleTView, 2011), in which two main features
were created: support for Inter-Xlet Communication through Java CDC Personal Profile RI
(Personal Profile, 2006), and a model for IXC event listeners. The Ginga-NCL Emulator 1.1.1
(Ginga-NCL, 2011), a Java-based environment for creating interactive audiovisual documents
based on NCL scripts, was chosen as a declarative middleware. The Knopflerfish 1.3.4 OSGi
framework (Knopflerfish, 2011) was adopted for managing OSGi services. In order to test

239Using the iDTV as the Center of an Ubiquitous Environment

www.intechopen.com

the proposed platform, some case studies were built under the new Ginga-OSGi platform for
procedural and declarative environments.

5.1 Building the procedural environment

Once registered in the OSGi, the services must be exported to the Ginga-J as xlet remote
objects, (using the platform components in the br.ufam.tvdihn.* package). In the Ginga-J
environment, the Application Manager uses system API’s (havi, javatv, cdc personal profile,
nanoxml) to control the xlet execution (using xjavax.microedition.xlet.* components), which
can register java.rmi.Remote objects in the IXCRegistry (using com.sun.xlet.ixc.IXCRegistry
package). A listening mechanism ensures the exporting of ICXRegistry objects to the OSGi.
It is important to say that the API’s for graphical interface such as HAVi and DAVIC (Digital
Audio Video Council) are not present in the Ginga-J middleware but they were used on this
project because of the MHP nature of the Java iDTV emulated environment (XleTView). In
spite of that, as they are graphical components, they do not interfere in the GingaJ-OSGi
components.
Inside the br.ufam.tvdihn.* package there is the bridge entity ContextBridge. This is a Singleton
object, which means there is only one instance of ContextBridge in the entire system. Once the
system is started, ContextBridge, XletContextExporter and BundleContextExporter are activated.
XletContextExporter is an xlet which exists in the Ginga-J only while performing its function
of exporting an xlet context and BundleContextExporter is a bundle installed in the OSGi.
The ContextBridge initialization is done in the startXlet of XletContextExporter and start of
BundleContextExporter.
The central components of the model, WrappedProxyObject and WrappedInterface are in the
br.edu.ufam.tvdihn.wrapped package. The former stores information about a service object
(an object to be exported between the domains), and the later is an interface that contais
the operations that can be done on the service object. WrappedProxyObject protects direct
access to the service objects it represents (an OSGi service or a Ginga-J remote object).
Thus, WrappedProxyObject is an implementation of the Wrapped and Proxy design patterns,
described in Gamma et al. (1995).
The WrappedProxyObject uses three additional components to store service object information:
java.lang.Object object (related to the service object), java.reflect.Method method (an object that
represents a method to be invoked in the service object) and java.lang.object.Object methodObject
(the result of the invocation of method). These components work together in order to guarantee
the protection of the service object.
The last group of common components is in the br.ufam.tvdihn.listeners package, which
presents classes for creating a listening mechanism for events in the IXC. This is an important
mechanism because it allows registering Ginga-J remote objects from the IXCRegistry to the
OSGi Service Registry. The main classes of this group are: IXCEvent, which represents three
types of events: BIND (when an xlet registers a remote object), UNBIND (when an xlet
unregisters a remote object) and REBIND (when the remote object is updated); IXCListener,
which in fact is a listener to IXC events; and IXCListeners, responsible for storing all existing
IXCListener objects.
In the proccess of exporting OSGi services to the Ginga-J domain, there is the
OSGiGingaJ-Register component which is represented by the entity OSGiGingaJRegister in the
br.edu.ufam.tvdihn package.
To implement its function, the OSGiGingaJRegister has a listening mechanism for service
events on Service Registry, using the org.osgi.framework.ServiceListener component. Once is

