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1. Introduction

Since that Dr. Hans Berger discovered the electrical nature of the brain, it has been considered
the possibility to communicate persons with external devices only through the use of the brain
waves (Vidal, 1973).
Brain Computer Interface technology is aimed at communicating with persons using external
computerised devices via the electroencephalographic signal as the primary command source
(Wolpaw, J.R.; et al., 2000), (Birbaumer, N; et al., 2000). In the “rst international meeting for BCI
technology it was established that BCI “must not depend on the brain’s normal output pathways of
peripheral nerves and muscles”(Wolpaw, J. R.; et al., 2002). The primary uses of this technology
are to bene“t persons with blocking diseases, such as: Amiotrophic Lateral Scl erosis (ALS),
brainstem stroke, or cerebral palsy; or persons whom have suffered some kind o f traumatic
accident like for example paraplegic (E. Donchin and K. M. Spencer and R. Wijesi nghe, 2000).
Actually different types of classi“cations can be established for BCI technology , from the
physiologic point of view BCI devices can be classi“ed in exogenous and endogenous. The
exogenous devices provide some kind of stimuli to the user and they analyse the user•s
responds to them, examples of this class are devices based on visual evoked potential or P300
(E. Donchin and K. M. Spencer and R. Wijesinghe, 2000). On the contrary, the endogenous
devices do not depend on the user•s respond to external stimuli, they base their operation
in detecting and recognising brain-wave patterns controlled autonomously by the user,
examples of this class are devices based on the desynchronisation and synchronisation ofµ
and � rhythms (Wolpaw, J. R.; et al., 2002), (Pfurtscheller et al., 2000a), (Pineda, J.A. et al.,
2003).
But in any case, independently of the classi“cation criteria, an algorithm that detects, acquires,
“lters, learns and classi“es the electroencephalographic signal is required in order to control
an external device using thoughts, associating some mental patterns to device commands, as
it is shown in the block diagram of Figure 1, (Kostov, A., 2000), (Pfurtscheller et al., 2000b).
The “rst block is in charge of acquiring and amplifying the brain signal, allocating the
electrodes on speci“c places on the scalp in case of using super“cial electrodes, or inside the
brain in case of using intracortical ones; in the second block the signal is sampled, quanti“ed
and codi“ed at periodic intervals of time in order to digitalize it, to simplify the following
phases the digitalised signal may be “ltered, for example to reduce the noise level obtaining
a better SNR signal or identifying and processing artifacts. After this, in od er to obtain a set
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of parameters that represent the temporal window of the acquired brain signal the proces s of
feature extraction is performed, because the main changes in brain activity are associated to
changes in the power amplitude of band frequencies, spectrograms based on FFT are usedto
obtain initial feature vectors of six components (Obermaier et al., 2001) (Proakis & Manolaki s,
1997).

Fig. 1. Block diagram of a BCI device.

In the next block the features are processed in order to detect a speci“c event in the case
of exogenous devices, or for identifying, learning, and recognisin g signal cerebral patterns,
that are going to be used as inputs for the following block that translates them to contro l
commands of the external device.
Finally, but not less important, is the Operative Supervision block which sets the operative
mode of the BCI device under the user•s supervision, this is if the device is operating in on-line
/ off-line mode, or if it is modifying its internal parameters during the learning phase in order
to adjust to the user•s cerebral activity.
In the experiments considered for this paper only two electroencephalographi c channels •C3
and C4Ž have been considered to capture the endogenous electroencephalographic signal
from the subject. In order to facilitate the use of this technology it is important to make it easy
to use, the •cosmosisŽ or how the user•s looks like wearing the BCI device is also important,
this is the reason that the number of electrodes employed in these devices is a global key
feature, as the fewer of electrodes used, the higher the comfort (Wolpaw, 2007).
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This chapter deals with the application of these concepts for developing BCI device s, focusing
in the classi“cation of the user•s cerebral activity.
The contents of this chapter are distributed in the following sections:

€ The “rst section contemplates this introduction.

€ The second section brie”y describes the signal processing phase and the selection of the
features that describe the user•s cerebral activity.

€ In the third section is analysed the discrimination capability between the feature v ector
populations sampled when the user develop three different cognitive tasks.

€ Afterwards, in the fourth section, it is assessed the best component combination of
the feature vector in order to reduce the feature space dimensionality improving the
discrimination capability.

€ The “veth section describes different types of advanced classi“ers based on : Neural
Networks, Hidden Markov Models, and Support Vector Machines .

€ The experiments, carried on with signal sampled from real users, are described in the sixth
section. The different experimental paradigms, results, and analysis, are explained in it.

