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1. Introduction    

The need for a reliable system for early tsunami detection and warning was made painfully 

clear by the over two hundred thousand lives lost to the tsunami generated by the 9.3 

magnitude Sumatra-Andaman earthquake that swept across the Indian Ocean on 26 

December 2004 (Stein & Okal, 2005; Lay et al., 2005; Titov et al., 2005). The tsunami claimed 

the lives of over 220,000 people and despite a lag of up to several hours between the 

earthquake and arrival of the tsunami in some locations, the majority of victims were given 

little or no warning of the impending threat. While tsunamis occur much more frequently in 

the Pacific Ocean and a tsunami warning system has been in place in the region for many 

years, no such system was in place in the Indian Ocean and the communications 

infrastructure was not adequate for issuing widespread warnings at the time of the 

Sumatra-Andaman tsunami. 

An early and dependable assessment of a tsunami threat requires detection of the tsunami 

wave in the open ocean away from the shore (Lautenbacher, 2005; Levin & Nosov, 2005; 

Bernard et al., 2006; Schindele et al., 2008). In the open ocean, however, the wave amplitude 

of the tsunami is small (generally less than one meter) and it is only as it approaches the 

shore that the tsunami rapidly grows in amplitude. Given the expansiveness of the ocean, 

sensors capable of detecting the tsunami must have very broad coverage. In addition to 

detecting the tsunami early enough to provide adequate warning, the method of detection 

must be reliable with few false warnings. If coastal populations go to great lengths to move 

to safe areas only to find out later such an evacuation was unnecessary, they may be less 

likely to heed warnings in the future.  
By complementing traditional seismic data and point measurements as provided by the 

Deep-Ocean Assessment and Reporting of Tsunamis (DART) buoys network (Gonzalez et 

al., 2005; Bernard et al., 2006), satellite observations of tsunami manifestations can 

potentially improve the accuracy and timeliness of tsunami forecasts (Levin & Nosov, 2005; 

Synolakis & Bernard, 2006; Geist et al., 2007; Wei et al., 2008; Behrens et al., 2008), increase 
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the lead time of tsunami warnings, decrease the probability of false alarms (Walker, 1996; 

Dudley and Lee, 1998; Godin et al., 2004; Nagai et al. 2007), and help avoid unnecessary 

evacuations (Dudley and Lee, 1998; Bernard et al., 2006).  

Satellites have detected gravity waves induced by tsunamis in the ionosphere and the 

potential to use global positioning system satellites (GPS) for early tsunami detection is 

being explored (Artru et al., 2005; Occhipinti et al., 2006). Satellite altimeters have also 

sampled several tsunamis over the past two decades. The satellite altimetry sea surface 

height (SSH) measurements of the Sumatra-Andaman tsunami were used by a number of 

authors to study the properties of the tsunami, its propagation and scattering from the 

coastline as well as to improve characterization of the seismic source of the tsunami, and to 

verify numerical models (Fine et al., 2005; Kulikov et al., 2005; Smith et al., 2005; Song et al., 

2005; Titov et al., 2005; Ablain et al., 2006; Hirata et al., 2006; Kumar et al., 2006; Fujii & 

Satake, 2007; Gower, 2007; Hayashi, 2008; Hoechner et al., 2008; Sladen & Hebert, 2008). 

Detection of earlier weaker tsunamis in less extensive satellite altimetry SSH records is 

discussed by Okal et al. (1999) and Zaichenko et al. (2005). 

Although measurements of SSH can provide definitive detection of sufficiently large 

tsunamis, the spatial coverage and temporal resolution of satellite altimeters are not suitable 

for forming the basis of a system for the early detection of tsunamis. Satellite altimeters 

provide measurements only along their ground tracks and generally require ten days to 

obtain near global coverage. The chances are remote of actually observing a tsunami early 

enough to warn coastal inhabitants. Of the tsunami manifestations in the deep ocean, 

variations in ocean surface roughness are the most relevant and promising to detect 

tsunamis from space provided that these factors can be revealed by orbiting active 

(scatterometers) and passive (radiometers) scanning and microwave sensors, which have 

broad coverage of hundreds of kilometers across the satellite ground track.  

Tsunami-induced variations in surface roughness away from the shore were first observed 

in visible light originating from a tsunami approaching Oahu in 1994 (Walker, 1996; Dudley 

and Lee, 1998). These variations were given the name “tsunami shadows” and appear as 

extended darker strips on the ocean surface along a tsunami front. Formation of the tsunami 

shadows as areas with a different root mean square (RMS) surface slope has been explained 

theoretically as a result of air-sea interaction; specifically tsunami-induced perturbations in 

the wind velocity close to the ocean surface that are predicted to be much larger than 

currents in the tsunami wave (Godin, 2003, 2004; Rowan, 2004). Later theoretical studies 

(Godin, 2005; Troitskaya & Ermakov, 2008) corroborated these conclusions. 

