
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



0

Target Tracking for Mobile Sensor Networks Using
Distributed Motion Planning and Distributed

Filtering

Gerasimos G. Rigatos
Industrial Systems Institute

Greece

1. Introduction

The problem treated in this research work is as follows: there are N mobile robots (unmanned
ground vehicles) which pursue a moving target. The vehicles emanate from random positions
in their motion plane. Each vehicle can be equipped with various sensors, such as odometric
sensors, cameras and non-imaging sensors such as sonar, radar and thermal signature sensors.
These vehicles can be considered as mobile sensors while the ensemble of the autonomous
vehicles constitutes a mobile sensor network (Rigatos, 2010a),(Olfati-Saber, 2005),(Olfati-Saber,
2007),(Elston & Frew, 2007). At each time instant each vehicle can obtain ameasurement of the
target’s cartesian coordinates and orientation. Additionally, each autonomous vehicle is aware
of the target’s distance from a reference surface measured in a cartesian coordinates system.
Finally, each vehicle can be aware of the positions of the rest N − 1 vehicles. The objective is
to make the unmanned vehicles converge in a synchronized manner towards the target, while
avoiding collisions between them and avoiding collisions with obstacles in the motion plane.
To solve the overall problem, the following steps are necessary: (i) to perform distributed
filtering, so as to obtain an estimate of the target’s state vector. This estimate provides the
desirable state vector to be tracked by each one of the unmanned vehicles, (ii) to design a
suitable control law for the unmanned vehicles that will enable not only convergence of the
vehicles to the goal position but will also maintain the cohesion of the vehicles ensemble.
Regarding the implementation of the control law that will allow the mobile robots to converge
to the target in a coordinated manner, this can be based on the calculation of a cost (energy)
function consisting of the following elements : (i) the cost due to the distance of the i-th mobile
robot from the target’s coordinates, (ii) the cost due to the interaction with the other N − 1
vehicles, (iii) the cost due to proximity to obstacles or inaccessible areas in the motion plane.
The gradient of the aggregate cost function defines the path each vehicle should follow to
reach the target and at the same time assures the synchronized approaching of the vehicles
to the target. In this way, the update of the position of each vehicle will be finally described
by a gradient algorithm which contains an interaction term with the gradient algorithms that
defines the motion of the rest N − 1 mobile robots. A suitable tool for proving analytically
the convergence of the vehicles’ swarm to the goal state is Lyapunov stability theory and
particularly LaSalle’s theorem (Rigatos, 2008a),(Rigatos, 2008b).
Regarding the implementation of distributed filtering, the Extended Information Filter and
the Unscented Information Filter are suitable approaches. In the Extended Information
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2 Multi-robot Systems, Trends and Developments

Filter there are local filters which do not exchange raw measurements but send to an
aggregation filter their local information matrices (local inverse covariance matrices) and
their associated local information state vectors (products of the local information matrices
with the local state vectors) (Rigatos & Tzafestas, 2007). The Extended Information Filter
performs fusion of the local state vector estimates which are provided by the local Extended
Kalman Filters (EKFs), using the Information matrix and the Information state vector (Lee,
2008b), (Lee, 2008a), (Vercauteren & Wang, 2005), (Manyika & Durrant-Whyte, 1994). The
Information Matrix is the inverse of the state vector covariance matrix and can be also
associated to the Fisher Information matrix (Rigatos & Zhang, 2009). The Information state
vector is the product between the Information matrix and the local state vector estimate
(Shima et al., 2007). The Unscented Information Filter is a derivative-free distributed filtering
approach which permits to calculate an aggregate estimate of the target’s state vector by
fusing the state estimates provided byUnscented Kalman Filters (UKFs) running at the mobile
sensors. In the Unscented Information Filter an implicit linearization is performed through the
approximation of the Jacobian matrix of the system’s output equation by the product of the
inverse of the estimation error covariance matrix with the cross-covariance matrix between
the system’s state vector and the system’s output. Again the local information matrices and
the local information state vectors are transferred to an aggregation filter which produces the
global estimation of the system’s state vector.
Using distributed EKFs and fusion through the Extended Information Filter or distributed
UKFs through the Unscented Information Filter is more robust comparing to the centralized
Extended Kalman Filter, or similarly the centralized Unscented Kalman Filter since, (i) if a
local filter is subject to a fault then state estimation is still possible and can be used for accurate
localization of the target, (ii) communication overhead remains low even in the case of a large
number of distributed measurement units, because the greatest part of state estimation is
performed locally and only informationmatrices and state vectors are communicated between
the local filters, (iii) the aggregation performed also compensates for deviations in the state
estimates of the local filters (Rigatos, 2010a).
The structure of the paper is as follows: in Section 2 the problem of target tracking in mobile
sensor networks is studied. In Section 3 a distributed motion planning approach is analyzed.
This is actually a distributed gradient algorithm, the convergence of which is proved using
LaSalle’s stability theory. In Section 4distributed state estimation with the use of the Extended
Information Filter approach is proposed. In section 5 distributed state estimation with the
use of the Unscented Information Filter is studied. In Section 6 simulation experiments are
provided about target tracking using distributed motion planning and distributed filtering.
Finally, in Section 7 concluding remarks are stated.