€ Finally the seventh section is devoted to conclusions.

2. Signal processing and feature selection

The tests described below were carried out on “ve male healthy subjects, one of them has been
trained before, but the other four were novice in the use of the system.
In order to facilitate the mental concentration on the proposed activities, the experiments wer e
carried on in a room with low level of noise and under controlled environmental conditions,
all electronic equipments external to the experiment around the subject were switched of f to
avoid electromagnetic artifacts. The subjects were sat-down in front of the acquisition sy stem
monitor, at 50 cm from the screen, their hands were in a visible position, the super visor of the
experiment controlled the correct development of it.
Two different types of experimental procedures had been considered for the acquisition of the
user•s cerebral signal. In the “rst one, the user concentrates on the proposed cognitive tasks
meanwhile the system registers the cerebral activity but without communicating any feedback
about the signal classi“cation.
In the second type of experiments the user receives the classi“cation feedback from a simple
classi“er based on arti“cial neural networks. These neural networks have been trained with
registers associated to each cognitive task obtained from the previous kind of e xperiments.
Because in the “rst type of experiments there is not any kind of feedback they are name d
Off-line experimental procedures, in contrast to the second class called On-line experimental
procedures.
The ”ow of activities for each experimental procedure are described in the followi ng
subsections.

2.1 Flow of the activities for the Off-line experimental procedure
The experimental process is shown on Figure 2.

€ Test of system devices.It checks the correct level of battery, and state of the electrodes.

€ System assembly.Device connections: super“cial electrodes (Au-Cu), battery, bio-ampli“er
(g.BSamp by g.tec), acquisition signal card (PCI-MIO-16/E-4 by National Instrument),
computer.
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Fig. 2. Diagram of the experiment realization.

€ System test.Veri“es the correct operation of the whole system. To minimise noise from the
electrical network the Notch “lter (50Hz) of the bio-ampli“er is switched on.

€ Subject preparation for the experiment.Application of electrodes on subject•s head.
Impedance � 4KOhms.

€ System initialisation and setup.Veri“cation of data register. It is monitored the signal
evolution, in the spectrogram should appear a very low component of 50 Hz.

€ Experiment setup.The supervisor of the experiment sets-up the number of replications,
Nrep = 10, and the quantity of different mental activities. The duration of each trial is
t = 7s, the acquisition frequency is fs = 384Hz. The system suggests to the subject to think
about the proposed mental activity. A short relax is allowed at the end of each trial.

2.2 Flow of the activities for the On-line experimental procedure
In these tests, a cursor in the centre of the screen and a square goal are shown to the subject, the
square goal appears half the trials on the left of the screen and the other half on the right. The
subject shall try to move the cursor towards the goal thinking in the cognitive tasks propo sed
in the Off-line experiments. The experimental On-line process is shown on Figure 3.

€ Experiment set-up.This phase determines the cognitive tasks used to move the cursor to
the left and to the right, the number of trials and the time for each trial.

€ Display initialisation. It initialises the display, for even trials the goal is on the right, for odds
on the left.

€ Data acquisition. In this phase 128 samples per electroencephalographic channel are
acquired at f s = 384Hz.

28 Recent Advances in Brain-Computer Interface Systems

www.intechopen.com



Fig. 3. Diagram of the On-line experiment realization.

€ Record samples.The previous samples are recorded for a posterior analysis.

€ Feature extraction.A vector of features is extracted from the acquired samples.

€ Classification.The vector of features is classi“ed as belonging to one of the previous mental
tasks, and the associated movement is performed; if the vector can•t be classi“ed in any of
the cerebral activities, the cursor doesn•t move. If the trial time is exceeded a new trial is
carried out until the N trials had been performed.

2.3 Position of electrodes
Electrodes were placed in the central zone of the skull, next to C3 and C4 (Penny, W. D.; et al.,
2000), two pair of electrodes were placed in front of and behind of Rolandic sulcus , this zone
is one with the highest discriminant power, it takes signal from motor and sensory areas of
the brain (Birbaumer, N; et al., 2000), (Neuper, C.; et al., 2001).
Reference electrode was placed on the right mastoid, two more electrode were placed near to
the corner of the eyes to register blinking.
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Fig. 4. Electrode placement.

2.4 Description of cognitive tasks
The supervisor of the experiment suggests the subject to “gure out the following mental
activities:
Activity A. Mathematical task. Recursive subtraction of a prime number, i.e. 7, from a big

quantity, i.e. 3.000.000.
Activity B. Movement task.The subject imagines moving their limbs or hands, but without the
materialisation of it.
Activity C. Relax.The subject is relaxed.
These tasks will be the cerebral patterns to differentiate among them (Neuper, C.; et al. , 2001).