The first definitive measurements of the tsunami effect on sea surface height and radar 

backscattering strength (a measure of ocean surface roughness) in the open ocean were 

obtained from satellite altimeters during passage of the 2004 Sumatra-Andaman tsunami. In 

this study we concurrently employ radar backscattering strength and SSH data obtained by 

satellite altimeters for the Sumatra-Andaman event as well as for three other tsunamis. 

Through statistical analyses of multiple years of satellite altimeter observations, we 

definitively demonstrate that the Sumatra-Andaman tsunami induced distinctive variations 

in ocean surface roughness and tentatively demonstrate that three other tsunami-induced 

variations in ocean surface roughness.  

The sections below are organized as follows: In section 2, we outline a theory explaining the 

magnitude and spatial structure of tsunami-induced variations in ocean surface roughness. 

In section 3, we discuss our analysis of ocean surface roughness variations by introducing 

the data used in this study and explaining the statistical randomization tests. Section 4 
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provides results of the randomization tests for the 2004 Sumatra-Andaman tsunami as well 

as three other weaker tsunamis and demonstrates that the tsunami causes distinct, 

detectable changes in ocean surface roughness. In section 5, we discuss the feasibility of 

using variations in ocean surface roughness for the early detection of tsunami waves. 

Section 6 provides a summary and discussion of further research on this topic.   

2. Theory of tsunami-induced wind velocity perturbations 

Long surface gravity waves in the ocean modulate short gravity and gravity-capillary 

waves, and change ocean surface roughness through the interaction of short waves with 

near-surface currents and variations of near-surface wind-induced by long waves (Hara & 

Plant, 1994; Troitskaya, 1994; Kudryatsev et al., 1997; Cohen & Belcher, 1999; Godin & Irisov, 

2003). Modulation due to currents is negligible for a tsunami in the deep ocean (Godin, 2003, 

2004). Tsunami-induced variations in ocean surface roughness away from the shore result 

from variations in wind velocity that accompany tsunami waves, and have been predicted 

to be much larger than currents in the tsunami wave (Godin, 2003, 2004, 2005). Godin (2003, 

2004, 2005) found that significant variations in the mean wind velocity arise from the 

generation of viscous waves in the atmosphere by coherent large-scale motion of the ocean 

surface in a tsunami wave. However, the magnitude of the surface roughness modulations 

and the position of areas with increased and decreased roughness are sensitive to the choice 

of a closure hypothesis for turbulence in the atmospheric boundary layer. Although any 

theoretical explanation of tsunami-induced surface roughness variations is still tentative, 

measuring these variations in the open ocean can provide insight into the physics of the 

interaction of fast surface waves with turbulent wind. 

As outlined in Godin et al. (2009), there is no universally accepted model of airflow over fast 

sea waves. Using assumptions made in (Godin, 2005), in the presence of a monochromatic 

tsunami wave, the wind speed relative to the ocean surface retains a logarithmic profile up 

to a few tens of meters above the surface. The effective wind speed depends on 

characteristics of the tsunami and differs from the background wind speed by the factor: 
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where κ is the von Karman constant, u∗ is the friction velocity, H is the height of the 

background logarithmic boundary layer, a is the SSH change due to the tsunami, c is the 

tsunami phase speed,  
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z0  is the roughness length, and T is the tsunami period. 

For a monochromatic tsunami wave, the effective wind speed varies periodically in time 

with the SSH change. As long as the relaxation time of wind waves is much smaller than the 

tsunami period, the time dependence of the effective wind speed can be disregarded when 

determining characteristics of the ocean surface roughness that correspond to a given 

instantaneous value of the wind modulation M. Variations in the radar backscattering 

strength at nadir, σ0, resulting from the tsunami-induced wind variations can be found in 
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the Modified Chelton-Wentz algorithm (Witter & Chelton, 1991) or the Freilich-Challenor 

algorithm (Freilich & Challenor, 1994) by comparing the σ0  values that correspond to the 

background and effective wind speeds. In section 5, computed estimates of the maximum 

and minimum radar backscattering strength variations will be compared to measurements 

taken by the Jason-1 satellite altimeter during the 2004 Sumatra-Andaman tsunami. 