240 Ubiquitous Computing

www.intechopen.com

detected a service registration, the related object is passed to Ginga-J through ContextBridge
and WrappedProxyObject, following the WrappedProxyObject mechanism, described earlier.
The OSGiGingaJRegister has three main functions: catch OSGi service objects, register these
objects in the Ginga-J IXC and remove the objects from the IXC. The first function is carried
out using a standard OSGi element, the ServiceEvent, which represent three types of service
events in the Service Registry: ServiceEvent.REGISTERED (a service has been registered),
ServiceEvent.UNREGISTERING (a service has been removed) and ServiceEvent.MODIFIED
(the service properties were changed).
When the service object is retrieved, the OSGiGingaJRegister checks the following service
properties through a LDAP query: SERVICE_ALIAS = "HOME_NETWORK_ALIAS" and
SERVICE_TYPE = "HOME_NETWORK_SERVICE". If it do not match, the service is invalid
and it will not be exported to the IXC Registry; otherwise, the OSGiGingaJRegister will
execute the second function: to register the object in the IXC. To do so, the service object is
initialized (using a bundle context from ContextBridge), passed to WrappedProxyObject, and
then the IXCRegistry is invocated (using an xlet context from ContextBridge) through the
IXCRegistry.bind operation. An alias for identifying the object is retrieved from the OSGi
service, using the SERVICE_IXC_ALIAS property. This process is illustrated in Figure 8.

Fig. 8. OSGiGingaJRegister: code for registering an OSGi service as a Ginga-J remote object.

The last function of OSGiGingaJRegister is the reverse proccess: removing the IXC remote
object from IXC Registry, when a service is uninstalled from the Service Registry. This is done
by verifying the ServiceEvent.UNREGISTERING event, using the service properties to search
for the corresponding object in IXC and then performing an IXCRegistry.unbind operation.
Regarding the process of registering remote objects from the IXCRegistry (in the
WrappedProxyObject format) to the OSGi Service Registry, there are two components;
GingaJ-OSGiRegister and GingaJ-OSGiBundle, both configured in a single bundle,
BundleGingaJOSGiRegister, in the br.edu.ufam.tvdihn package.
The component GingaJOSGiRegisterActivator activates the BundleGingaJOSGiRegister. It
implements a listener for events on the IXC Registry (through the IXCListener object in
br.ufam.tvdihn.listeners). The main functions of GingaJOSGiRegisterActivator are: capturing
the IXC remote object, registering and removing this object from the Service Registry. The
registering/unregistering of service objects is preformed by the GingaJOSGiRegisterActivator
in a different way of the OSGiGingaJRegister: in the OSGi domain there is only one service,
GingaJOSGiService, which maintains an object repository, related to all IXC remote objects from

241Using the iDTV as the Center of an Ubiquitous Environment

www.intechopen.com

Ginga-J. The GingaJOSGiService can be accessed by bundles that need to use some functions of
an IXC remote object. For each IXC remote object there is a corresponding WrappedProxyObject
stored in the GingaJOSGiService repository.

5.2 Building the declarative environment

Similar to the procedural environment, the instances of Ginga-NCL and OSGi reference
implementations were configured in a single JVM. The Ginga-NCL emulator source code was
modified to define a specific ClassLoader for loading Ginga-NCL and Knopflerfish classes. In
this way, the Ginga NCL Adapters can use OSGi code to access OSGi services. The same way,
OSGi bundles can use functionalities of Ginga-NCL Adapters.
The two Ginga-OSGi adapters are Java classes built on Ginga-NCL middleware. As
mentioned before, an Adapter is associated with media type and a Player object for this media.
For each Adapter defined at br.ginga.core.adapters.bridge package, a corresponding Player which
extends a DefaultPlayerImplementation object that represents IPlayer interface was created. The
new Adapter must also extend a standard abstract class (DefaultFormatterPlayerAdapter) that
has methods for managing the media presentation. The relationship between Adapter and
Player objects is managed by PlayerAdapterManager object that works with two property-based
standard files in the emulator: controldefs.ini and mimedefs.ini, both in gingaNclConfigs.players
package. In the first file an alias for each Adapter class and its full name is defined. The second
file defines the type of media for the Adapter, which can be played in Ginga-NCL Emulator.
To show the media in the emulator, the node of the region and the corresponding media are
configured in NCL file.
Figure 9 shows the description of the GingaNCLAdapter and the OSGiAdapter in the files
mentioned above. In order to run an application the developer needs to create one region
for each Adapter and define their presentation moment in the NCL file.