2.5 Computational process
This section describes the procedure applied to recorded signal just before its classi“cation.

Window analysis generator.

Standardization. Windowing.

FFT.
Feature

selection.

registry.
Sample

Neural Networks
Classifier.

Data

base.

Fig. 5. Computational process ”ow.

2.5.1 Window analysis generator
In this block the registered signal is chopped in packages of samples, similar to the bundles
of samples obtained from an acquisition card in an on-line BCI application. The number of
samples in each package is a compromise between the goodness of the classi“cation and the
amount of time taken by this classi“cation. An algorithm with very good classi“cation and
low number of mistakes will take a very big package, so the time between classi“cations w ill
be also very big, it will do the algorithm useless for a real on-line BCI system, neither a very
fast algorithm with small packages of samples but with a high number of mistakes will be
useful.
In this work we have considered packages of 128 samples, the sample frequency is Fs =
384Hz, so it is possible to obtain a classi“cation latency of t = 1/3 s.
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The duration of each activity is 7s, so there will be 21 classi“cations obtained from each
register, no overlap between windows have been considered.

2.5.2 Standardisation
To compare the signal of different sessions is necessary to standardise the samples, avoiding
for example that variations in the impedance of the electrodes changes the classi“cation result.
The standardisation of each analysis window consists in the subtraction of the average value
and the division by the standard deviation, eqs. 1 to 3.

µ =
� N

i= 1 xi

N
(1)

� 2 =
� N

i= 1(x Š µ)2

N
(2)

x� =
x Š µ

�
(3)

2.5.3 Windowing
The frequency leakage effect occurs when signals with low frequency components are
chopped or processed with temporal windows with sharp edges, in this cas e in the
spectrogram appears high frequency components as it is shown in Figure 6, (Harri s, 1978).

Fig. 6. Example of leakage effect.

In order to minimise this effect, seven different types of preprocessing windows have been
applied to the standardised signal. The following types of windows have been considered:

€ Rectangular window. h(n) = 1.

€ Triangular or Bartlett•s window. h(n) = 1 Š 2|nŠ M Š 1
2 |

M Š1 .

€ Blackman•s window. h(n) = 0.42Š 0.5cos( 2� n
M Š1) + 0.08cos( 4� n

M Š1).

€ Hamming•s window. h(n) = 1
2(1 Š cos( 2� n

M Š1)) .

€ Hanning•s window. h(n) = 0.54Š 0.46cos( 2� n
M Š1).
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€ Kaiser•s window. h(n) =
Io

�
�
�

( M Š 1
2 )2Š (nŠ M Š 1

2 )2
�

Io[� ( M Š 1
2 )]

.

€ Tukey•s window. h(n) = 1
2

�
1+ cos( nŠ (1+ � )( M Š1)/2

(1Š � )( M Š1)/2 � )
�

� ( M Š1)
2 � | n Š M Š1

2 | � M Š1
2 .

€ Time domain sequence: h(n), 0 � n � M Š 1.1

With the use of a window which gets good separability between mental patterns, the classi“er
will be easier, faster and the results more reliable.

2.5.4 FFT
The cerebral activity becomes apparent mainly through the frequency compone nts of the
electroencephalographic signal. Different kind of mental activities have different frequency
components, (Harris, 1978),(Neuper, C.; et al., 2001),(Penny, W. D.; et al., 2000). Forthis reason
it is necessary to transform the sampled time domain signal to frequency domain, so a Fast
Fourier Transform is applied to each block of 2 7 sampled data.

X(k) =
NŠ1

�
n= 0

x(n)Wkn
N 0 � k � N Š 1 (4)

WN = eŠ 2� j
N (5)

Having in mind that the sample frequency is 384Hz, the frequency resolution is:

� f =
384Hz

128
= 3Hz. (6)

In this application the useful information is in the amplitude of the frequency compon ents, so
the phases are discarded, we focus our attention on the spectrograms of each of the analysis
windows. Considering the properties of the Fourier Transform and that the signal i n the time
domain only have real components, in the Nyquist frequency is produced the re”ection effect,
so the signal information is in the “rst halve of the components, (Harris, 1978).

2.5.5 Feature selection
A vector of six features is extracted from each signal analysis window. This vector , table 1,
is made up as the mean of the amplitudes of the frequency bands. Because the frequency
of normal human brain is under 40-50Hz, only frequencies between 6 and 38Hz have been
considered.

