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1. Introduction 
 

Designing a mobile robot that operates in our everyday environment is a challenging task. 
Complexity of the environment set strict requirements for both the hardware and software 
components of the robot. A robot needs sensors and sensor data processing to keep 
updating the environment. Furthermore, the robot has to integrate task execution with fast 
reaction to unexpected situations. These problems are fundamental to embodied 
autonomous systems that have to interact with unknown dynamic environments. To 
overcome this problem, various types of architectural framework of mobile robot have 
been introduced. These methods range from centralized sense-model-plan-act 
architectures to distributed behaviour based architectures. 
Behaviour-based architecture has emerged as an alternative to traditional approaches for 
designing autonomous mobile robots (Maes, 1989). It consists of a collection of task-
achieving modules or behaviours, which achieve goals and run independently. Each 
behaviour can take inputs from the robot sensors and send outputs to the robot actuators. 
Intelligence emerges from the interaction of the behaviours of the system. Thus the 
coordinator plays an important role to combine the outputs from several conflicting 
behaviours. This is known as the action selection problem (ASP) and following is the 
definition of ASP: “How can such an agent select ‘the most appropriate’ or ‘the most 
relevant’ next action to take at a particular moment, when facing a particular situation?” 
(Pirjanian, 1998). 
A dynamic weighted voting technique is introduced to solve the problem in multiple 
behaviour coordination. It proposes a satisfactory mechanism for action selection that 
covers the three criteria, namely capability of dealing with multiple problems, multi-
valued behaviour, and dynamic priority. The use of voting technique for command fusion 
allows the mobile robot to deal with multiple problems. It takes a shared control approach 
where each behaviour module concurrently shares control of the mobile robot by 
generating votes for every possible motor command.  
A centre arbiter will then perform command fusion to choose the most appropriate action. 
Besides, the generated votes are between 0 and 1, with vote zero being the least desired 
action and vote one is the most desired action. It employs the concept of multi-value rather 
than simple binary value. The votes are generated in this manner to show the possibility 
for each action to achieve behaviour’s goal. With the weight generation module, the 
behaviours’ weights are generated based on the readings from various sensors. In different 
situations, the behaviours will have different weights. Therefore, the priority of each 

Source: Cutting Edge Robotics, ISBN 3-86611-038-3, pp. 784, ARS/plV, Germany, July 2005 Edited by: Kordic, V.; Lazinica, A. & Merdan, M.
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behaviour changes dynamically according to the situation by modifying their relative 
importance. 
Various techniques have been proposed for behaviour coordination to solve the action 
selection problem. From the literature, the action selection mechanisms had been divided 
into two main groups, known as arbitration and command fusion respectively (Brooks, 
1986). Behaviour arbitration is having the command of one behaviour completely 
overriding the commands of other behaviours. These include priority-based (Kosecka & 
Bajcsy, 1993), state-based (Arkin & Mackenjie, 1994), and winner-take-all (Pirjanian, 1998) 
approaches. Meanwhile command fusion mechanisms coordinate the activities of the set 
of behaviours that are active simultaneously by selecting the action that best satisfies the 
system’s goal. These can further be divided into superposition (Khatib, 1986; Arkin, 1989; 
Saffiotti, et al., 1995), fuzzy (Tunstel, 1995; Pirjanian & Mataric, 1999) and voting (Brooks, 
1986; Rosenblatt, 1995; Riekki & Roning, 1997) approaches. 
In this paper, a dynamic weighted voting technique is proposed for mobile robot goal 
directed navigation in unknown dynamic indoor environment. Section 2 deals with the 
robot behaviour analysis. Section 3 discusses the implementation of this goal directed 
navigation. Section 4 describes the design of behaviour modules and weight manager. 
Section 5 presents the experimental results and discussion. Conclusion and suggestions for 
further work is given in section 6.  
 

2. Robot Behaviour Analysis 
 

The analysis of behaviour is an important aspect. The main goal of the mobile robot must 
be analyzed in detail. It is a top-down approach that involves decomposing the main 
objective into simpler ones, in such way that the main objective is achieved as a result 
from the execution of simpler behaviours and from their interaction. In short, a main 
objective like navigation can be decomposed into simple objectives like obstacle 
avoidance, and goal seeking. These simple objectives are going to be the basic behaviours 
for the mobile robot.  
However, from an engineering point of view it is more appropriate to construct a system 
with a specified performance and functionality (Pirjanian, 1998). A top-down breakdown 
of the given task into a set of objectives identifies a set of relevant behaviours that when 
coordinated appropriately can achieve that given task.  
Each objective module constructed from the value-tree is implemented as a single 
behaviour. Behaviour is actually a mapping from perception to action. However, it could 
be not only to define the mapping from perception to action but also to associate with each 
alterative action value that reflects its desirability. This is the key feature in voting 
technique, where behaviours vote for the desirability of the possible action set. The vote 
value is actually representing the preferences of each action in an interval of [0, 1].   
Behaviour is treated as a specific objective function. Behaviours directly calculate the 
objective functions for particular objectives. The votes are generated in order to meet the 
behaviours’ objectives. These votes generate assignments of preferences to action set. The 
assignments can be a fuzzy membership function, a probability distribution, or other 
pattern that suitable for the application. Each behaviour may use whichever 
representation and algorithm is most appropriate for that specific task. This representation 
does not exclude implementation using a look-up-table, a finite state machine, a neural 
network, or any other approach.  
Meanwhile, the weight for each behaviour also needs to be defined. The weights will 
reflect the priority of the behaviours. Behaviour with higher priority will have bigger 
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weight. The weight manager takes the sensor input and decides the weight based on the 
situation. The weight for each behaviour is chosen with the value to show their priority 
and normalised to 1. The exact value needs not to be accurate because only the relative 
values are important (Rosenblatt, 1997).  
The calculation of objective functions and assignment of weights are heuristic processes. 
There is no general guideline on these design issues due to the constraint of the 
unpredictable dynamic environment that the robot needs to deal with. Because from an 
engineering point of view, the dynamic changes of the environment are uncontrollable 
factor. Therefore, the design is done empirically and experiments have to carry out to 
improve the quality. This is actually a key feature of the embodiment in behaviour-based 
approaches. The mobile robot needs to experience the world directly, thus the idea of 
designing a mobile robot can only be proved by having a real robot that deals with the real 
environment.  
 