2. Target tracking in mobile sensor networks

2.1 The problem of distributed target tracking

It is assumed that there are N mobile robots (unmanned vehicles) with positions
p1, p2, ..., pN ∈ R2 respectively, and a target with position x∗ ∈ R2 moving in a plane (see Fig.
1). Each unmanned vehicle can be equipped with various sensors, cameras and non-imaging
sensors, such as sonar, radar or thermal signature sensors. The unmanned vehicles can be
considered as mobile sensors while the ensemble of the autonomous vehicles constitutes a
mobile sensors network. The discrete-time target’s kinematic model is given by
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xt(k+ 1) = φ(xt(k)) + L(k)u(k) + w(k)
zt(k) = γ(xt(k)) + v(k)

(1)

where xt∈Rm×1 is the target’s state vector and zt∈Rp×1 is the measured output, while
w(k) and v(k) are uncorrelated, zero-mean, Gaussian zero-mean noise processes with
covariance matrices Q(k) and R(k) respectively. The operators φ(x) and γ(x) are defined as
φ(x) = [φ1(x),φ2(x), · · · ,φm(x)]T, and γ(x) = [γ1(x),γ2(x), · · · ,γp(x)]T, respectively.

Fig. 1. Distributed target tracking in an environment with inaccessible areas.

At each time instant each mobile robot can obtain a measurement of the target’s position.
Additionally, each mobile robot is aware of the target’s distance from a reference surface
measured in an inertial coordinates system. Finally, each mobile sensor can be aware of the
positions of the rest N − 1 sensors. The objective is to make the mobile sensors converge
in a synchronized manner towards the target, while avoiding collisions between them and
avoiding collisions with obstacles in the motion plane. To solve the overall problem, the
following steps are necessary: (i) to perform distributed filtering, so as to obtain an estimate
of the target’s state vector. This estimate provides the desirable state vector to be tracked by
each one of the mobile robots, (ii) to design a suitable control law that will enable the mobile
sensors not only converge to the target’s position but will also preserve the cohesion of the
mobile sensors swarm (see Fig. 2).
The exact position and orientation of the target can be obtained through distributed
filtering. Actually, distributed filtering provides a two-level fusion of the distributed
sensor measurements. At the first level, local filters running at each mobile sensor provide
an estimate of the target’s state vector by fusing the cartesian coordinates and bearing
measurements of the target with the target’s distance from a reference surface which is
measured in an inertial coordinates system (Vissière et al., 2008). At a second level, fusion
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4 Multi-robot Systems, Trends and Developments

Fig. 2. Mobile robot providing estimates of the target’s state vector, and the associated
inertial and local coordinates reference frames

of the local estimates is performed with the use of the Extended Information Filter and
the Unscented Information Filter. It is also assumed that the time taken in calculating the
selection of data and in communicating between mobile robots is small, and that time delays,
packet losses and out-of-sequence measurement problems in communication do not distort
significantly the flow of the exchanged data.
Comparing to the traditional centralized or hierarchical fusion architecture, the
network-centric architectures for the considered multi-robot system has the following
advantages: (i) Scalability: since there are no limits imposed by centralized computation
bottlenecks or lack of communication bandwidth, every mobile robot can easily join or quit
the system, (ii) Robustness: in a decentralized fusion architecture no element of the system
is mission-critical, so that the system is survivable in the event of on-line loss of part of its
partial entities (mobile robots), (iii) Modularity: every partial entity is coordinated and does
not need to possess a global knowledge of the network topology. However, these benefits
are possible only if the sensor data can be fused and synthesized for distribution within the
constraints of the available bandwidth.