3. Statistical analysis procedure

In order to assess if it is possible to discriminate between the samples acquired when the user
was performing the proposed cognitive tasks, the statistical technique of bilateral contrast
test is applied to each population pair of features obtained from each cognitive acti vity.
Each component of the vector is considered to determine its signi“cance and separability
power. Bilateral contrast makes use of population variance, if the equality of bo th population
variances is rejected it is necessary to apply a correction factor in the degrees of freedom. These

1 M = length of the “ltering window
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FFT index. Frequency. Denomination.
1 - 2 0 - 5 Not considered

3 6 - 8 � .
4 9 - 11 � 1.
5 12 - 14 � 2.

6 - 7 15 - 20 � 1.
8 - 10 21 - 29 � 2.
11 - 13 30 - 38 � 3.
14 - 64 39 - 192 Not considered

Table 1. Feature vector.

contrasts were applied to samples of both electroencephalographic channels preprocessed
with each type of “ltering window.

€ Bilateral contrast to the variance ratio.The equality of variances is obtained with R = 1.
n1 : sample size of the “rst population.
n2 : sample size of the second population.
� 1 : variance of the “rst population.
� 2 : variance of the second population.
�S1 : variance estimation of the “rst population.
�S2 : variance estimation of the second population.

F = Fisher distribution.
T = Student distribution.

Null hypothesis Ho vs. alternative hypothesis H1.

Ho :
� 1

� 2
= R vs. H1 :

� 1

� 2
�= R (7)

Considering that: (n1 Š 1) �S1

� 1
� � 2

n1Š1
(n2 Š 1) �S2

� 2
� � 2

n1Š1 (8)

1
n1Š1

(n1Š1) �S1
� 1

1
n2Š1

(n2Š1) �S2
� 2

=
� 2

� 1

�S1
�S2

� Fn1Š1,n2Š1 (9)

Therefore under the ful“llment of the null hypothesis:

FExp =
1
R

�S1
�S2

� Fn1Š1,n2Š1 (10)

The acceptance zone ofHo is:
ateo = F(n1Š1,n2Š1,1Š �

2 ) (11)

bteo = F(n1Š1,n2Š1,1Š �
2 ) (12)

ateo � FExp � bteo (13)

€ Bilateral contrast of two independent normal and homocedastic populations.Null hypothesis Ho
vs. alternative hypothesis H1.

Ho : µ1 Š µ2 = � vs. H1 : µ1 Š µ2 �= � (14)

The variances of the both population are equal but unknown.
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TExp =
(X̄1 Š X̄2) Š (µ1 Š µ2)

�
�S( 1

n1
+ 1

n2
)

(15)

In which �S is the pseudo-variance of �S1 and �S2

�S =
(n1 Š 1) � �S1 + ( n2 Š 1) � �S2

n1 + n2 Š 2
(16)

The zone of Ho acceptance is: TTeo = t (n1+ n2Š2,1Š �
2 ) (17)

If |TExp| � TTeo then Ho is accepted, on the contrary H1 is accepted and Ho is rejected.

€ Bilateral contrast of two independent normal and heterocedastic populations.The null hypothesis
Ho and alternative hypothesis are similar to the previous ones, the statistical measure i s:

TExp =
(X̄1 Š X̄2) Š (µ1 Š µ2)

�
�S1

n1
+

�S2
n2

� t f (18)

In which f is the number of degrees of freedom calculated with the Welch•s formula:

f =
(

�S1
n1

+
�S2

n2
)2

1
n1+ 1(

�S1
n1

)2 + 1
n2+ 1(

�S2
n2

)2
Š 2 (19)

In this case the zone of Ho acceptance is:

TTeo = t ( f ,1Š �
2 ) (20)

If |TExp| � TTeo then Ho is accepted, on the contrary it is assumed that the populations are
different.

The results of these analyses are graphically shown in the subsection 6.2.1.

4. Reduction of the feature space dimensionality

Linear Discriminant Analysis is a preprocessing technique used in machine learning , its
objective is to “nd the best combination of features that separate two or more types of objects
or events. The result can be used as linear classi“er or as a technique to reduce the feature
space dimension before the classi“cation process.
Under the consideration that it is possible to discriminate between electroencephalogr aphic
samples acquired when the user was performing the suggested cognitive tasks, the next phase
is to “nd the best combination of features that separates in an optimal way the registers of
these mental tasks.
In machine learning a preprocessing technique called Linear Discriminant Analysis “nds
automatically this combination of features. The result can be used as linear classi“er or as
a technique to reduce the feature space dimension before the classi“cation process.