2.1 Performance Analysis 
 

The performance of the robot should be evaluated in quantitative terms. However, it is 
quite complicated due to the non-determinism of the robot trajectory that navigates in 
unknown dynamic environments (Fabiani et al., 1998). For dynamic domains this is 
notoriously difficult as they themselves resist modelling and characterization (Arkin, 
1995). Comparing two sets of behaviours, even within the same task, is complex and the 
domain-dependent nature of the solutions can cause these systems to be basically 
incommensurate – one may fail some times, one may fail at other times and comparison is 
difficult (Manikonda et al., 1995). This is due to the inherent limitation in the system that 
deals with unknown dynamic environment. Thus various evaluation parameters are used 
by different researchers in mobile robot experiments (Gat, 1995; Rosenblatt, 1997; 
Pirjanian, 1998; Fabiani et al., 1998). In the work presented here, two parameters are 
suggested to be taken into consideration. These are reliability index and time index.  

Reliability index, RI  is the ability to complete the task. It represents the percentage of 

completed task on the population. The formula is,  
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Meanwhile, the time index TI  is the completed-task time. It is the average time necessary 

for the mobile robot to perform the task. It will only be measured when the robot reaches 
goal. The formula is,  
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Ssuccess number of success 

Stotal number of tests 

T time to complete the task 
N total number of completed task 
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The performance is analysed and evaluated from the performance indices. If the 
performance is not satisfied, the designers should find the root cause and improve the 
design from the behaviour analysis stage. 
 

3. Implementation: Goal-Directed Navigation 
 

Research in the field of robotics is accompanied by experimental investigation of ideas, 
validation of theoretical results and so on. Simulations are not well suited for generating 
conclusive test data and results. The belief, among the opponents of simulation, is that it is 
only in the real world that certain phenomena manifest themselves and thus studies 
should be based on real-world experimentation. While simulations are quite useful for the 
proof-of-concept stage of research, when the feasibility of algorithms needs to be tested, 
they do not suffice as proof of algorithm functionality in the real world. If an algorithm 
fails in simulation it will certainly not work in the real world, but the opposite is not 
necessarily true. Robotics is an experimental science and must have realistic experiments 
as a central component for verifying hypotheses. In order to test the algorithm and avoid 
repeated work in simulation, a physical robot, AIBOT, was used for testing and 
debugging.  
 
3.1 Mobile Robot Goal-Directed Navigation  
 

The motivation behind the presented work was to build a mobile robot for indoor goal-
directed navigation. The goal is to implement behaviour-based approach using dynamic 
weighted voting technique to achieve navigation as a result of a collection of interacting 
behaviour. The mobile robot must successfully navigate around obstacles, reach its goal 
and do so efficiently.  
Goal-directed navigation problem is a classical problem in mobile robotics. In its original 
sense, the term navigation applies to the process of directing a ship to its destination. For a 
navigating mobile robot, the process can be seen as answering the following three 
question: 1) “Where am I?” 2) “Where are other places with respect to me?”, and 3) “How 
do I get to other places from here?” (Levitt & Lawton, 1990). Sometimes, it does not 
require knowledge of the starting position. Thus the most important question is “How do I 
reach the goal?” In short, the definition of navigation was taken as the process of 
determining and maintaining a course or trajectory to a goal location (Gallistel, 1990). 
However, to achieve a successful navigation, an appropriate navigation scheme is needed. 
A navigation scheme is needed to find the lowest cost path from the robot’s start state to 
the goal state. Cost can be defined to be distance travelled, energy expended, time exposed 
to danger and so on. In the past decade, various kinds of navigation schemes are 
introduced, ranging from simple reactive search navigation to complicated map-building 
navigation (Franz & Mallot, 2000). To perform an indoor goal-directed navigation, a 
simple navigation scheme with direction following is needed. In direction-following 
navigation, the mobile robot is required to follow a certain direction to find the goal. The 
goal itself needs not to be perceivable during approach. If direction following is coupled 
with distance information, then direction following becomes more efficient. Since the 
environment is unknown a priori, the mobile robot needs to navigate and store the 
information of the environment. A set of states of the environment is stored and a spatial 
map of the environment is built for further planning. Planning is required to avoid local 
minima problem and find optimal way while navigating in unknown environment.  
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3.2 The Mobile Robot - AIBOT 
 

To test the proposed voting technique, a physical mobile robot, AIBOT (Autonomous 
Intelligent Mobile Robot) was used in the experiments. Two wheels mounted on a single 
axis are independently powered and controlled, thus providing both drive and steering 
for the mobile robot. Meanwhile, two additional passive wheels or castors are provided 
for support. It moves at an average speed of 0.3 m/s. AIBOT’s computational hardware is 
located on the body. The processing is performed by a MIT Handy Board based on 
Motorola 68HC11 microprocessor that includes 32K of battery-backed static RAM, two 
L293D chips capable of driving four DC motors, both analog and digital inputs for a 
variety of sensors, and a 16x2 character LCD screen (Martin, 1999). An expansion board is 
added to the system, which provides additional inputs for sensors, digital outputs, and 
connector mount for Polaroid 6500 ultrasonic ranging system. The Handy Board runs 
Interactive C (IC in short), a multi-tasking version of the C programming language. It 
consists of a compiler and run-time machine language module. IC implements a subset of 
C including control structures, local and global variables, arrays, pointers, 16-bit and 32-bit 
integers, and 32-bit floating point numbers. The program is compiled to Motorola hex file 
and loaded into Handy Board’s memory using 6811 downloader.  AIBOT is equipped with 
various sensors. These are infrared sensors, sonar sensors, and odometer.  
 