2.2 Tracking of the reference path by the target

The continuous-time target’s kinematic model is assumed to be that of a unicycle robot and is
given by

ẋ(t) = v(t)cos(θ(t))
ẏ(t) = v(t)sin(θ(t))

θ̇(t) = ω(t).
(2)
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The target is steered by a dynamic feedback linearization control algorithm which is based
on flatness-based control (Léchevin & Rabbath, 2006),(Rigatos, 2010b),(Fliess & Mounier,
1999),(Villagra et al., 2007):

u1 = ẍd + Kp1(xd − x) + Kd1(ẋd − ẋ)
u2 = ÿd + Kp2(yd − y) + Kd2(ẏd − ẏ)

ξ̇ = u1cos(θ) + u2sin(θ)

v = ξ, ω =
u2cos(θ)−u1sin(θ)

ξ .

(3)

The dynamics of the tracking error is given by

ëx + Kd1 ėx + Kp1ex = 0
ëy + Kd2 ėx + Kp2ey = 0

(4)

where ex = x − xd and ey = y − yd. The proportional-derivative (PD) gains are chosen as
Kpi and Kdi , for i = 1,2. The dynamic compensator of Eq. (3) has a potential singularity at
ξ = v = 0, i.e. when the target is not moving. It is noted however that the occurrence of such
a singularity is structural for non-holonomic systems. It is assumed that the target follows a
smooth trajectory (xd(t),yd(t)) which is persistent, i.e. for which the nominal velocity vd =
(ẋ2d + ẏ2d)

1/2 along the trajectory never goes to zero (and thus singularities are avoided). The
following theorem assures avoidance of singularities in the proposed flatness-based control
law (Oriolo et al., 2002):
Theorem: Let λ11, λ12 and λ21, λ22 be respectively the eigenvalues of the two equations of
the error dynamics, given in Eq. (4). Assume that for i = 1,2 it is λi1,λi2 < 0 (negative real
eigenvalues), and that λi2 is sufficiently small. If

mint≥0||(
(

ẋd(t)
ẏd(t)

)

)||≥
(

ǫ̇0x
ǫ̇0y

)

(5)

with ǫ̇0x = ǫ̇x(0) �=0 and ǫ̇0y = ǫ̇y(0) �=0 then the singularity ξ = 0 is never met.

3. Distributed motion planning for the multi-robot system

3.1 Kinematic model of the multi-robot system

The objective is to lead the ensemble of N mobile robots, with different initial positions
on the 2-D plane, to converge to the target’s position, and at the same time to avoid
collisions between the mobile robots, as well as collisions with obstacles in the motion
plane. An approach for doing this is the potential fields theory, in which the individual
robots are steered towards an equilibrium by the gradient of an harmonic potential (Rigatos,
2008c),(Groß, et al.),(Bishop, 2003),(Hong et al., 2007). Variances of this method use nonlinear
anisotropic harmonic potential fields which introduce to the robots’ motion directional and
regional avoidance constraints (Sinha & Ghose, 2006),(Pagello et al., 2006),(Sepulchre et al.,
2007),(Masoud & Masoud, 2002). In the examined coordinated target-tracking problem the
equilibrium is the target’s position, which is not a-priori known and has to be estimated with
the use of distributed filtering.
The position of each mobile robot in the 2-D space is described by the vector xi ∈ R2. The
motion of the robots is synchronous, without time delays, and it is assumed that at every time
instant each robot i is aware about the position and the velocity of the other N− 1 robots. The
cost function that describes the motion of the i-th mobile robot towards the target’s position
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6 Multi-robot Systems, Trends and Developments

is denoted as V(xi) : Rn → R. The value of V(xi) at the target’s position in ∇xiV(xi) = 0. The
following conditions must hold:
(i) The cohesion of the mobile robot’s ensemble should be maintained, i.e. the norm ||xi − xj||
should remain upper bounded ||xi − xj|| < ǫh,
(ii) Collisions between the robots should be avoided, i.e. ||xi − xj|| > ǫl ,
(iii) Convergence to the target’s position should be succeeded for each mobile robot through

the negative definiteness of the associated Lyapunov function V̇ i(xi) = ėi(t)
T
ei(t) < 0, where

e = x− x∗ is the distance of the i-th mobile robot from the target’s position.
The interaction between the i-th and the j-th mobile robot is

g(xi − xj) = −(xi − xj)[ga(||xi − xj||)− gr(||xi − xj||)] (6)