4.1 Linear discriminant analysis
Supposed C classes of observations, Linear Discriminant Analysis is a preprocess technique
that “nds the transformation matrix W which separates in an optimal way two or more classes.
LDA considers maximising the following objective:
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J(W) =
WTSBW
WTSWW

(21)

where SB is the between classes scatter matrix, andSw is the within classes scatter matrix, the
de“nitions of the both matrices are:

SB = �
c

Nc(µc Š x̄)(µc Š x̄)T (22)

SW = �
c

�
i � c

(xi Š µc)( xi Š µc)T (23)

µc =
1

Nc
�
i � c

xi (24)

x̄ =
1
N �

i
xi =

1
N �

c
Ncµc (25)

and Nc is the number of samples in class c.
BecauseJ is invariant to rescaling of the vectors W � � W, hence it is possible to choose
W such that the denominator is WTSWW = 1. So the problem of maximising J can be
transformed to the following constrained optimisation problem,

minW Š
1
2

WTSBW (26)

s.t. WTSWW = 1 (27)

corresponding to the Lagrangian,

LP = Š
1
2

WTSBW +
1
2

� (WTSWW Š 1) (28)

With solution (the halves are added for convenience):

SBW = � SWW 	 SŠ1
W SBW = � W (29)

This is a generalised eigen-problem, and using the fact that SB is symmetric positive de“nite

and can hence be written asS
1
2
BS

1
2
B, where S

1
2
B is constructed from its eigenvalue decomposition

as SB = U� UT � S
1
2
B = U�

1
2 UT. De“ning V = S

1
2
BW it is get

S
1
2
BSŠ1

W S
1
2
BV = � V (30)

this is a regular eigenvalue problem for a symmetric positive de“nite matrix, with solutions
� k as eigen-values andVk as eigen-vectors, which leads to solution:

W = S
Š 1

2
B V (31)

Plugging the solution back into the objective J(W), it is found that the desired solution which
maximise the objective is the one with largest eigenvalues.
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4.2 Operational procedure
1. Samples from each mental tasks are obtained.

Xa Mathematical Activity.
Xb Movement imagination.
Xc Relax.

2. Statistical de“nition of all populations:

µ̄a = E[xa] Sa = E[(xa Š µ̄a)( xa Š µ̄a)T] (32)

µ̄b = E[xb] Sb = E[(xb Š µ̄b)( xb Š µ̄b)T] (33)

µ̄c = E[xc] Sc = E[(xa Š µ̄c)( xc Š µ̄c)T] (34)

3. Calculation of the scattering matrices (eq.22 & 3).

4. Application of LDA optimising criterion (eq.30).

5. Calculation of the transformation matrix, W (eq.31), formed by the eigen-vectors,Vk, which
eigen-values are bigger than 1 � 10Š4 ordered form high to low magnitudes.

6. Once the transformation matrices have been obtained, the data sets are transformed using
LDA transform. The decision region in the transformed space is a hyperplane of lower
dimension than the feature space.

Xa 	 X �
a = WT � Xa (35)

Xb 	 X �
b = WT � Xb (36)

Xc 	 X �
c = WT � Xc (37)

7. For classi“cation problems once the LDA transformations are completed, Eucli dean or
Mahalanobis distances to the centre of each class could be used to classify new vectors.
The smallest value among the c distances classi“es the new vector as belonging to classc.

In order to evaluate the feedback effect over the discrimination capability the Off-line and
On-line experimental procedures described respectively on subsections 2.1 and 2.2 were
carried out on “ve healthy male subjects obtaining the results shown in subsection 6.2.2

5. Classi“er description

This section brie”y presents the different types of classi“ers used in the experimental
procedures.

5.1 Neural networks classi“ers for BCI devices
Once that the discrimination capability of the electroencephalographic signals has been
assessed and analysed the possibility for the reduction of the original feature space without
affecting the discrimination capability, the next step is the application of different families of
supervised classi“ers to the electroencephalographic signal and analysing the re sults.
One of these family of classi“ers is based on different types of arti“cial n eural networks. This
section describes the architecture of three types of classi“ers based on: Radial Basis Functions
(RBF), Probabilistic Neural Networks (PNN), and Multi-Layer Perceptrons (MLP) (Bishop,
1995), (Ripley, 1996).
For each type of neural network two architectures of classi“ers were implemented (refer to
Figure 7).
Each classi“er applies the following procedure to the vector of features extracted previously:
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(a) Classi“ers with two dedicated neural networks. (b) Classi“ers with a global neural network.

Fig. 7. Architecture of classi“ers.