3.3 Sensor Modules 
 

Three kinds of sensors are used in the navigation task. These are infrared sensors, sonar 
sensors, and odometer. Infrared sensors are a type of light sensors, which function in the 
infrared part of the frequency spectrum. However, they are preferable to visible light 
because it suffers a bit less from ambient interference since it can be easily modulated. 
They consist of an emitter and a receiver. In mobile robot’s obstacle detection, infrared 
sensors are used as reflectance sensors. The emitter provides infrared signal and the signal 
will be reflected to the receiver if there are obstacles. Infrared sensors can only detect the 
presence of obstacle but not able to measure the distance of the obstacle. SUNX CX-22-PN 
infrared sensor is used in AIBOT. The sensing range is up to 0.8 meter. Seven infrared 
sensors are placed in front of AIBOT. They are directly connected to the digital input ports 
of Handy Board.  
Another common sensor technique in robotics for proximity detection is time-of flight 
measurement (TOF). This is commonly achieved by using sonar (sound navigation and 
ranging). In sonar, the detection is based on the propagation of waves between the target 
and detector. The sensing is initiated by first creating a sonic ping at a specific frequency. 
These transitions are fed to the transducer at around 50 kHz. As this chirp falls well out of 
the range of human hearing, the ping is not audible. The chirp moves radially away from 
the transducer through the air at approximately 343.2 m/s, the speed of sound. When the 
chirp reaches an object, it is reflected. This reflected chirp then travels back towards the 
transducer, again at the speed of sound. As the reflected signal hits the transducer, a 
voltage is created which is fed to a stepped-gain amplifier. The Polaroid 6500 series 
ultrasonic ranging system is used in AIBOT. It is an economical sonar ranging module that 
is widely used in robotics researches. This module is able to measure distances from 6 
inches to 35 feet. Three transducers are placed in front of AIBOT to sense the environment.  
To move to a goal point, mobile robots need to know its relative position from the goal 
location. Dead reckoning (derived from “deduced reckoning” from sailing) is a simple 
mathematical procedure for determining the present location of a vehicle by advancing 
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some previous position through known course and velocity information over a given 
length of time. The simplest form of dead reckoning is often termed as odometry. This 
implies that the vehicle displacement along the path of travel is directly derived from 
some on-board odometer. A common means of odometric measurement involves optical 
encoders directly coupled to wheel axles. In AIBOT, the odometer sensors are connected to 
digital input port of Handy Board. They provide the rotational count of the wheel and 
thus the vehicle velocity can be calculated.  
 
3.4 Possible Action Set 
 

If both drive wheels turn in tandem, the robot moves in a straight line. If one wheel turns 
faster than the other, the robot follows a curved path. In order to set the possible set as 
candidates, a discrete number of circular trajectories are chosen. Eight possible actions are 
as shown in Fig. 1 and named as “Hard Left”, “Left”, “Soft Left”, “Forward”, “Soft Right”, 
“Right”, “Hard Right”, and “escape” respectively. “Escape” action is different from others. 
It is an action where one wheel move forward and the other wheel move backward. Thus 
the robot turns instantaneously on a point. It enables the robot to turn in a narrow space.  

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 1. Possible actions for the robot 
 

4. Design of Behaviour Modules and Weight Manager 
 

In this stage, design of each behaviour modules is discussed. Each behaviour votes for 
every possible action base on the sensor reading. They vote in the pattern to achieve the 
behaviours’ objective. Meanwhile, weight manager is designed to generate weight value 
for each behaviour.  
 
4.1 Obstacle Avoidance Behaviour 
 

The objective of this behaviour is to move the robot at a safe distance from the obstacles. 
Obstacle avoidance techniques range from primitive algorithms that detect an obstacle 
and stop the robot in order to avoid a collision, to sophisticated algorithms that enable the 
robot to detour obstacles. Sonar sensors and infrared sensors are used separately to meet 
the objective of avoiding obstacles.   
Since infrared sensors are only detecting the presence of obstacles, the real distances of the 
obstacles are not available. Therefore, they only trigger upon detection of obstacles. For 

Soft Right 
Forward 

Hard Right 

Right 
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Left 

Hard Left 

 

Robot Escape 
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each possible path, three infrared sensors are responsible to determine the vote for that 
path. If all three infrared sensors detect the presence of obstacle, obstacle avoidance 

behaviour with infrared ( IRb ) will vote 0 to that path and vote 1 if the opposite situation 

holds. If only one or two of the infrared sensors detect the obstacle, it will vote for a value 
in between 0 and 1. This can be shown by the equation below,  
 

    ( )                     

 triggeredare sensors  threeif                        0.0

  triggeredare sensors  twoif                       3.0

      triggeredissensor  one if                       7.0

                     obstacle no if                       0.1
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⎩
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⎨

⎧

=mIR xb      (3) 

 
For “Escape” action, the voting process is different. The robot only needs to escape when it 
goes in to a space with a lot of obstacles, where the passage is too narrow and it is not 
allowed to move forward or turn in circular path. This condition is represented by the 
density of obstacles. When the number of infrared sensors that sense the presence of 
obstacle is increased, the obstacle density is high. Therefore, the vote is a function of 
number of sensors being triggered, as shown in the equation below,  
 

   ( )
sensorsofnumber total

 triggeredbeing sensors ofnumber 
   Escape =IRb             (4) 

So, when the mobile robot goes into a narrow space, the escape action will receive higher 
average vote.  