3. Statistical analysis of ocean surface roughness variations 

3.1 Data 

Satellite altimetry provides concurrent measurements of SSH and σ0. While not the focus of 

our study, SSH measurements allow us to identify the location of the leading edge of the 

tsunami. Detection of tsunamis in SSH measurements has been demonstrated in several 

previous studies (Okal et al., 1999; Ablain et al., 2006), although weak tsunamis generally 

remain obscured by background ocean variability. By utilizing satellite altimetry data, we 

are able to identify the location of the tsunami’s leading edge in SSH measurements and test 

the concurrently measured σ0 values for tsunami-induced changes in ocean surface 

roughness. 

While initial studies have focused on the 2004 Sumatra-Andaman tsunami, the statistical 

analysis described below can be applied to any tsunami event occurring within the modern 

altimetry era. The Radar Altimeter Database System (RADS) was used to search and collect 

historical altimeter records. RADS allow the user to quickly search and obtain records from 

several satellite altimeters (Naeije et al., 2000). With the poor spatial coverage and temporal 

resolution provided by satellite altimeters, the chances of an altimeter sampling a tsunami 

are remote. Through an extensive search of the past 17 years of satellite altimetry data, we 

have identified four tsunami events on which we will focus our attention: 1992 Nicaraguan 

tsunami, 1995 Chile tsunami, 2004 Sumatra-Andaman tsunami, and 2010 Chile tsunami.  

3.2 Statistical randomization tests 
Ocean surface roughness is influenced by diverse phenomena in the ocean and atmosphere, 

including wind gusts, currents, internal gravity waves, and oceanographic fronts. The 

resulting σ0 variability can far exceed the expected tsunami-induced variations. To 

determine whether the σ0 variations observed were indeed caused by a tsunami and 

whether tsunami signals can be reliably extracted from σ0 data, data with and without the 

tsunami present must be compared.  

Tsunamis have several distinctive spatio-temporal characteristics that aid in the retrieval of 

the tsunami signal from the “noise”  arising from other geophysical processes. Perhaps the 

most distinctive attribute of tsunami-induced roughness variations is their propagation 

speed relative to the ocean bottom. However, satellite altimeters only provide a “snapshot”  

of the ocean surface, and thus the propagation speed of the tsunami cannot be used to 

identify tsunami-induced features in satellite altimeter data. Instead, we systematically 

utilize spatial filtering (Powell & Leben, 2004) to suppress σ0 variations that are unrelated to 

tsunamis.  

To determine if σ0 variations were induced by the passage of a tsunami, statistical 

randomization tests (Edgington, 1995) were performed to compare data with and without 

the tsunami present. One thousand 3.2°-windows (each containing 64 points of data) were 

randomly selected from the area of the ocean through which the tsunami passed. Mean σ0 

values were subtracted in each window to calculate the σ0 anomaly.  The RMS values and 
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the number of zero crossings were calculated for the σ0 anomaly in each window and 

compared to the respective values in the 3.2°-window containing the leading edge of the 

tsunami. The RMS σ0 anomaly characterizes the strength of the surface roughness variations, 

while the number of zero crossings serves as a measure of the spatial scale of the variations. 

If the tsunami-induced variations were distinctive and unique, we would expect the 

window containing the leading edge of the tsunami to have both a higher RMS and a greater 

number of zero crossings than found in the 1,000 randomly selected windows. 

In addition to the randomization tests using the RMS σ0 anomaly and zero crossings, a 

spectral approach is implemented. In each randomly selected 3.2°-window, the σ0 and SSH 

data were detrended by removing the linear fit computed using least-squares. Windows 

with unphysically large SSH variations of more than 150 cm from the median were excluded 

if randomly selected. The Fourier spectrum of the detrended data was normalized to 

account for the high variability of the high-frequency part of the spectrum. The Fourier 

components with spatial scales from 90 km to 300 km, scales representative of the tsunami, 

were summed. To quantify the correlation between the σ0 and SSH anomalies, the Fourier 

spectrum of their cross-correlation function was calculated in the range from 90 km to 300 

km. The spectral measure of the σ0 anomaly correlation with the SSH anomaly was 

computed for each of the 1,000 randomly selected windows and compared to the spectral 

measure computed for the window containing the leading edge of the tsunami. If the 

spectral measure of the window containing the tsunami signal is larger than the spectral 

measure computed for the randomly selected windows, we can determine that the σ0 

variations during the tsunami were unique and attributable to the passage of the tsunami.  