1. Determination of the learning (50%), test (25%) and validation (25%) data sets.

2. Calculation of the normalisation matrix for the learning data set.

3. Application of Principal Component Analysis to the learning data set in order to red uce
the dimensionality of the data input space.

4. Learning of the input data set by the neural network.

5. Application of the neural network to the test data set. If the error test is less than the goal
error (1eŠ5), then the learning process is stopped. Otherwise, the network is trained again.

6. Estimation of the network performance error.

7. Application of the neural net to the whole data set and result registration.

8. Calculation of the confusion matrices for each experiment.

5.1.1 Multi-Layer Perceptron Classi“er
The setup parameters used in this classi“er are:

Parameter Value
Learning algorithm Levenberg-Marquardt

(Backpropagation)
Number of output neurons 3
Goal error 1eŠ5

Epochs 400
Max. fail 5
Mem. reduc. 1
Min. grad. 1eŠ10

µ 1eŠ3

µdec 0.1
µ inc 10
µmax 1eŠ5

Table 2. Parameters for MLP Classi“ers.
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5.1.2 Radial Basis Function Classi“er
The setup parameters used in this classi“er are:

€ Number of hidden neurons: The learning algorithm used by this type of neural networks
determines the number of neurons that are in the hidden layer through an iterative process
(Horward Demuth, 2006). That is, it starts with a reduced number of hidden neurons,
which are increased as long as the goal error is not achieved or a maximum number of
neurons is reached.

€ Spread constant : 0.25 (Determine the zone of in”uence of each neuron).

a = eŠ (||wŠ p||b)2
(38)

In which:
… a: Output of the neuron.

… w: Weight vector.
… p: Input vector.

… b: Spread constant.

€ Number of output neurons : 3. One for each cognitive activity.

5.1.3 Probabilistic Neural Network Cl assi“er
The setup parameters used in this classi“er are:

€ Number of hidden neurons: The learning algorithm used as many hidden neurons as pairs
of input vector - target vectors were in the learning data set.

€ Spread constant : 0.25 (Determines the zone of in”uence of each neuron, same expression
as eq.38).

€ Number of output neurons : 3. One for each cognitive activity.

5.2 Adaptive bi-stage classi“er based on RBF-HMM
In this section it is described an adaptive bi-stage classi“er. The “rst stage is b ased on
Radial Basis Function neural networks, which provides sequences of pre-assignations to
the second stage, that it is based on three different Hidden Markov Models, each one
trained with pre-assignation sequences from the cognitive activities between classifying. The
segment of EEG signal is assigned to the HMM with the highest probability of generating the
pre-assignation sequence.
The algorithm is tested with real samples of electroencephalogra“c signal , from “ve healthy
volunteers using the cross-validation method. The results allow to conclude that it is
possible to implement this algorithm in an on-line BCI device. The results also shown the
huge dependency of the percentage of the correct classi“cation from the user and the setup
parameters of the classi“er.

5.2.1 Introduction.
In Figure 8 is shown the block diagram of the algorithm for the proposed classi“er .
In it can be appreciated how the classi“cation of the considered segment of the EEG sig nal
is obtained after the evaluation of the probability generation of the pre-assignati on sequence
provided by three Hidden Markov Models.
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Fig. 8. Block diagram of the classi“er.

There are as many Hidden Markov Models as cognitive activities to be considered for the
classi“cation, each model is trained with pre-assignation sequences of data of the cognitive
activity associated to it.
The pre-assignation sequence of data are provided by a neural network, which inputs are
the vectors of features obtained after the preprocessing of the segment of EEG signal, as it is
described in the following subsections.

5.2.2 Training of the neural network
The considered neural network is the type of Radial Function Basis. This type of neural
network is characterised by the learning of the position of the samples in the training se t
and by the interpolation capability between them (Bishop, 1995).
In Figure 9 is represented the architecture of this type of neural network.

Fig. 9. Architecture of the RBF neural network.