where ga() denotes the attraction term and is dominant for large values of ||xi − xj||, while
gr() denotes the repulsion term and is dominant for small values of ||xi − xj||. Function ga()
can be associated with an attraction potential, i.e. ∇xiVa(||xi − xj||) = (xi − xj)ga(||xi − xj||).
Function gr() can be associated with a repulsion potential, i.e. ∇xiVr(||xi − xj||) = (xi −
xj)gr(||xi − xj||). A suitable function g() that describes the interaction between the robots
is given by (Rigatos, 2008c),(Gazi & Passino, 2004)

g(xi − xj) = −(xi − xj)(a− be
||xi−xj ||2

σ2 ) (7)

where the parameters a, b and c are suitably tuned. It holds that ga(xi− xj) =−a, i.e. attraction
has a linear behavior (spring-mass system) ||xi − xj||ga(xi − xj). Moreover, gr(xi − xj) =

be
−||xi−xj ||2

σ2 which means that gr(xi − xj)||xi − xj|| ≤ b is bounded. Applying Newton’s laws to
the i-th robot yields

ẋi = vi, mi v̇i = Ui (8)

where the aggregate force is Ui = f i + Fi. The term f i = −Kvv
i denotes friction, while the

term Fi is the propulsion. Assuming zero acceleration v̇i = 0 one gets Fi = Kvv
i, which for

Kv = 1 and mi = 1 gives Fi = vi. Thus an approximate kinematic model for each mobile robot
is

ẋi = Fi. (9)

According to the Euler-Langrange principle, the propulsion Fi is equal to the derivative of the
total potential of each robot, i.e.

Fi = −∇xi{V i(xi) + 1
2∑

N
i=1∑

N
j=1,j �=i[Va(||xi − xj||+Vr(||xi − xj||)]}⇒

Fi = −∇xi{V i(xi)}+ ∑
N
j=1,j �=i[−∇xiVa(||xi − xj||)−∇xiVr(||xi − xj||)]⇒

Fi = −∇xi{V i(xi)}+ ∑
N
j=1,j �=i[−(xi − xj)ga(||xi − xj||)− (xi − xj)gr(||xi − xj||)]⇒

Fi = −∇xi{V i(xi)} − ∑
N
j=1,j �=ig(x

i − xj).

Substituting in Eq. (9) one gets in discrete-time form

xi(k+ 1) = xi(k) + γi(k)[h(xi(k)) + ei(k)] +
N

∑
j=1,j �=i

g(xi − xj), i = 1,2, · · · ,M. (10)

The term h(x(k)i) = −∇xiV
i(xi) indicates a local gradient algorithm, i.e. motion in the

direction of decrease of the cost functionV i(xi) = 1
2 e

i(t)
T
ei(t). The term γi(k) is the algorithms
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step while the stochastic disturbance ei(k) enables the algorithm to escape from local minima.
The term ∑

N
j=1,j �=ig(x

i − xj) describes the interaction between the i-th and the rest N − 1

stochastic gradient algorithms (Duflo, 1996),(Comets & Meyre, 2006),(Benveniste et al., 1990).

3.2 Stability of the multi-robot system

The behavior of the multi-robot system is determined by the behavior of its center (mean of
the vectors xi) and of the position of each robot with respect to this center. The center of the
multi-robot system is given by

x̄ = E(xi) = 1
N ∑

N
i=1x

i ⇒ ˙̄x = 1
N ∑

N
i=1 ẋ

i ⇒
˙̄x = 1

N ∑
N
i=1[−∇xiV

i(xi)− ∑
N
j=1,j �=i(g(x

i − xj))]
(11)

From Eq. (7) it can be seen that g(xi − xj) =−g(xj − xi), i.e. g() is an odd function. Therefore,
it holds that 1

N (∑N
j=1,j �=ig(x

i − xj)) = 0, and

˙̄x =
1

N

N

∑
i=1

[−∇xiV
i(xi)] (12)

Denoting the target’s position by x∗ , and the distance between the i-th mobile robot and
the mean position of the multi-robot system by ei(t) = xi(t)− x̄ the objective of distributed
gradient for robot motion planning can be summarized as follows:
(i) limt→∞x̄ = x∗, i.e. the center of the multi-robot system converges to the target’s position,
(ii) limt→∞xi = x̄, i.e. the i-th robot converges to the center of the multi-robot system,
(iii) limt→∞ ˙̄x = ẋ∗ , i.e. the center of the multi-robot system stabilizes at the target’s position.
If conditions (i) and (ii) hold then limt→∞xi = x∗. Furthermore, if condition (iii) also holds
then all robots will stabilize close to the target’s position.
It is known that the stability of local gradient algorithms can be proved with the use of
Lyapunov theory (Benveniste et al., 1990). A similar approach can be followed in the case
of the distributed gradient algorithms given by Eq. (10). The following simple Lyapunov
function is considered for each gradient algorithm (Gazi & Passino, 2004):