The obstacle avoidance behaviour with sonar ( sonarb ) votes for the possibility to bring the 

mobile robot to a path free from obstacles,  
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4.2 Goal-Seeking Behaviour  
 

The task for goal-seeking behaviour is to look for a goal point and try to approach it. In a 
completely known environment, an optimal algorithm is used to search a state space to 
find the lowest cost path for the mobile robot. However, the work presented here focuses 
on the robot with no information about its environment before it begins its traverse. Thus 
the goal-seeking behaviour needs to direct the robot toward the goal point from an 
incomplete and uncertain model of the environment. “How to locate the goal-point” is a 
main issue in this behaviour. Two different techniques are used to achieve the target of 
this behaviour. These are goal-seeking behaviour with odometer and goal-seeking 
behaviour with planning. 

Dobs the detected obstacles distance  

Dmax the maximum distance to detect 

Dmin the minimum distance to detect 
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This behaviour is designed to assign high values to actions that will cause the robot to face 
the target and low values to action that do the opposite. To use the odometer and dead-
reckoning method, the coordinate system for the robot’s world must be defined. The robot 
operates in a two-dimensional world. This means that at any given time its position can be 
defined in terms of 2-D Cartesian coordinates and the direction it is facing can be defined 
as an angle measured from one of the axes, as illustrated in Fig. 2. The orientation of the 
robot (theta) is measured counter clockwise from the x-axis. The position coordinates, x 
and y, are in meters and the orientation angle, theta, is in radians.  
 

 

 

 

 

 

 

 
 

 

 
This behaviour generates the votes in three steps. First, the robot receives signals from the 
odometer. It counts the pulses from the odometer. These pulses are used to calculate the 
robot’s position as well as its heading. The robot’s current position and heading is 
calculated as below,  
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Secondly, with the robot’s current position and heading, the relative position to the goal-
point is calculated. The robot will then locate the target point direction. Finally, it votes for 
each possible action according to their angle to the goal point. A trajectory that will lead 
the robot toward the goal will get a higher vote and vice versa. This will give the robot 
more flexibility in navigation and take the uncertainty into consideration. The vote 

VR Velocity of right wheel 
VL Velocity of left wheel 
t time 
d  distance between wheels 

θo initial orientation of the robot 

x 

theta 

y 

Figure 2. Coordinate System of the Mobile Robot 
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evaluation in this goal-seeking behaviour with odometer ( odob ) is represented as an 

objective function of ∏− function (Pirjanian, 1998), 
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Fig. 3 illustrates an example of the vote evaluation in this behaviour. In Fig. 3a, the mobile 
robot detects the goal on 60o to the right. It broadens the target direction and generates the 
votes as shown in Fig. 3b.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
In mobile robot navigation, the use of planning is a critical issue. While planning is useful 
for mobile robot to escape from the trap and avoid local minima problem, it is 
computationally expensive. This is mainly due to the use of knowledge representation. 
The knowledge could be a map, an analytical representation of surface features, or a 
semantic description of the world. Traditional systems build symbolic maps of the world 
for navigational reference. In the work presented here, knowledge is represented as a local 
spatial memory to minimize the use of memory. The addition of a local spatial memory 
allows the mobile robot to avoid areas that have been visited.  
The concept of this local spatial memory is equivalent to leaving chemical trail in ants 
(Balch & Arkin, 1993). The memory is a two dimensional array of integers, which 
corresponds to the environment to be navigated. Each element of the grid records the 
number of times the corresponding square patch in the world has been visited. Every time 
the grid point is visited, it will be given a value of +1. The more often an area is visited, the 
larger the value. This recorded “trail” is used later for planning.  

θm  angle of the candidate path 

θgoal relative angle to the goal 

β width of window, which determines the value 

Figure 3. Vote evaluation in goal-seeking behaviour 
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The planning function uses the memory with current positional information to generate 
the vote to run away from an area that has already been visited. It compares the mark 
point of the area around the robot’s current position and finds the freest space, which is 
the least visited. The direction is recorded and set to be the temporary goal point. The 
planning function will vote for this temporary goal point in the same manner as the 
algorithm in goal-seeking behaviour with odometer. That is, it votes for each possible 
action according to their angle to the temporary goal point. The formula for goal-seeking 

behaviour with planning ( planb ) is, 
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4.3 Weight Manager 
 

The weight manager plays an important role to change the behaviour’s weight 
dynamically to enable the mobile robot to deal with the complexity of the environment. 
From the discussion above, it shows that there are two levels of arbitration in the mobile 
robot, that is the arbitration in behaviour team and the arbitration in centre arbiter. 
Therefore, the weight manager needs to generate three weight functions, one for 
arbitration in obstacle avoidance behaviour team, one for goal-seeking behaviour team, 
and one for centre arbiter. In obstacle avoidance behaviour team, there are two 
behaviours. Although the two behaviours use different sensors to achieve the same 
function, their priorities are the same in every situation of the environment. No matter 
what is the situation of the environment, both the behaviours will vote for the path to 
avoid obstacles. To represent their priorities in the system, these two behaviours have the 
same weight value. In other words, the weight values for these two behaviours will not 
change; they both are assigned with the value of 0.5. That is,  