Fig. 9. Defining new Adapters in Ginga configuration files

242 Ubiquitous Computing

www.intechopen.com

5.3 Experiments

In order to clarify how the system works, two categories of examples are going to be
explainded. The first contains one experiment based on procedural model (GingaJ-OSGi) and
the second contains other experiment based on declarative model (GingaNCL-OSGi).
The first experiment allows bundles to use xlets functionalities, as described in Section 4.
In this scenario we used an embedded microcontroller device (with WiFi interface) and a
Webcam. When a user interacts with the device’s keypad, it sends a request to a bundle server
through the WiFi connection. The server bundle uses a Webcam service and takes a snapshot
of the user attending to the request. The snapshot is passed to an iDTV area controlled by the
xlet that exported its functionalities for the OSGi side as a service. At this moment, the iDTV
user can use the remote control to send a reply message to the device. This situation simulates
a home access control managed by the Digital TV. Figure 10 illustrates the final interface of the
procedural application for the access control scenario.

Fig. 10. The Procedural Access Control Scenario

In the declarative experiment, a BluetoothServerBundle application was developed which
provides a Bluetooth service in the OSGi network. It provides a Bluetooth connection server
for mobile phones by means of Java Bluetooth API. It registers an interface in OSGi Service
Registry that provides methods to send a simple text message from a mobile phone to an
iDTV with Bluetooth interface. When a region on the TV screen is created to allow the
GingaNCLAdapter to receive messages, the GingaNCLAdapter exports a GingaNCL object to the
GingaNCLContextBridge. After that, the GingaNCLBundle gets a GingaNCL object and registers
it as a service in the Service Registry. From now on, when a cellular phone sends a message to
the iDTV screen, the BluetoothServerBundle will get the Ginga-NCL service and communicate
with the GingaNCLAdapter sending the message information. After that, the message is shown
on the TV screen. This scenario is illustrated in Figure 11.
For the last one the TempSensorBundle was created. It manages an interface with a temperature
device (MSP430-based platform) through a RS-232 interface by means of a Java-based API,
through which the master device can monitor some others installed in a WiFi sensors
network. In this bundle, there are the Manifest and Property files that have some information
about its services, such as description of methods, device name, version and so on. The
TempSensorBundle is started and registers its services on the Service Registry.

243Using the iDTV as the Center of an Ubiquitous Environment

www.intechopen.com

Fig. 11. The Declarative Mobile Scenario

After its registration, the ListenerServerBundle gets the information contained in Manifest and
Property files of this bundle and saves into an XML format. After that, the ExporterBundle is
activated. It exports its bundle context into the BundleContextBridge. In the user TV screen,
the possible devices located in the house are shown. One of them is the Temperature Sensor.
When the user selects this device, the OSGiAdapter is started and gets the bundle context
located in BundleContextBridge to access the ListenerServerBundle. After that, the OSGiAdapter
requests the service to ListenerServerBundle by searching the service on an XML document.
After the desired service is found, ListenerServerBundle sends the method name to get the
temperature sensor from TempSensorBundle. After a few seconds, is shown on the user TV
screen the description and the methods available by TempSensorBundle. Finally, the user selects
the desired service (Get Temp. Sensor Value, for example) and a few seconds later it is shown
on the TV screen (see Figure 12).

Fig. 12. The Declarative Temperature Monitoring Scenario

244 Ubiquitous Computing

www.intechopen.com

6. Conclusion and future scenarios

The expansion of the iDTV features and its recent use as a Home Gateway, makes the iDTV
a key element for providing several kinds of services in the home networked environment
buildind useful ubiquitous systems. Thus, this chapter aims to contribute to consolidate
an iDTV-HN collaboration model, allowing the emergence of useful Home Automation
applications and improving the user’s experience and quality of life. The existing iDTV-HN
convergence models were analyzed and a model that explores new features of the Brazilian
iDTV middleware was proposed. This model can be easily exported to other iDTV standards.
The main features obtained from this research are summarized in the key points described in
the following:

• The fact of using two software platforms in a single environment allows the direct
communication between the iDTV Ginga middleware and OSGi framework components.
This is a useful advantage over some related proposals that use TCP/IP network.