Vi =
1

2
ei
T
ei ⇒ Vi =

1

2
||ei||2 (13)

Thus, one gets

V̇ i = ei
T
ėi ⇒ V̇ i = (ẋi − ˙̄x)ei ⇒

V̇ i = [−∇xiV
i(xi)− ∑

N
j=1,j �=ig(x

i − xj) + 1
M ∑

N
j=1∇x jV

j(xj)]ei.

Substituting g(xi − xj) from Eq. (7) yields

V̇i = [−∇xiV
i(xi)− ∑

N
j=1,j �=i(x

i − xj)a+ ∑
N
j=1,j �=i(x

i − xj)gr(||xi − xj||) + 1
N ∑

N
j=1∇x jV

j(xj)]ei

which gives,

V̇i = −a[∑N
j=1,j �=i(x

i − xj)]ei+

+∑
N
j=1,j �=igr(||xi − xj||)(xi − xj)Tei − [∇xiV

i(xi)− 1
N ∑

M
j=1∇x jV

j(xj)]Tei
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8 Multi-robot Systems, Trends and Developments

It holds that ∑
N
j=1(x

i − xj) = Nxi − N 1
N ∑

N
j=1x

j = Nxi − Nx̄ = N(xi − x̄) = Nei, therefore

V̇i = −aN||ei||2 +
N

∑
j=1,j �=i

gr(||xi − xj||)(xi − xj)Tei − [∇xiV
i(xi)− 1

N

N

∑
j=1

∇x jV
j(xj)]Tei (14)

It assumed that for all xi there is a constant σ̄ such that

||∇xiV
i(xi)|| ≤ σ̄ (15)

Eq. (15) is reasonable since for a mobile robot moving on a 2-D plane, the gradient of the
cost function ∇xiV

i(xi) is expected to be bounded. Moreover it is known that the following
inequality holds:

∑
N
j=1,j �=igr(x

i − xj)Tei≤∑
N
j=1,j �=ibe

i≤∑
N
j=1,j �=ib||ei||.

Thus the application of Eq. (14) gives:

V̇ i≤aN||ei||2 + ∑
N
j=1,j �=igr(||xi − xj||)||xi − xj|| · ||ei||+ ||∇xiV

i(xi)− 1
N ∑

M
j=1∇x jV

j(xj)||||ei||

⇒ V̇ i≤aN||ei||2 + b(N− 1)||ei||+ 2σ̄||ei||

where it has been taken into account that

∑
N
j=1,j �=igr(||xi − xj||)T||ei||≤∑

N
j=1,j �=ib||ei|| = b(N− 1)||ei||,

and from Eq. (15),

||∇xiV
i(xi)− 1

N ∑
N
j=1∇xiV

j(xj)||≤||∇xiV
i(xi)||+ 1

N ||∑N
j=1∇xiV

j(xj)||≤σ̄ + 1
N Nσ̄ ≤ 2σ̄.

Thus, one gets

V̇ i≤aN||ei||·[||ei|| − b(N− 1)

aN
− 2

σ̄

aN
] (16)

The following bound ǫ is defined:

ǫ =
b(N− 1)

aN
+

2σ̄

aN
=

1

aN
(b(N− 1) + 2σ̄) (17)

Thus, when ||ei|| > ǫ, V̇i will become negative and consequently the error ei = xi − x̄ will
decrease. Therefore the tracking error ei will remain in an area of radius ǫ i.e. the position xi

of the i-th robot will stay in the cycle with center x̄ and radius ǫ.

3.3 Stability in the case of a quadratic cost function

The case of a convex quadratic cost function is examined, for instance

V i(xi) =
A

2
||xi − x∗||2 = A

2
(xi − x∗)T(xi − x∗) (18)

where x∗ ∈ R2 denotes the target’s position, while the associated Lyapunov function has
a minimum at x∗, i.e. V i(xi = x∗) = 0. The distributed gradient algorithm is expected to
converge to x∗. The robotic vehicles will follow different trajectories on the 2-D plane and will
end at the target’s position.