4. Results 

4.1 2004 Sumatra-Andaman tsunami 
Four satellite altimeters overflew the 2004 Sumatra-Andaman tsunami during its 

propagation across the Indian Ocean. Envisat, Geosat Follow-On (GFO), Jason-1, and 

TOPEX/ Poseidon measured the tsunami at times ranging from two hours to seven hours 

after the tsunamigenic earthquake occurred. Of these four satellite altimeters, Jason-1 

provides the earliest observations of the Sumatra-Andaman tsunami and has the most 

extensive records. Jason-1 encountered the leading edge of the tsunami 1 h 53 minutes after 

the earthquake (Ablain et al., 2006; Gower, 2007) at about 5°S in the Indian Ocean heading 

northeast on ascending pass 129 of cycle 109 (Fig. 1). Since the satellite launch in 2001, Jason-

1 has collected an extensive set of high-quality SSH and σ0 data, allowing us to characterize 

the variability of the radar backscattering strength under various atmospheric conditions 

without the presence of the tsunami.  

The leading front of the tsunami is contained in the window between 6°S and 2°S, with the 

spatial extent of the segment on the order of the tsunami wavelength. The tsunami signal is 

clearly present in this window and is well above the noise level in SSH records (Fig. 2A). 

Data quality in this window is high and there are few data points excluded by quality 

controls. Radar backscattering strengths measured in both the Ku- and C- microwave 

frequency bands in the vicinity of the leading front of the tsunami show up to 1 dB 

variations, which are not present in measurements along the same pass of the cycles before 

and after the tsunami (Fig. 2B, C). Using equations 1 and 2, and assuming the height of the 

background logarithmic boundary layer to be H = 50-70 m (Garratt, 1994), we calculate the  
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Fig. 1. Jason-1 satellite altimeter overflight of the Sumatra-Andaman tsunami. The Jason-1 

ground track and C-band σ0 data for pass 129 of cycle 109 is superimposed on contours of 

the tsunami leading wave front at hourly intervals after the earthquake. White stars show 

the location of the tsunami wave sources. (Tsunami wave front graphic is provided courtesy 

of the National Geophysical Data Center/ NOAA) 

tsunami period to be T = 35-45 min (Gower, 2007), and a maximum and minimum SSH 

anomaly of 0.6-0.7m and –(0.4-0.5m). We obtain values of about 1 dB for the maximum 

variation of the radar backscattering strength that are consistent with the values in Figs. 2B 

and C. A more detailed comparison of the observed to predicted σ0 variations, however, is 

not possible because of uncertainty in knowledge of the local meteorological parameters and 

the tsunami spectrum, and the high sensitivity of the tsunami-induced changes in the 

surface roughness to poorly known environmental parameters, such as the background 

wind speed. Despite this difficulty, the σ0 variations can be attributed to the tsunami by 

performing statistical randomization tests using historical Jason-1 σ0 data and comparing to 

the σ0 data collected during the passage of the tsunami. The Jason-1 σ0 data obtained during 

the Sumatra-Andaman tsunami passage were discussed by Troitskaya & Ermakov (2005; 

2008), but they did not compare the data to analogous data in the absence of the tsunami. 

To perform the randomization tests, one thousand 3.2°-windows centered between 20°S and 

10°N were randomly selected in the tropical Indian Ocean from cycles 1-174 of Jason-1. The 

data were processed as outlined in section 3.2, and the RMS values and the number of zero 

crossings were calculated for the σ0 data in each window and compared to the respective 

values in the window covering 5.6°S to 2.4°S along pass 129 of cycle 109. Only a few percent 

of the randomly selected windows simultaneously have equal or larger values of both the 

RMS σ0 anomaly and the number of zero crossings. The statistical significance of the 
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hypothesis that surface roughness variations with and without the tsunami are not 

substantially different is 3.15% and 0.93% when estimated using the Ku- and C-band σ0 

data, respectively (Fig. 3). 

As described in section 3.2, we also performed randomization tests implementing a spectral 

approach. Each 3.2°-window was processed and filtered as outlined in section 3.2, and the 

Fourier spectrums were computed for the σ0 anomalies and cross-correlation function of the 

SSH and σ0 anomalies. The spectral measures of these anomalies were compared to those 

computed for the window covering 5.6°S to 2.4°S along pass 129 of cycle 109. The 

probability distribution densities of the spatially filtered σ0 anomaly, as measured in the C-

band (Fig. 4a) and the σ0 – SSH correlation (Fig. 4b), show that the σ0 variability equalled or 

exceeded its level in the tsunami event in 1.7% of the cases, while the correlation level in the 

tsunami event was uniquely large. For the σ0 data obtained in the Ku-band, the 

corresponding significance level is 6.8% for the σ0 variability (Fig. 4c); the σ0 – SSH 

correlation remains uniquely large in the tsunami event (Fig. 4d). Thus, the randomization 

tests provide strong support for the hypothesis that the σ0 variations and hence the 

underlying surface roughness variations observed by Jason-1 during the passage of the 

Sumatra-Andaman tsunami passage, were caused by the tsunami. 