 

          5.0== sonarIR EW                                      (11) 

 

where WIR and Wsonar are the weight for obstacle avoidance with infrared and the weight 
for obstacle avoidance with sonar respectively.  
In goal-seeking behaviour team, the two behaviours have different priorities in different 
situations. In example, when the mobile robot in a free state, the goal-seeking behaviour 
with planning will have lower priority than goal-seeking behaviour with odometer. On 
the other hand, when the mobile robot is trapped in a local minima, the goal-seeking 
behaviour will have higher priority such that its vote could bring the mobile robot out of 
the visited area. Therefore, the weight values are the function of the change in 
environment situation, while the environment situation is the degree of belief in a trapped 

θm  angle of the candidate path 

θtem relative angle to the temporary goal point 

β width of window, which determines the value for half vote 
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area. It takes an assumption where the belief in trapped area is proportional to the sum of 
mark point value. If the mark point value is high, the belief in a trap area is high. Thus the 
weight value for goal-seeking behaviour with planning will increase, as shown below,  

 

mark_min  -mark_max 

mark_min  - mark_sum
=planW                                    (12) 

 

planodo WW −= 0.1                                            (13) 

 

 

 

 

 

 

 
In the centre arbiter, there are two weight values, which are weights for obstacle 
avoidance behaviour team and goal-seeking behaviour team respectively. The obstacle 
avoidance behaviour’s weight must be larger to reflect that avoiding obstacles is more 
important than approaching the goal (Rosenblatt, 1997). Therefore, the weight value for 
obstacle team is set in an interval of [0.6, 0.9] while the goal team is [0.4, 0.1]. The weight 
values change according to the density of obstacles. An assumption is taken where the 
obstacle density is proportional to the number of infrared sensors being triggered. If the 
number of the infrared sensors being triggered is high, the obstacle density is high. It 
means that the mobile robot is in an obstructed situation with cluttered of obstacles. Thus 
the obstacle avoidance behaviour team should be given higher weight value relative to the 
condition when obstacle density is low. This is shown in the equation,  
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5. Experimental Results and Discussion 
 

Experiment is the way to prove the theoretical concept in real world. In the previous 
chapter, the implementation of dynamic weighted voting technique is discussed. The 
proposed technique is targeting on solving the problem in action selection for behaviour-
based mobile robot. It was implemented on AIBOT for indoor goal-directed navigation. 
Experiments were carried out to validate the design of the proposed technique. The 
experimental results, comparisons and discussions are covered in this chapter.  

Wplan   Weight value for goal-seeking behavior with planning 

Wodo  Weight value for goal-seeking behavior with odometer 

mark_sum total sum for mark point 

mark_min minimum sum value for mark point to trigger planning 

Wobs  Weight value for obstacle voidance behavior team  

Wgoal  Weight value for goal-seeking behavior team 

N Number of infrared sensors being triggered 

Ntotal Total number of infrared sensors 
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5.1 Experimental Procedure 
 

The proposed idea is evaluated and tested across a variety of different types of 
environment and behaviour combinations. The mobile robot went through the tests in 14 
experimental fields. The objective of the experiment is to test the proposed dynamic 
weighted voting technique for behaviour-based mobile robot goal-directed navigation in 
an unknown dynamic environment. AIBOT was designed with four behaviours. The 
experiments were designed to show the results of the navigation with different behaviour 
combinations. Therefore, four experiments were carried out with the behaviour 
combination implemented shown as described below. In each experiment, AIBOT is tested 
in all of the 14 experimental fields. For each field, AIBOT was run for 50 times to get an 
average result. Thus in each experiments, 700 experimental runs were conducted. While 
running the experiment, the battery level for the motor is very important as the difference 
in battery level may affect the speed of AIBOT and thus affect the performance. To avoid 
this problem, the battery is fully charged before starting a new experiment set. Data is 
collected and the performance indices are reliability index and time index. 
 
5.2 Navigation Results 
 

The results of these navigation experiments are presented and discussed in this section. 
Experiment 1 - Obstacle avoidance behaviour with infrared and goal-seeking behaviour with 
odometer 
This was an experiment with only two behaviours, which are obstacle avoidance 
behaviour with infrared and goal-seeking behaviour with odometer. The objective was to 
test the concept of voting in solving action selection problem. The two behaviours with 
different objectives may generate conflicting action. Thus the dynamic weighted voting 
technique should solve the problem and choose the most appropriate action. The results 
are shown in Table 1. 

 Reliability Index, IR Time Index, IT 

Field 1 1 10.31 

Field 2 1 12.15 

Filed 3 0.94 17.89 

Field 4 0.88 14.75 

Field 5 0.92 15.36 

Field 6 1 14.32 

Field 7 0.86 19.03 

Field 8 0.64 26.25 

Field 9 0.70 24.17 

Field 10 0.66 27.12 

Field 11 0.54 29.87 

Field 12 0.30 34.71 

Field 13 0.14 80.43 

Field 14 0.16 84.59 

 
Table 1. Results of Experiment 1 

 
In field 1, the mobile robot showed reliable navigation to achieve the goal point with an 
average of 10.31s. Experiments in field 2 to field 5 indicated that the dynamic weighted 
voting technique was able to handle the conflict between the obstacle avoidance behaviour 
and goal-seeking behaviour. While avoiding obstacles in the test field, the mobile robot 
was able to maintain heading to the goal target. An example is illustrated in Fig. 4 for 



 

 213

navigation in field 3. In the beginning, the obstacle avoidance behaviour will vote equally 
for each path because it detects no obstacle. Meanwhile, the goal-seeking behaviour will 
vote for the direction of the goal point. So, AIBOT will move to the direction of the goal 
point. When the obstacle is detected, the obstacle avoidance behaviour will vote for a free 
path. Although the goal-seeking behaviour will vote for the forward move, AIBOT still 
take a turn because of the greater weight of the obstacle avoidance behaviour. By the time 
AIBOT pass over the obstacle, all the paths are free and will get equal vote from obstacle 
avoidance behaviour. Therefore, it will take a right turn to go to the goal point as voted by 
the goal-seeking behaviour. However, the results show that the mobile robot may 
sometimes fail to achieve the goal point. It may collide with the obstacles during 
navigation. This is due to the obstacle angle that is not detected by the infrared, especially 
at the edges of obstacle.  
 