From previous studies it has been concluded that this type of neural network behaves better
than other types of neural networks, as for example Multi-Layer Perceptrons or Probabilistic
Neural Networks (Martinez, J.L.; Barrientos, A., 2008).
The activation function is:

radbas(x) = eŠ x2
; x = ( �w Š �p) � Sc (39)
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In where �w and Sc are respectively the weights and in”uence zone constant of each neuron,
and �p is the position of the considered sample.
During the learning phase the neurons of the hidden layer learn the position of the sample s
of the learning set, �w; during the test phase when a new sample �p is presented, it is computed
the distance between the sample and the learned positions, the nearest neurons to the sample
will proportionate higher activation values than the rest of the neurons.
For the learning process are considered vectors of features from the EEG signal, acquired
when the user was performing one of the different cognitive activities considered f or the
classi“cation. The learning set is composed by the 75% of all the sample set, and the other
25% is considered for validation. After the determination of the learning and validatio n
sets, the input vectors to the neural network are normalised, and with LDA technique i s
reduced their dimensionality projecting the original input vectors in the direction of the
highest discrimination capability (Martinez, J.L.; Barrientos, A., 2007).
In order to minimise the over-learning effect, the RBF learning process allows a dynamic
growth of the number of neurons in the hidden layer. In the output layer are considere d
as many linear neurons as cognitive activities between discriminate. Finally in the assignation
block on Figures 8, it is weighted the output vector of the neural network and it assig ns the
input vector to the activity with highest output value provided it is higher than a thresho ld � ,
on the contrary if the value is lower than � , the input vector is labelled as unclassi“ed.
On operation, once the neuronal network has been trained, when a new vector is presented,
the cognitive activity with samples nearer to it will provide a higher activation l evel, and the
corresponding output will have a higher value than the others cognitive activities.

Fig. 10. Training of the RBF neural network.

5.2.3 Description of Hidden Markov Models
A Hidden Markov Model is a double stochastic statistical model, it consists of a Markov
process with unknown and non-observable parameters, and a observed model which
parameters depend stochastically from the hidden states. A stochastic process is called a
Markovian process if the future does not depend from the past, only from the known pr esent;
considering the stochastic variable q(t Š 1) the transition probability in the instant t is de“ned
as P(qt = � t |qtŠ1 = � tŠ1). A Markov chain is formally de“ned with the pair (Q, A), where
Q = { 1, 2, ...,N } are the possible estates of the chain andA = [ aij ] is the transition matrix of
the model, with the constrains:
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0 � aij � 1; 1 � i , j � N (40)

N

�
j= 1

aij = 1; 1 � i � N (41)

The transition and emission probabilities depends from the actual estate and no from the
former estates. P(qt = j |qtŠ1 = i , qtŠ2 = k, ...) = (42)

= P(qt = j |qtŠ1 = i) = aij (t)

Formally a discrete HMM of “rst grade is de“ned by the 5-tuple: � = { Z, Q, A, B, � } , in
where:

€ Z = { V1,V2, ...,VM } is the alphabet or discrete set of M symbols.

€ Q = { 1, 2, ...,N } is the set of N “nite estates.

€ A = [ aij ] is the transition matrix of the model.

€ B = ( bj (Qt )) NxM is the matrix of emission symbols, also known as observation matrix.

€ � = ( � 1, � 2, ...,� N ) is the prior probability vector of the initial estate.

The parameters of a HMM are � = { A, B, � } . There are three types of canonic problems
associated to HMM (Rabiner, 1989)(Rabiner & Juang, 1986):

1. Given the parameters of the model, obtain the probability of a particular output sequence.
This problem is solved through a forward-backwards algorithm.

2. Given the parameters of the model, “nd the most probable sequence of hidden estates,
that could generate the given output sequence. This problem is solved through the use o f
Viterbi algorithm.

3. Given an output sequence, “nd the parameters of the HMM. This problem is solved
through the use of Baum-Welch algorithm.

The HMM have been applied specially in speech recognition an generally in the recognition
of temporal sequences, hand written, gestures, and bioinformatics (Rabiner & Juang, 1986).

5.2.4 Training of the Hidden Markov Models
The HMM•s are trained with sequences of pre-assignations coming from the E EG samples, as
it is shown in the Figure 11.
For each cognitive activity a particular HMM, with the following characteristics, is trained :

€ Number of hidden estates: 4.

€ Number of different observable objects: 4

In the training phase, chains of nine pre-assignations were used. In a previous experiment
with synthetic samples, it was concluded that for the proposed architecture of Hidden Markov
Models the highest percentage of correct classi“cations were obtained with chains of ni ne
elements.
After the training or solution of the third canonic problem, the probability matrices of state
transitions and observation matrices are determined. The Viterbi algorithm is use d in order
to determine the probability that a model generates the proposed sequence.
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Fig. 11. Training of the HMM.