In addition to detecting the leading wave front of the tsunami where the amplitude of the 

wave is often the largest, it is important to be able to detect the tsunami away from  

 

Fig. 2. Jason-1 data for pass 129 from 6°S to 2°S shown for the cycles before the tsunami 

(blue), coincident with the tsunami (red) and after the tsunami (green). (a) Sea surface 

height. (b) Ku-band radar backscattering strength. (c) C-band radar backscattering strength 
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Fig. 3. Randomization tests of the radar backscattering strength data. (a) Ku-band σ0 data. 

(b) C-band σ0 data. Statistical significance of the hypothesis that surface roughness 

variations with and without the tsunami are not substantially different is found to be 3.15% 

and 0.93% for the Ku-band and C-band measurements respectively  

the leading edge where the magnitude of the tsunami has been diminished. We applied the 

same data processing techniques to 3.2° non-overlapping windows, which extend from 2.4°S 

(where the window test above ends) to the north along the Jason-1 pass 129 of cycle 109. 

Windows that contained data gaps too extensive to apply the processing and filtering 

techniques were excluded from the subsequent randomization tests. The other two windows 

that were used for testing ranged from 2.5°S to 0.7°N and from 0.8°N to 4.0°N. For the 

window beginning at 2.5°S, only 9.1% and 9.7% of the randomly selected windows 

simultaneously have equal or larger numbers of both RMS σ0 anomalies and the number of 

zero crossings in the Ku- and C-bands, respectively. For the window beginning at 4.0°N, 

only 6.4% and 2.2% of the randomly selected windows had greater RMS σ0 anomaly and 

more zero crossings for the Ku- and C-bands, respectively. Similarly, for the randomization 

test using the spectral approach, the window beginning at 2.5°S yielded a spectral measure 

for the σ0 – SSH correlation that was uniquely large. The same analysis could not be applied 

to the window beginning at 0.8°N due to data gaps.  

These additional randomization tests away from the leading wave front of the tsunami 

reinforce the evidence of exceptional features in radar backscattering strength in the 

presence of a tsunami. Furthermore, these results demonstrate that our data processing 

algorithms allow detection of the tsunami manifestations in the radar backscattering 

strength for various tsunami waveforms and can successfully discriminate between regions 

where the tsunami is and is not present.  

4.2 2010 Chile tsunami 

Detection of tsunami manifestations in the Jason-1 σ0 records was simplified by the 

extraordinary strength of the Sumatra-Andaman tsunami. Other weaker tsunamis provide a 

much more rigorous test of our detection algorithm. As a result of excellent satellite 

altimeter coverage, a good candidate for analysis is the 2010 Chile tsunami that was  

generated by an Mw 8.8 earthquake on February 27th, 2010. Tsunami waves hit coastal 

towns in Chile with substantial wave heights. Although a warning was generated for the 

entire Pacific region, the tsunami did not significantly affect other areas such as Hawaii, 

New Zealand, Australia, or Japan. There were multiple satellite altimeters (Jason-1, Jason-2 
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Fig. 4. Randomization tests of the spectral measures of the radar backscattering strength 

anomaly and its correlation with sea surface height anomaly as observed by Jason-1 in the 
vicinity of the tsunami leading front. (a) Randomization tests of the spatially filtered C-band 

σ0 anomaly. (b) Randomization tests of the co-spectrum of the spatially filtered C-band σ0 

and sea surface height anomalies. (c) Randomization tests of the spatially filtered Ku-band 

σ0 anomaly. (d) Randomization tests of the co-spectrum of the spatially filtered Ku-band σ0 
and sea surface height anomalies 

and Envisat) that overflew the tsunami wave field shortly after the earthquake occurred. 

Resulting largely from the weak tsunami and small wave amplitude in the open ocean, the 

tsunami signal was only definitively identified in one pass from these three altimeters 

despite the excellent altimeter coverage. Using a simple filtering technique to remove 

variations in SSH not resulting from the tsunami, the leading wave front of the tsunami is 

positively identified about 7.5 hours after the generation of the tsunami in pass 143 of Jason-

1 cycle 300 around 15°S. The passes from the cycles 299 and 301 (before and after the one 

coincident with the tsunami) were averaged together, smoothed and then subtracted from 

pass 143 of Jason-1 cycle 300. The filtered signal agrees reasonably well with the Method of 

Splitting Tsunami (MOST) model results obtained from NOAA/ PMEL/ Center for Tsunami 