240 Multi-Robot Systems, Trends and Development
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Using Eq.(18) yields ∇xiV
i(xi) = A(xi − x∗). Moreover, the assumption ∇xiV

i(xi) ≤ σ̄ can
be used, since the gradient of the cost function remains bounded. The robotic vehicles will
concentrate round x̄ and will stay in a radius ǫ given by Eq. (17). The motion of the mean
position x̄ of the vehicles is

˙̄x = − 1
N ∑

N
i=1∇xiV

i(xi)⇒ ˙̄x = − A
N ∑

N
i=1(x

i − x∗)⇒
˙̄x = − A

N ∑
N
i=1x

i + A
NNx∗ ⇒ ˙̄x− ẋ∗ = −A(x̄− x∗)− ẋ∗

(19)

The variable eσ = x̄− x∗ is defined, and consequently

ėσ = −Aeσ − ẋ∗ (20)

The following cases can be distinguished:
(i) The target is not moving, i.e. ẋ∗ = 0. In that case Eq. (20) results in an homogeneous
differential equation, the solution of which is given by

ǫσ(t) = ǫσ(0)e
−At (21)

Knowing that A> 0 results into limt→∞eσ(t) = 0, thus limt→∞x̄(t) = x∗.
(ii) the target is moving at constant velocity, i.e. ẋ∗ = a, where a > 0 is a constant parameter.
Then the error between the mean position of the multi-robot formation and the target becomes

ǫσ(t) = [ǫσ(0) +
a

A
]e−At − a

A
(22)

where the exponential term vanishes as t→∞.
(iii) the target’s velocity is described by a sinusoidal signal or a superposition of sinusoidal
signals, as in the case of function approximation by Fourier series expansion. For instance
consider the case that ẋ∗ = b·sin(at), where a,b > 0 are constant parameters. Then the
nonhomogeneous differential equation Eq. (20) admits a sinusoidal solution. Therefore the
distance ǫσ(t) between the center of the multi-robot formation x̄(t) and the target’s position
x∗(t) will be also a bounded sinusoidal signal.

3.4 Convergence analysis using La Salle’s theorem

From Eq. (16) it has been shown that each robot will stay in a cycle C of center x̄ and radius ǫ
given by Eq. (17). The Lyapunov function given by Eq. (13) is negative semi-definite, therefore
asymptotic stability cannot be guaranteed. It remains to make precise the area of convergence
of each robot in the cycle C of center x̄ and radius ǫ. To this end, La Salle’s theorem can be
employed (Gazi & Passino, 2004),(Khalil, 1996).
La Salle’s Theorem: Assume the autonomous system ẋ= f (x)where f :D→ Rn. Assume C⊂D
a compact set which is positively invariant with respect to ẋ = f (x), i.e. if x(0) ∈ C ⇒ x(t) ∈
C ∀ t. Assume that V(x) : D → R is a continuous and differentiable Lyapunov function such
that V̇(x) ≤ 0 for x ∈ C, i.e. V(x) is negative semi-definite in C. Denote by E the set of all
points in C such that V̇(x) = 0. Denote by M the largest invariant set in E and its boundary
by L+, i.e. for x(t) ∈ E : limt→∞x(t) = L+, or in other words L+ is the positive limit set of E.
Then every solution x(t) ∈ C will converge to M as t→ ∞.
La Salle’s theorem is applicable in the case of the multi-robot system and helps to describe
more precisely the area round x̄ to which the robot trajectories xi will converge. A generalized
Lyapunov function is introduced which is expected to verify the stability analysis based on

241
Target Tracking for Mobile Sensor Networks Using
Distributed Motion Planning and Distributed Filtering

www.intechopen.com



10 Multi-robot Systems, Trends and Developments

Fig. 3. LaSalle’s theorem: C: invariant set, E ⊂ C: invariant set which satisfies V̇(x) = 0,
M ⊂ E: invariant set, which satisfies V̇(x) = 0, and which contains the limit points of
x(t) ∈ E, L+ the set of limit points of x(t) ∈ E