5.3 Classi“er based on Support Vector Machines
Under the denomination of Support Vector Machines are known a set of supervised lea rning
methods that belong to the generalised linear classi“ers with applicability into classi“cation
and regression problems.
It structure is based on a net of static kernels operating over feature vectors which have been
transformed to a space with higher dimension than the original feature space, see Figure 12.
The main property of the SVMs is its good generalisation capability founded on the
determination of a hiperplane with maximum separation distance between the transformed
vector of each class. This separation distance is the one between to hiperplanes parallel to
the optimum separation hiperplane containing at least one transformed vector called suppo rt
vector. It is assumed that as bigger is this distance, bigger is the generalisation capability.
The operations performed by a SVM classi“er are:

€ Transformation of the sample data or input feature vectors to a higher dimensio n space
through the application of the kernel function 	 . The objective is to formulate the
classi“cation problem using the kernel function.

€ Obtaining of the optimum hiperplane which maximises the distance between the
considered classes. If the input vectors are lineally separable, the optimum hiperplane
besides the maximisation of the separability, minimises the penalty function that considers
the incorrect classi“cations.

6. Description of experimental procedures and results

6.1 Esperimental procedures
6.1.1 LDA procedure
The Figure 13 represents the activity diagram associated to the experimental procedure used
with the Linear Discriminant Analysis technique.
The experimental procedure is performed with the feature vectors obtained after processing
the samples of electroencephalogram activity with each type of preprocessing window.
In order to assess the discriminant power of each type of preprocessing window a bilateral
contrast test is performed with the transformed populations of feature vectors.
The results are graphically represented in subsection 6.2.2.
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Fig. 12. Operacional description of Support Vector Machines.

6.1.2 Procedure for classi“ers based on Arti“cial Neural Networks
The Figure 14 represents the activity diagram associated to the experimental procedure used
with the Arti“cial Neural Networks classi“ers.

€ The “rst stage loads the registers sampled when the user performed the different mental
tasks and associates them to each proposed cognitive activity. After this the data sets are
normalised and reduced their dimension through LDA.

€ In the second stage the learning data sets are de“ned; 50% of the samples are used for the
learning data set, 25% for the validation data set, and the other 25% for the testing data set.

€ In the third stage the classi“ers are created, trained, validated and tested using respectively
the previous data sets.

€ In the fourth and last stage the confusion matrices are obtained and saved.

The results are graphically represented in subsection 6.2.3.

6.1.3 Procedure for RBF-HMM bi-stage classi“er
The Figure 15 represents the activity diagram for the experimental procedure used with the
RBF-HMM classi“er. It is composed by four different blocks:

€ The “rst block generates the different data sets for learning and testing, considering t he
three different cognitive tasks. The cross validation procedure is used for the resu lts, ten
different repetitions of cross validation are considered, in each repetition a different data
set session is reserved for the validation, employing the rest data sets for learning and
testing.

€ In the second block the pre-classi“er based on RBF is trained.

€ In the third block three different Hidden Markov Models are trained, one for ea ch cognitive
activity, considering pre-assignation sequences of nine elements.

€ Finally in the fourth block the validation procedure is performed and the results saved.

The results are graphically represented in subsection 6.2.4.
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Fig. 13. Experimental procedure for LDA.
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Fig. 14. Experimental procedure for ANN classi“ers.
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Fig. 15. Experimental procedure for RBF-HMM classi“er.
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6.1.4 SVM procedure
The Figure 16 represents the experimental procedure used with the SVM classi“ers. In the
“rst stage the data sets of each cognitive activity are loaded. In the second stage the SVM
classi“ers are created with the different kernel parameters, the training and testing data sets
are de“ned, and the classi“ers are trained considering three subclassi“ers under the one
against one classi“cation paradigm.
Finally in the last stage a classi“cation test is performed and the results saved. The results are
graphically represented in subsection 6.2.5.

Fig. 16. Experimental procedure for SVM classi“ers.

6.2 Results
6.2.1 Results of the statistical analysis procedure
The following “gures summarise the results of the former tests.
The contrasts between mental activities are shown on the horizontal axis. The Figure 17
shows the results of the contrast tests between the cognitive tasks for channel one:C3� Š C3�� ,
meanwhile the Figure 18 shows the results for channel two: C4� Š C4�� .
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(a)

(b)

Fig. 17. Results channel 1.

All the seven types of windows have been applied to each comparison. 2 In the top of each
“gure appears both the type of window and a number. This number indicates the average
of signi“cant features obtained with this window, it is the total of the features that shown
statistical evidence of difference, p < 0.05, divided by the number of times the experiment has
been replicated.
Finally in the bars are the signi“cant features for each kind of window 3, in the vertical axis is
the percentage of times that this feature has been signi“cant.
Making a comparison between mathematical activity and movement imagination the result
is, that among all windows, the Tukey•s and Kaiser•s windows are the ones with more

2 See sections 2.5.3 and 3.
3 See section 2.5.5.
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