Research (Synolakis et al., 2008) for the Chile tsunami, and confirms the location of the 

leading edge near 15°S (Fig. 5). The spatial extent of the leading edge, however, differs 

between the filtered Jason-1 signal and the results from the MOST model, likely resulting 

from the oblique sampling of the tsunami by Jason-1. In other words, the Jason-1 ground 

track of pass 143 did not enter very far into the tsunami wave field and stayed close to the 

leading front of the tsunami as the wave propagated across the Pacific Ocean. Fig. 6A shows 
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Fig. 5. Filtered SSH data from pass 143 of cycle 300 of Jason-1, occurring about 7.5 hours 

after the earthquake. The filtered signal is in agreement with the results from the MOST 

model and appears to confirm the location of the leading wave front of the tsunami around 

15°S 

the MOST model results at the time Jason-1 entered the tsunami wave field, while Fig. 6B 

shows the model results at the time the satellite altimeter departed the tsunami wave field. 

As a result of the oblique sampling of Jason-1, a small time difference between reality and 

model could result in a considerable change in the location and spatial extent of the leading 

edge of the tsunami.  

The leading front of the tsunami is contained in the window between 16°S and 12°S, with 

the spatial extent of the segment on the order of the tsunami wavelength. The tsunami 

signal is clearly present in this window with amplitude of greater than 20 cm (Fig. 5 & 7A). 

Data quality in this window is high and there are few data points excluded by quality 

controls. Radar backscattering strengths measured in both the Ku and C microwave 

frequency bands in the vicinity of the leading front of the tsunami do not show variations as 

strong as those observed for the 2004 Sumatra-Andaman tsunami, particularly in the C-

band. This is not surprising given the relative strengths of the two tsunamis. 

To perform the randomization tests, one thousand 3.2° windows centered between 50°S and 

10°N were randomly selected in the Pacific Ocean from cycles 1-305 of Jason-1. The  

data was processed as outlined in section 3.2, and the RMS values and the number of zero 

crossings were calculated for the σ0 data in each window and compared to the respective 

values in the window covering 15.5°S to 12.3°S along pass 143 of cycle 300. The statistical 

significance of the hypothesis that the surface roughness variations with and without the 

tsunami are not substantially different is 0.4% and 20.8% when estimated using the Ku- and 

C-band σ0 data, respectively. While the randomization test on the Ku-band radar 

backscattering strength yielded positive identification at the 1% significance level, 30 zero 

crossings and an RMS σ0 anomaly of only 0.20 were found for the window containing the 

leading front of the tsunami. The high significance level obtained from the randomization 

test is primarily a result of the large number of zero crossings. Given the physical 

characteristics of the tsunami, we would expect fewer zero crossings. Without knowledge of 

the wind speed at the time of the tsunami, however, the expected RMS σ0 anomaly is 

unknown. The C-band radar backscattering strength for the same window contained 10 zero 
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Fig. 6. MOST model results at the time Jason-1 entered the tsunami wave field (according to 

the model) (A) and at the time Jason-1 departed the tsunami wave field (B). The oblique 

sampling of the leading front of the tsunami by Jason-1 provides a possible explanation for 

the discrepancy between model results and Jason-1 data as seen in Fig. 5 

 

 

Fig. 7. Jason-1 data for pass 143 from 16°S to 12°S shown for the cycles before the 2010 Chile 

tsunami (blue), coincident with the tsunami (red) and after the tsunami (green). (a) Sea 

surface height. (b) Ku-band radar backscattering strength. (c) C-band radar backscattering 

strength 

crossings and RMS σ0 anomaly of 0.12, producing poor results for the randomization tests. 

The randomization tests utilizing the spectral approach were not conducted because the lack 

of noticeable variations in the σ0 anomaly and weaker SSH anomaly signal are unlikely to 

produce positive results. 

4.3 1992 Nicaragua tsunami and 1995 Chile tsunami 
While we have positively detected the tsunami-induced variations in ocean surface 

roughness for the 2004 Sumatra-Andaman tsunami, we have only tentatively identified the 
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tsunami-induced variations for the 2010 Chile tsunami, raising questions about the ability to 

detect weaker tsunami signals. Okal et al. (1999) studied seven other tsunami events using 

satellite altimetry. Using only SSH measurements, one tsunami (1992 Nicaragua Tsunami) 

was positively detected and another tsunami (1995 Chile tsunami) was tentatively detected. 

Using the statistical randomization tests, we can attempt to detect the tsunami-induced 

variations in ocean surface roughness. 

The 1992 Nicaragua tsunami was generated by a “tsunami earthquake,”  i.e., an earthquake 

that produces an unusually large tsunami relative to the earthquake magnitude due to a 

slow rupture (Kanamori & Kikuchi, 1972). The ERS-1 satellite altimeter sampled the tsunami 

wave field on passes 523 and 525 of cycle 87. Both tracks sampled the tsunami about 3.5 and 

5.5 hours after the tsunamigenic earthquake, respectively. Okal et al. (1999) determined that 

the tsunami signal could not be detected in pass 523 and focused their attention on 525. ERS-

1 entered the tsunami wave field around 17°S, with wave amplitudes seen in the SSH of less 

than 10 cm (Fig. 8).  Variations in the radar backscattering strength were around 0.5 dB. 