• The xlet/bundle programmer does not need to know the new components: he/she can
work with standard Ginga/OSGi components. In the case of the NCL programmer, he/she
only needs to know the name of Adapters created for each service.

• The bridge-mechanism does not modify the Ginga/OSGi core components.

• In both models there is a difficulty in exporting iDTV functionalities (both for Ginga-J xlets
and Ginga-NCL Adapters). It was necessary to use additional bundles to make this work
(GingaJ-OSGiBundle, for example).

• In the case of the Ginga-NCL based model, the fact of managing the presentation of OSGi
services just configuring some properties in a XML-based file, without any procedural
code, is a useful advantage.

• In the case of Ginga-J-based model the components are less complex than the XBundLET
of Cabrer et al. (2006); Redondo et al. (2007) and it is not necessary to allocate bridge
components outside the GingaJ-OSGi environment, as Yang et al. (2007). In addition the
Ginga-J Application Manager remains in its domain: it is not exported to OSGi, as in Lin
et al. (2008).

In addition to the model based on the procedural specification (using Ginga-J middleware),
the novelty of the work is in using declarative middleware features (through Ginga-NCL) to
provide integration between script-based content and OSGi services. It considerably extends
the scope of home automation applications that can be constructed using this new model.
In the future the platform will be extended to support more kinds of ubiquitous scenarios,
inserting components that have some intelligence to provide a dynamic adaptation of the
application to the user’s context. This model will allow to build user centered scenarios, such
as those related to context aware systems and ambient intelligence.

7. Acknowledgements

The authors would like to thank the following funding institutions: CAPES (Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior) and CNPq (Conselho Nacional de
Desenvolvimento Científico e Tecnológico) which provided support for the implementation
of the work described in this chapter.

245Using the iDTV as the Center of an Ubiquitous Environment

www.intechopen.com

8. References

ABNT NBR 15606-4 (2010). Digital terrestrial television – Data coding and transmission
specification for digital broadcasting Part 4: Ginga-J – The environment for the
execution of procedural applications, Document ABNT NBR 15606-4, 2010.

ACAP (2009). ATSC Standard: Advanced Common Application Platform (ACAP), Document
A/101A, 12 February 2009.

Al Mehairi, S., Barada, H. & Al Qutayri, M. (2007). Integration of Technologies for Smart
Home Application, Computer Systems and Applications, 2007. AICCSA ’07. IEEE/ACS
International Conference on, pp. 241 –246.

ANATEL (2010). Brazilian National Agency of Telecommunications. Mobile users exceed 185
million subscribers in June 2010. Report on Personal Mobile Services, Available at
http://www.anatel.gov.br/Portal/exibirPortalNoticias.do?acao
= carregaNoticia&codigo=20824. Accessed on January 10, 2011.

ARIB B-24 (2009). ARIB Standard B-24 Data Coding and Transmission Specification for Digital
Broadcasting, version 5.2-E1, 2009.

ATSC (2009). Digital Television Standard: Part 1 - Digital Television System, Document A/53
Part 1:2009, 2009.

Bae, Y.-S., Oh, B.-J., Moon, K.-D. & Kim, S.-W. (2006). Architecture for Interoperability
of Services between an ACAP Receiver and Home Networked Devices, Consumer
Electronics, IEEE Transactions on 52(1): 123–128.

Cabrer, M., Diaz Redondo, R., Vilas, A. & Pazos Arias, J. (2006). Controlling the smart
home from TV, Consumer Electronics, 2006. ICCE ’06. 2006 Digest of Technical Papers.
International Conference on, pp. 255–256.

Dixit, S. & Prasad, R. (2008). Technologies For Home Networking, Wiley-Interscience, New Jersey.
Dobrev, P., Famolari, D., Kurzke, C. & Miller, B. (2002). Device and service discovery in home

networks with OSGi, Communications Magazine, IEEE 40(8): 86–92.
DVB (2010). Multimedia Home Platform (MHP) Specification 1.2.2, ETSI Doc. No. TS 102 727

V1.1.1, 2010.
ELETROBRAS (2011). PROCEL. Brazilian Center for Information on Energy Efficiency.