 
 
 
 
 
 
 
 
 
 

 

 
Figure 4. An Example for Navigation in Field 3 

 
For navigation in corridor-like environment, the mobile robot shows high reliability in field 6. For 

corridor in field 7, there is some failure in the infrared sensors due to the obstacle angle too. In these 

two experiments, the time index showed an interesting issue where the mobile robot sometimes 

perform non-optimal path. Fig. 5 shows an example of this condition. Since the navigation is 

reactive, the mobile robot may in a position and sense that there are too many obstacles around. 

Thus the obstacle density increases. The obstacle avoidance behaviour then votes for “escape” 

action. As a result, the mobile robot turns around in the corridor or wobbles while the path is free.  

 

 

 

 

 

 

 

 

 

 

 
 
Figure 5. A condition of generating non-optimal path for corridor navigation in Field 7 
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The test in field 8 to field 11, the mobile robot produced low reliability index. Since the 
infrared sensors could only sense the presence of obstacles, it is not able to locate the 
distance of the obstacles. This has reduced the reliability for the mobile robot to find a 
narrow passage. Even if it can find the passage, it may waste some time to navigate and 
turn around. This is shown in Fig. 6 for field 9. 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 6. Mobile robot navigate turn around near the narrow passage 

 
For the local minima problem, the mobile robot with only the reactive behaviours will 
navigate repeatedly in the same area. It can only come out from the trap by chance based 
on the interaction with the environment. Therefore, the reliability index is very low. 
 
Experiment 2 - Obstacle avoidance behaviour with sonar and goal-seeking behaviour with odometer 
 
This was an experiment of obstacle avoidance behaviour with sonar and goal-seeking 
behaviour with odometer. It was similar to experiment 1 in that to test the concept of 
voting in solving action selection problem. However, in this case the sonar sensor was 
used for obstacle avoidance behaviour. This experiment also provided a comparison 
regarding the difference in using infrared and sonar for obstacle avoidance. The results 
were shown in Table 2. 
Navigation in field 1 indicated a high reliability to achieve the goal point with an average 
of 10.45s. The results for experiments in field 2 to field 5 showed a high reliability with 
only a few failures as experiment 1. With the dynamic weighted voting technique as the 
backbone, the mobile robot was able to achieve the goal point, to handle the conflict 
between the obstacle avoidance behaviour and goal-seeking behaviour. The failure, again, 
was due to the obstacle angle that was not detected by the sonar, especially at the edge of 
obstacles.  
The result of navigation in corridor-like environment was similar to experiment 1. The 
mobile robot was confronted with the same problem of sensor failure.  
For the test of narrow passage, as in field 8 to field 11, the mobile robot showed higher 
reliability relative to experiment 1. The mobile robot was more reliable in finding the 
narrow passage. It could find the way faster than it was in experiment 1 as indicated by 
the time index. This was because of the use of sonar sensors, which enabled the mobile 
robot to calculate the distance of obstacles and thus generate the vote based on the 
distances. Fig. 7 illustrates an example of smooth path through the narrow passage. 
However, there was sometimes some collision with obstacle due to the obstacle angle.  
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 Reliability Index, IR Time Index, IT 

Field 1 1 10.45 

Field 2 1 11.97 

Filed 3 0.86 15.53 

Field 4 0.92 14.12 

Field 5 0.92 16.26 

Field 6 1 13.25 

Field 7 0.78 16.46 

Field 8 0.68 19.31 

Field 9 0.74 19.67 

Field 10 0.74 18.89 

Field 11 0.66 20.12 

Field 12 0.26 42.28 

Field 13 0.20 76.31 

Field 14 0.08 86.49 

 
Table 6.2 Results of Experiment 2 

 
 
 

 

 

 

 

 

 

  
 
Figure 7. Smooth Navigation through the Narrow Passage 

 
For the local minima problem, the results were similar as in experiment 1 because the 
mobile robot had only the reactive behaviours. Therefore, the mobile robot will navigate 
repeatedly in the same area. It can only come out of the trap by chance based on the 
interaction with the environment.  
 