To perform the randomization tests, one thousand 3.2° windows between 40°S and 20°N 

were randomly selected in the Pacific Ocean from cycles 83-101 of ERS-1. The data was 

processed as outlined in section 3.2, and the RMS values and the number of zero crossings 

were calculated for the σ0 data within each window and compared to the respective values 

in the window covering 17.0°S to 13.8°S along pass 525 of cycle 87. The statistical 

significance of the hypothesis that the surface roughness variations with and without the 

tsunami are not substantially different is 2.6% when estimated using the Ku-band σ0 data. 

This suggests a positive identification of the tsunami signal from variations in ocean surface 

roughness. 

As mentioned above, Okal et al. (1999) tentatively identified the 1995 Chile tsunami from 

SSH measurements. A relatively large earthquake generated a tsunami with run-ups of 2 m 

in the Marquesas Islands. The TOPEX/ Poseidon satellite altimeter sampled the tsunami 

wave field along two passes (230 and 232) of cycle 105, 3 and 5 hours after the earthquake 

occurred. The tsunami signal was not detected in pass 230, but there was tentative 

identification of the tsunami in pass 232. Okal et al. (1999) estimate that TOPEX/ Poseidon 

entered the tsunami wave field around 36°S and exited the wave field around 25°S. SSH 

wave amplitudes in this region were found to be only 10 cm with maximum variations in 

the radar backscattering strength of approximately 0.4 dB (Fig. 9). Additionally, comparing 

the SSH data from the cycles before and after the one coincident with the tsunami show very 

little variation in SSH from cycle to cycle. When using these cycles to filter the target cycle, 

only a small signal with amplitude of much less than 10 cm remains near 27°S (Fig. 10). 

We performed the randomization tests by randomly selecting one thousand 3.2°-windows 

centered between 50°S and 10°N in the Pacific Ocean from cycles 50-200 TOPEX/ Posedion. 

The data was processed as outlined in section 3.2, and the RMS values and the number of 

zero crossings were calculated for the σ0 data in each window and compared to the 

respective values in the window covering 29.0°S to 25.8°S along pass 232 of cycle 105. The 

statistical significance of the hypothesis that the surface roughness variations with and 

without the tsunami are not substantially different is 2.5% when estimated using the Ku-

band σ0 data. This suggests a positive identification of the tsunami signal from the 

variations in ocean surface roughness. Given the relatively small signal found in the SSH 

data, however, this identification remains tentative.  
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Fig. 8. ERS-1 data for pass 525 from 18°S to 10°S shown for the cycles before the 1992 

Nicaragua tsunami (blue), coincident with the tsunami (red), and after the tsunami (green). 

(a) Sea surface height. (b) Ku-band radar backscattering strength  

5. Feasibility of tsunami early detection and warning 

The use of radar backscattering strength measurements for the detection of a tsunami in the 

open ocean has been positively demonstrated for the 2004 Sumatra-Andaman tsunami and 

tentatively demonstrated for the 1992 Nicaragua tsunami, 1995 Chile tsunami, and 2010 

Chile tsunami. Satellite altimeters provide concurrent measurements of SSH and σ0 allowing 

for the identification of the leading edge in SSH and subsequent testing of this leading edge 

using randomization tests on σ0 measurements. While the four tsunamis mentioned above 

were well sampled by satellite altimeters, historically satellite altimeter measurements of 

tsunamis are uncommon. Even with several satellites on orbit, nadir-pointing satellite 

altimeters do not provide the ground track coverage necessary to ensure sampling of a 

tsunami wave field. Furthermore, as the results above show, even if timely sampling of the 

tsunami was available in real time, separating the tsunami signal from the background 

ocean variability is difficult. The use of satellite altimeters as the foundation for an early 

detection system is not plausible. 

While radar backscattering measurements from satellite altimeters are only available along 

one-dimensional lines traced by the nadir ground track, two-dimensional images of 

tsunami-induced changes in ocean surface roughness could be obtained by using 

microwave radiometers and radars already on orbit. As outlined in section 2, Godin et al. 