Research on Appliances Own and Energy Consuption Habbits. Summary from
2005-2007, Available at http://www.eletrobras.com/pci/main.asp?View=05070313-120A-
45FD-964D-5641D6083F80. Accessed on January 10, 2011.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1995). Design patterns: elements of reusable
object-oriented software, Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA.

ITU-T (2009). Consented Recommendation H.761. Nested Context Language (NCL) and
Ginga-NCL for IPTV Services, 2009.

Ginga-NCL (2011). Ginga-NCL tools. Ginga-NCL Emulator, in Ginga-NCL (ed.), Available at
http://www.gingancl.org.br/ferramentas.html. Accessed on January 10, 2011.

Gupta, R., Talwar, S. & Agrawal, D. (2002). Jini home networking: a step toward pervasive
computing, Computer 35(8): 34 – 40.

HAVi (2001). The HAVi Specification: Specification of the Home Audio/Video Interoperability
(HAVi) Architecture, version 1.1, 2001.

Howes, T. (1997). The String Representation of LDAP Search Filters, Document RFC 2254,
December 1997.

ISDB (2011). Integrated Services Digital Broadcasting, Available at http://www.dibeg.org.
Accessed on January 10, 2011.

246 Ubiquitous Computing

www.intechopen.com

ISDTV (2011). International Standard for Digital Television. Brazilian Digital TV System
Forum (SBTVD), Available at http://www.forumsbtvd.org.br. Accessed on January 10, 2011.

ISO (2000). ISO/IEC 13818-1:2000. Information Technology - Generic Coding of Moving
Pictures and Associated Audio Information.

ISO (2002). ISO/IEC 13818-6:1998/Cor2:2002. Information Technology - Generic Coding of
Moving Pictures and Associated Audio Information: Part VI: Extensions for DSMCC.

Kanma, H., Wakabayashi, N., Kanazawa, R. & Ito, H. (2003). Home appliance control system
over Bluetooth with a cellular phone, Consumer Electronics, IEEE Transactions on
49(4): 1049 – 1053.

Kim, K.-S., Park, C., Seo, K.-S., Chung, I.-Y. & Lee, J. (2007). ZigBee and The UPnP
Expansion for Home Network Electrical Appliance Control on the Internet, Advanced
Communication Technology, The 9th International Conference on, Vol. 3, pp. 1857 –1860.

Knopflerfish (2011). Open Source OSGi Service Platform, in Knopflerfish (ed.), Available at
http://www.knopflerfish.org. Accessed on January 10, 2011.

Lin, C.-L., Wang, P.-C. & Hou, T.-W. (2008). A wrapper and broker model for collaboration
between a set-top box and home service gateway, Consumer Electronics, IEEE
Transactions on 54(3): 1123–1129.

Lin, C.-L., Wang, P.-C. & Hou, T.-W. (2009). Classification and Evaluation of Middleware
Collaboration Architectures for Converging MHP and OSGi in a Smart Home,
Information Science and Engineering, Journal on 25(1): 1337–1356.

Lin, Y.-J., Latchman, H., Lee, M. & Katar, S. (2002). A power line communication network
infrastructure for the smart home, Wireless Communications, IEEE 9(6): 104 – 111.

Maia, O., Viana, N. & de Lucena, V. (2009). Using the iDTV for Managing Services in the
Ubiquitous Computing Environment, Ubiquitous, Autonomic and Trusted Computing,
2009. UIC-ATC ’09. Symposia and Workshops on, pp. 143 –148.

Marples, D. & Kriens, P. (2001). The Open Services Gateway Initiative: an introductory
overview, Communications Magazine, IEEE 39(12): 110 –114.

Marshall, P. (2001). Home networking: a TV perspective, Electronics Communication
Engineering Journal 13(5): 209 –212.

MHP (2010). Digital Video Broadcasting (DVB); Multimedia Home Platform (MHP)
Specification 1.2.2, ETSI Doc. No. TS 102 727 V1.1.1, 2010.

Miller, B., Nixon, T., Tai, C. & Wood, M. (2001). Home networking with Universal Plug and
Play, Communications Magazine, IEEE 39(12): 104 –109.