Eq. (16). It holds that

V(x) = ∑
N
i=1V

i(xi) + 1
2∑

N
i=1∑

N
j=1,j �=i{Va(||xi − xj|| −Vr(||xi − xj||)}⇒

V(x) = ∑
N
i=1V

i(xi) + 1
2∑

N
i=1∑

N
j=1,j �=i{a||xi − xj|| −Vr(||xi − xj||)

and

∇xiV(x) = [∑N
i=1∇xiV

i(xi)] + 1
2∑

N
i=1∑

N
j=1,j �=i∇xi{a||xi − xj|| −Vr(||xi − xj||)}⇒

∇xiV(x) = [∑N
i=1∇xiV

i(xi)] + ∑
N
j=1,j �=i(x

i − xj){ga(||xi − xj||)− gr(||xi − xj||)} ⇒
∇xiV(x) = [∑N

i=1∇xiV
i(xi)] + ∑

N
j=1,j �=i(x

i − xj){a− gr(||xi − xj||)}

and using Eq. (10) with γi(t) = 1 yields∇xiV(x) = −ẋi, and

V̇(x) =∇xV(x)T ẋ =
N

∑
i=1

∇xiV(x)T ẋi ⇒ V̇(x) = −
N

∑
i=1

||ẋi||2 ≤ 0 (23)

Therefore it holds V(x) > 0 and V̇(x)≤0 and the set C = {x : V(x(t)) ≤ V(x(0))} is compact
and positively invariant. Thus, by applying La Salle’s theorem one can show the convergence
of x(t) to the set M ⊂ C, M = {x : V̇(x) = 0} ⇒ M = {x : ẋ = 0}.

4. Distributed state estimation using the extended information filter

4.1 Extended kalman filtering at local processing units

As mentioned, to obtain an accurate estimate of the target’s coordinates, fusion of the
distributed sensor measurements can be performed either with the use of the Extended
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Information Filter or with the use of the Unscented Information Filter. The distributed
Extended Kalman Filter, also know as Extended Information Filter, performs fusion of the
state estimates which are provided by local Extended Kalman Filters. Thus, the functioning
of the local Extended Kalman Filters should be analyzed first. The following nonlinear
state-space model is considered again (Rigatos & Tzafestas, 2007), (Rigatos, 2009b):

x(k+ 1) = φ(x(k)) + L(k)u(k) + w(k)
z(k) = γ(x(k)) + v(k)

(24)

where x∈Rm×1 is the system’s state vector and z∈Rp×1 is the system’s output, while w(k)
and v(k) are uncorrelated, Gaussian zero-mean noise processeswith covariance matrices Q(k)
and R(k) respectively. The operators φ(x) and γ(x) are φ(x) = [φ1(x),φ2(x), · · · ,φm(x)]T, and
γ(x) = [γ1(x),γ2(x), · · · ,γp(x)]T, respectively. It is assumed that φ and γ are sufficiently
smooth in x so that each one has a valid series. Taylor expansion. Following a linearization
procedure, φ is expanded into Taylor series about x̂:

φ(x(k)) = φ(x̂(k)) + Jφ(x̂(k))[x(k)− x̂(k)] + · · · (25)

where Jφ(x) is the Jacobian of φ calculated at x̂(k):

Jφ(x) =
∂φ

∂x
|x=x̂(k) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

∂φ1

∂x1

∂φ1

∂x2
· · · ∂φ1

∂xm
∂φ2

∂x1

∂φ2

∂x2
· · · ∂φ2

∂xm
...

...
...

...
∂φm

∂x1

∂φm

∂x2
· · · ∂φm

∂xm

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(26)

Likewise, γ is expanded about x̂−(k)

γ(x(k)) = γ(x̂−(k)) + Jγ [x(k)− x̂−(k)] + · · · (27)

where x̂−(k) is the estimation of the state vector x(k) before measurement at the k-th instant
to be received and x̂(k) is the updated estimation of the state vector after measurement at the
k-th instant has been received. The Jacobian Jγ(x) is

Jγ(x) =
∂γ

∂x
|x=x̂−(k) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

∂γ1

∂x1

∂γ1

∂x2
· · · ∂γ1

∂xm
∂γ2

∂x1

∂γ2

∂x2
· · · ∂γ2

∂xm
...

...
...

...
∂γp

∂x1

∂γp

∂x2
· · · ∂γp

∂xm

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(28)

The resulting expressions create first order approximations of φ and γ. Thus the linearized
version of the system is obtained:

x(k+ 1) = φ(x̂(k)) + Jφ(x̂(k))[x(k)− x̂(k)] + w(k)
z(k) = γ(x̂−(k)) + Jγ(x̂−(k))[x(k)− x̂−(k)] + v(k)

(29)

Now, the EKF recursion is as follows: First the time update is considered: by x̂(k) the
estimation of the state vector at instant k is denoted. Given initial conditions x̂−(0) and P−(0)
the recursion proceeds as:
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– Measurement update. Acquire z(k) and compute:

K(k) = P−(k)JTγ (x̂
−(k))·[Jγ(x̂−(k))P−(k)JTγ (x̂

−(k)) + R(k)]−1

x̂(k) = x̂−(k) + K(k)[z(k)− γ(x̂−(k))]
P(k) = P−(k)− K(k)Jγ(x̂−(k))P−(k)

(30)

– Time update. Compute:

P−(k+ 1) = Jφ(x̂(k))P(k)J
T
φ (x̂(k)) + Q(k)

x̂−(k+ 1) = φ(x̂(k)) + L(k)u(k)
(31)

The schematic diagram of the EKF loop is given in Fig. 4.