Experiment 3- Obstacle avoidance behaviour team (infrared and sonar) and goal-seeking behaviour 
with odometer 
 
This was an experiment with three behaviours, namely obstacle avoidance behaviour with 
infrared, obstacle avoidance behaviour with sonar and goal-seeking behaviour with 
odometer. These experiments were designed to test the use of dynamic weighted voting 
technique for command fusion in homogeneous behaviour team. Besides, the performance 
of the mobile robot with the use of homogeneous behaviour team was studied. The results 
are shown in Table 3. 
For navigation in field 1, the results were similar as in the previous experiments. AIBOT 
navigated with high reliability to achieve the goal point in average of 10.41s. In experiment 
for field 2 to field 5, the mobile robot achieved higher reliability compared to experiments 
1 and 2. With the homogeneous behaviour team, both the obstacle avoidance behaviours 
with infrared and sonar generate voted to achieve the objective of avoiding obstacles. 
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 Reliability Index, IR Time Index, IT 

Field 1 1 10.45 

Field 2 1 11.23 

Filed 3 0.94 16.85 

Field 4 1 13.94 

Field 5 1 13. 76 

Field 6 1 13.75 

Field 7 0.94 14.52 

Field 8 0.80 16.19 

Field 9 0.78 17.16 

Field 10 0.82 16.87 

Field 11 0.72 18.43 

Field 12 0.34 40.54 

Field 13 0.24 81.22 

Field 14 0.10 93.50 
 
Table 3. Results of Experiment 3 

 
The dynamic weighted voting technique was able to combine the votes from the 
behaviours.  
In corridor navigation, the results in reliability index and time index showed that the 
performance was relatively better. The time for achieving goal point was reduced, due to 
the reduction in non-optimal paths. The navigation was smoother as shown in Fig. 8. This 
was due to the use of two types of sensors that helped to increase the reliability, as stated 
in the belief of “uncertainty handling with homogeneous behaviour”.  
For the test in field 8 to field 11, the mobile robot achieved a higher reliability compared to 
experiments 1 and 2. It appeared that performance was better with the use of 
homogeneous behaviour team. This proved that the command fusion in dynamic 
weighted voting technique was able to be an alternative to traditional sensor fusion. For 
the experiments in field 12 to field 14, the mobile robot achieved low reliability results. It 
was trapped in the local minima due to inability to do planning.  

 

 

 

 

 

 
 

 

 

 
 
 
 
 
 
Figure 8. A Smoother Path in Corridor Navigation  
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Experiment 4 - Obstacle avoidance behaviour team (sonar and infrared) and goal-seeking behaviour 
team (odometer and planning) 
 
This was an experiment with four behaviours. Two behaviour teams were built, which 
were obstacle avoidance behaviour team and goal-seeking behaviour team. The new 
added behaviour was goal-seeking behaviour with planning. The objective was to test the 
mobile robot with planning capabilities, to test the ability of the dynamic weighted voting 
technique to handle the use of planning behaviour, and to solve the problem in local 
minima. The results are shown in Table 4. 
 

 Reliability Index, IR Time Index, IT 

Field 1 1 10.57 

Field 2 1 12.03 

Filed 3 0.90 17.48 

Field 4 0.96 15.65 

Field 5 1 14.11 

Field 6 1 14.02 

Field 7 0.94 15.03 

Field 8 0.84 16.53 

Field 9 0.82 16.77 

Field 10 0.82 17.06 

Field 11 0.76 19.14 

Field 12 0.62 26.18 

Field 13 0.54 65.32 

Field 14 0.48 67.98  
 

Table 6.4. Results of Experiment 4 

 
For navigation in field 1 to field 11, the mobile robot was able to reach the goal point with 
the results similar to the previous experiments. This proved an easy way to add in new 
behaviours. With the design of reusable behaviour modules, a new behaviour could be 
easily added in without modifications to previous behaviours.  
The main focus of this experiment was to test the quality of planning behaviour in field 12 
to field 14. An example of navigation in field 13 is shown in Fig. 9. The mobile robot 
moved into the trap in the beginning because it had no knowledge about the environment. 
After some navigation in the same area, the mobile robot then marked the grid point and 
kept it as a local spatial memory. While the sum of mark point increased, the goal-seeking 
behaviour with planning will be given a higher weight than odometer. Meanwhile, this 
behaviour found a new goal to move the freest space at the bottom. It thus caused the 
mobile robot to go out of the local minima trap.  
 
 

 

 

 

 

 

 
 
 
Figure 9. An Example of Navigation to Recover from Local Minima Problem 
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5.3 Discussions 
 

The four experiments above showed the navigation of AIBOT using dynamic weighted 
voting technique. The robot navigated in various kinds of environments with various 
behaviour combinations. The experiments indicated that the proposed technique was able 
to solve the action selection problem and provide a successful behaviour design.  
The results from the four experiments above were rearranged in Fig. 10 and Fig. 11 from 
the view of reliability index and time index respectively. The experimental data showed 
that the performance of AIBOT was relatively better in experiment 4, which was the 
experiment with four behaviours. This behaviour combination with an additional 
planning behaviour provided a solution for the problem of local minima. Meanwhile, it 
maintained the performance quality in other simple experimental fields. However, the 
performance in experiment 1 and 2 was sufficient for simple experimental field with only 
a few obstacles, such as field 1 to field 6. From the view of cost, these two behaviour 
combinations were easier to design. For behaviour combination in experiment 3, it 
indicated better performance compared to experiment 1 and 2 in the experiment for 
narrow passage, from field 7 to field 11. This is the advantage of using homogeneous 
behaviour team of obstacle avoidance. 
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Figure 10. Reliability Indices for All Experiments 
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Figure 11. Time Indices for All Experiments 
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An obvious problem of the experiment above was the use of odometer as the only sensor 
for localisation. While odometer was easy to implement, it suffered from the problem of 
common dead reckoning error due to wheel slippage, unequal wheel diameter, and non-
point wheel contact with the floor. This may have caused the error in calculation of the 
robot position. Therefore in some experiments, the mobile robot could not stop exactly on 
the position of the goal point.  
 