Morris, S. & Smith-Chaigneau, A. (2005). Interactive TV Standards: A Guide to MHP, OCAP and
JavaTV, Focal Press, Burlington.

Personal Profile, R. I. (2006). JSR-000216 Personal Profile 1.1 (Final Release). Java Community
Process, 2006.

Redondo, R. P. D., Vilas, A. F., Cabrer, M. R. & Arias, J. J. P. (2007). Exploiting OSGi capabilities
from MHP applications, Journal of Virtual Reality and Broadcasting 4(16).

Schwalb, E. M. (2004). iTV Handbook: Technologies and Standards, Pearson Education, New
Jersey.

Soares, L. F. G., Costa, R. M., Moreno, M. F. & Moreno, M. F. (2009). Multiple exhibition devices
in DTV systems, MM ’09: Proceedings of the seventeen ACM international conference on
Multimedia, ACM, New York, NY, USA, pp. 281–290.

Soares, L. F. G., Rodrigues, E. F. & Moreno, M. F. (2007). Ginga-NCL: The Declarative
Environment of the Brazilian Digital TV System, in B. C. Society (ed.), Journal of the
Brazilian Computer Society, Vol. 13, Brazilian Computer Society, pp. 37–46.

247Using the iDTV as the Center of an Ubiquitous Environment

www.intechopen.com

Tavares, A. L. & Valente, M. T. (2008). A gentle introduction to OSGi, SIGSOFT Softw. Eng.
Notes 33(5): 1–5.

Tkachenko, D., Kornet, N., Dodson, A., Li, L. & Khandelwal, R. (2005). A framework
supporting interaction of iDTV applications and CE devices in home network,
Consumer Communications and Networking Conference, 2005. CCNC. 2005 Second IEEE,
pp. 605 – 607.

Viana, N., Maia, O., de Lucena, V. & Pinto, L. (2009). A Convergence Proposal between
the Brazilian Middleware for iDTV and Home Network Platforms, Consumer
Communications and Networking Conference, 2009. CCNC 2009. 6th IEEE, pp. 1 –5.

XleTView (2011). MHP Emulator for viewing xlets on PC, in M. Svenden (ed.), Available at
http://www.xletview.org/. Accessed on January 10, 2011.

Yang, M.-C., Sheng, N., Huang, B. & Tu, J. (2007). Collaboration of Set-Top Box and Residential
Gateway Platforms, Consumer Electronics, IEEE Transactions on 53(3): 905–910.

Zahariadis, T., Pramataris, K. & Zervos, N. (2002). A comparison of competing broadband
in-home technologies, Electronics Communication Engineering Journal 14(4): 133 – 142.

248 Ubiquitous Computing

www.intechopen.com

Ubiquitous Computing

Edited by Prof. Eduard Babkin

ISBN 978-953-307-409-2

Hard cover, 248 pages

Publisher InTech

Published online 10, February, 2011

Published in print edition February, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The aim of this book is to give a treatment of the actively developed domain of Ubiquitous computing.

Originally proposed by Mark D. Weiser, the concept of Ubiquitous computing enables a real-time global

sensing, context-aware informational retrieval, multi-modal interaction with the user and enhanced

visualization capabilities. In effect, Ubiquitous computing environments give extremely new and futuristic

abilities to look at and interact with our habitat at any time and from anywhere. In that domain, researchers are

confronted with many foundational, technological and engineering issues which were not known before.

Detailed cross-disciplinary coverage of these issues is really needed today for further progress and widening

of application range. This book collects twelve original works of researchers from eleven countries, which are

clustered into four sections: Foundations, Security and Privacy, Integration and Middleware, Practical

Applications.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Orlewilson B. Maia, Nairon S. Viana and Vicente F. de Lucena Jr (2011). Using the iDTV as the Center of an

Ubiquitous Environment, Ubiquitous Computing, Prof. Eduard Babkin (Ed.), ISBN: 978-953-307-409-2, InTech,

Available from: http://www.intechopen.com/books/ubiquitous-computing/using-the-idtv-as-the-center-of-an-

ubiquitous-environment

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