(2009) present a model for calculating the tsunami-induced changes in ocean surface 

roughness, providing a factor directly related to SSH that corresponds to the modulation of 

background wind speed resulting from the passage of a tsunami. The ability to detect the 

tsunami from such a two-dimensional image is largely dependent on the variability and 

strength of the background wind field at the time of the tsunami passage. With a constant 

background wind of physically realistic magnitude, the tsunami-induced changes in ocean 
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Fig. 9. TOPEX/ Posedion data for pass 232 from 35°S to 22°S shown for the cycles before the 

1995 Chile tsunami (blue), coincident with the tsunami (red), and after the tsunami (green). 

(a) Sea surface height. (b) Ku-band radar backscattering strength 

surface roughness are apparent (Fig. 11A). Values shown are computed from equations 1 

and 2, assuming a constant background wind of 3 m/ s and a SSH profile derived from the 

Jason-1 measurements for the 2004 Sumatra-Andaman tsunami (the two-dimensional SSH 

values were not measured directly by Jason-1, but are representative of the magnitudes 

during the Sumatra-Andaman tsunami). When using the QuikSCAT wind speeds from 

December 26, 2004 (the day of the Sumatra-Andaman tsunami), however, the tsunami-

induced σ0 changes are obscured by the variability of the background wind field (Fig. 11B). 

As in the one-dimensional case, it will likely be necessary to find an appropriate method for 
 

 

Fig. 10. TOPEX/ Posedion data for pass 232 from 35°S to 22°S filtered using cycles before and 

after the cycle containing the tsunami. The amplitude of the signal is greatly reduced as a 

result of the similarity between the three signals, as seen in Fig. 9A 

filtering the data to allow separation of the tsunami-induced signal from the background 

wind variability and measurement noise.  

To date, searches of two-dimensional images of ocean surface roughness measurements 

from instruments already on orbit have not yielded any positive identification of a tsunami-

induced signal, partially due to poor sampling coincident with the events. Nevertheless, it is 

possible that sufficient satellite sampling of the tsunami wavefront and other physical 
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characteristics of the tsunami could be utilized in the detection of a tsunami using changes 

in ocean surface roughness. Multiple two-dimensional images of the same region obtained 

with relatively short time separation could allow for the use of the rapid propagation speed 

and large spatial extent of the tsunami in the open ocean to aid in the early detection of the 

tsunami signal. Lognonn 

6. Summary and conclusions 

 Satellite altimeters provide the chance to study the effects of a tsunami wave in the open 

ocean through concurrent measurements of the sea surface height and the radar 

backscattering strength. Availability of the SSH data allows one to compare statistical 

properties of the radar backscattering strength when there is and there is not a tsunami 

wave present, without having to use tsunami source and propagation models. Using 

satellite altimeter observations, we have demonstrated that tsunamis in the open ocean 

cause distinct, measurable changes in ocean surface roughness. We have shown this to be 

true definitively for the 2004 Sumatra-Andaman tsunami and tentatively true for the 2010 

Chile tsunami, 1992 Nicaragua tsunami, and 1995 Chile tsunami.  

Although the feasibility of tsunami detection from changes in ocean surface roughness has 

been demonstrated using measurements from satellite altimeters, the practical issue of 

optimal retrieval of a tsunami signal from other sources of ocean roughness measurements 

remains an open question. Use of radar backscattering measurements from satellite 

altimeters would be impractical for tsunami detection and early warning purposes because 

of the limited number of operational satellite altimeters. Even if the data could be processed 

quickly enough to be useful, the temporal resolution and spatial coverage of nadir pointing 

altimeter measurements is not adequate for tsunami detection and warning. The tsunami- 
 

  

Fig. 11. Using the model presented in Godin et al. (2009) and equations 1 & 2, the two-

dimensional field of radar backscattering strength (dB) is computed for A) a constant 

background wind of 3 m/ s, and B) a background wind field obtained from QUIKSCAT on 

December 26, 2004. SSH data used for computing the values has been derived from the 

Jason-1 measurements of the 2004 Sumatra-Andaman tsunami  

induced surface roughness variations, however, are likely to be observable with other types 

of space and airborne sensors. Unlike the sea surface height, which is measured at nadir 

points along the satellite ground track, variations in ocean surface roughness can potentially 

be measured over wider swaths with side-looking radars and scanning microwave 

radiometers. The broader surface coverage of these sensors suggests that they are more 

promising for early tsunami detection and may be an important component in a future 
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global system for tsunami detection and warning. Further research is required to 

demonstrate tsunami detection with such instruments and, as seen in Fig. 9, appropriate 

analysis techniques will have to be developed to extract the tsunami signal from such data. 

We anticipate that our study will stimulate the development of data processing algorithms 

and microwave sensors for the identification of tsunami-induced ocean surface roughness 

changes to complement or enhance existing regional tsunami detection and early warning 

systems and contribute to a future global system. 
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