5.4 Comparison with Other Techniques 
 

A challenge in robotics is how to compare different architecture and architectural styles. 
Research papers on architectures are typically descriptive, describing what the system did 
and how it was organized but rarely provide metrics that would enable readers to 
determine what effect, if any, the architecture itself had on system performance. Thus 
comparison is done based on the theoretical analysis, rather than the runtime performance 
metrics due to the difference in mobile robot hardware, test field and others.  
The dynamic weighted voting technique takes the advantages of previous action selection 
mechanisms while avoiding the shortcomings. The use of voting technique for command 
fusion allows the mobile robot to deal with multiple problems. Each behaviour module 
concurrently shares control of the mobile robot by generating votes for every possible 
motor command. This has overcome the shortcoming of behaviour arbitration technique 
that only deals with single problem at each point in time. Rather than choosing among 
behaviours, the dynamic voting technique allows the mobile robot to take different actions 
from all behaviours into consideration.   
Meanwhile, the votes are generated between 0 and 1, with vote zero being the least 
desired action and vote one is the most desired action. This multi-value approach takes the 
idea of fuzzy logic with the belief that “the world is not black and white but only shades of 
gray”. It enables the robot to deal with uncertainty in perception and incomplete 
information about the environment. The interval vote value shows the possibility for each 
action to achieve behaviour’s goal rather than generate a single action such as behaviour 
arbitration and superposition command fusion. With the weight generation module, the 
behaviours’ weights are generated based on the readings from various sensors. It modifies 
the relative importance of each behaviour by varying their weight value. In different 
environment situation, the behaviours will have different weights. Therefore, the priority 
of each behaviour changes dynamically according to the situation. This is the feature of 
winner-take-all behaviour arbitration, where the behaviours’ priorities are changing 
dynamically. It will enable the mobile robot to deal with the complexity of the 
environment and avoid the discrimination against behaviours.  
 
5.5 Advantages and Disadvantages Dynamic Voting Technique 
 

The main advantage of the dynamic weighted voting technique is that it provides a 
reactive solution to deal with challenges in real-time responsiveness. The behaviour 
module directly maps the sensors reading to the vote value as an objective function. The 
computational process in sensor fusion is avoided. Meanwhile, planning modules is 
allowed to provide a better solution. With the dynamic weighted voting technique as the 
backbone, the performance of other behaviour modules will not be affected with the 
addition of planning modules. It employs a fully distributed architecture where all the 
behaviour modules run completely independently. The technique also enables the mobile 
robot to handle the challenges of uncertainties. The votes generated in an interval of [0, 1] 
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in order to take uncertainties into consideration. Furthermore, the dynamically changing 
weights allow the mobile robot to deal with dynamic changes of the environment. In 
addition, the proposed design guidelines provide an engineering way to design the mobile 
robot from initial stage to performance analysis.  
However, it too encounters with several problems. From the experiments, it is clear that 
the dynamic weighted voting technique is not allowed for task sequencing. This means 
that the mobile robot is not able to handle multiple tasks together and plan the sequence of 
these tasks in advance. In the other hand, although the design guideline provides a 
solution in behaviour design, the determination of the vote value is still primitive. A lot of 
experiments need to be carried out to find a better result.  
 
5.6 Future Development 
 

Current work on the dynamic weighted voting technique has some limitations because it 
is still on the development stage. There is still a room for improvement. Future 
development is suggested to focus on several directions, as discussed below. 
 

1.) Learning capability 
Currently, the objective function for the generation of vote value is determined 
empirically through experiments.  The approach often taken is an iterative one of 
trial and error. The design of some behaviour may need several days of 
experimental debugging. Therefore, the process is time-consuming. Furthermore, 
once the vote value is fixed, it will not change. Further work may focus on studying 
the possible role of learning techniques to generate behaviours. Learning capability 
produces changes within a mobile robot to enable it to perform more effectively in 
its environment. It serves as an aid to fine-tune the vote value. With the learning 
capability, the mobile robot could learn during the navigation and tune the 
objective function to an optimum value.  

 
2.) Additional level for task sequencing 

The dynamic weighted voting technique does not support for task sequencing. An 
additional layer could be added into the architecture to enable task sequencing. 
This layer does not take control within the voting scheme. It plays the role of 
planning the sequences of tasks, such as going to the table, then getting the can and 
finally throwing it into rubbish bin. With the support of task sequencing, the mobile 
robot may perform more complicated tasks and serve as human assistance in our 
everyday environment.  

 
3.) Scaling in the number of behaviour 

The current dynamic weighted voting technique is implemented on mobile robot 
indoor navigation with four behaviours. However, the limit of the performance is 
still an unknown. An interesting extension will have to be in the direction of more 
complex behaviour. It is interesting to test the performance in complicated task 
with large composition of behaviours.  

 
4.) Extension into multi agent mobile robots 

Since the dynamic weighted voting technique shows a successful result in mobile 
robot navigation, the work is suggested to be extended into multi agent mobile 
robot. The work in multi agent mobile robot includes the decision making of 
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multiple mobile robots. This robot team must be able to coordinate their job 
together to perform a useful task. The problem is similar to the decision making of 
multiple conflicting behaviour modules in the work presented here. Thus extending 
the dynamic weighted voting technique into multi agent mobile robot is a possible 
work.  

 

6. Conclusion 
 

Experiments were carried out to prove the effectiveness of the proposed dynamic 
weighted voting technique. The experiments were carried on fourteen experimental fields 
with four different behaviour combinations. The results and comparison of the different 
experiments wee discussed. These results appear to show that the dynamic weighted 
voting technique was able to handle the problem in action selection. Meanwhile, the 
design also provided a way to design the mobile robot with dynamic weighted voting 
technique in an organised manner. Comparison with other behaviour-based approaches 
was briefly discussed, so as well the advantages and the disadvantages of the dynamic 
weighted voting technique.  
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