Fig. 4. Schematic diagram of the EKF loop

4.2 Calculation of local estimations in terms of EIF information contributions

Again the discrete-time nonlinear system of Eq. (24) is considered. The Extended Information
Filter (EIF) performs fusion of the local state vector estimates which are provided by the
local Extended Kalman Filters, using the Information matrix and the Information state vector
(Lee, 2008b), (Lee, 2008a), (Vercauteren & Wang, 2005), (Manyika & Durrant-Whyte, 1994).
The Information Matrix is the inverse of the state vector covariance matrix, and can be also
associated to the Fisher Information matrix (Rigatos & Zhang, 2009). The Information state
vector is the product between the Information matrix and the local state vector estimate

Y(k) = P−1(k) = I(k)

ŷ(k) = P−(k)−1
x̂(k) = Y(k)x̂(k)

(32)

The update equation for the Information Matrix and the Information state vector are given by

Y(k) = P−(k)−1 + JTγ (k)R
−1(k)Jγ(k)

= Y−(k) + I(k)
(33)
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ŷ(k) = ŷ−(k) + JTγ R(k)
−1[z(k)− γ(x(k)) + Jγ x̂

−(k)]
= ŷ−(k) + i(k)

(34)

where

I(k) = JTγ (k)R
(k)−1 Jγ(k) is the associated information matrix and

i(k) = JTγ R
(k)−1[(z(k)− γ(x(k))) + Jγ x̂

−(k)] is the information state contribution
(35)

The predicted information state vector and Information matrix are obtained from

ŷ−(k)= P−(k)−1
x̂−(k)

Y−(k) = P−(k)−1
= [Jφ(k)P

−(k)Jφ(k)
T + Q(k)]−1

(36)

The Extended Information Filter is next formulated for the case that multiple local sensor
measurements and local estimates are used to increase the accuracy and reliability of the
estimation of the target’s cartesian coordinates and bearing. It is assumed that an observation
vector zi(k) is available for N different sensor sites (mobile robots) i = 1,2, · · · ,N and each
sensor observes a common state according to the local observation model, expressed by

zi(k) = γ(x(k)) + vi(k), i = 1,2, · · · ,N (37)

where the local noise vector vi(k)∼N(0,Ri) is assumed to be white Gaussian and uncorrelated
between sensors. The variance of a composite observation noise vector vk is expressed in terms
of the block diagonal matrix

R(k) = diag[R(k)1, · · · ,RN(k)]T (38)

The information contribution can be expressed by a linear combination of each local
information state contribution ii and the associated information matrix I i at the i-th sensor
site

i(k) = ∑
N
i=1 J

i
γ
T
(k)Ri(k)−1[zi(k)− γi(x(k)) + Jiγ(k)x̂

−(k)]

I(k) = ∑
N
i=1 J

i
γ
T
(k)Ri(k)−1 Jiγ(k)

(39)

Using Eq. (39) the update equations for fusing the local state estimates become

ŷ(k) = ŷ−(k) + ∑
N
i=1 J

i
γ
T
(k)Ri(k)−1[zi(k)− γi(x(k)) + Jiγ(k)x̂

−(k)]

Y(k) = Y−(k) + ∑
N
i=1 J

i
γ
T
(k)Ri(k)−1 Jiγ(k)

(40)

It is noted that in the Extended Information Filter an aggregation (master) fusion filter
produces a global estimate by using the local sensor information provided by each local filter.
As in the case of the Extended Kalman Filter the local filters which constitute the Extended
information Filter can be written in terms of time update and a measurement update equation.
Measurement update: Acquire z(k) and compute

Y(k) = P−(k)−1 + JTγ (k)R(k)
−1 Jγ(k)

or Y(k) = Y−(k) + I(k) where I(k) = JTγ (k)R
−1(k)Jγ(k)

(41)

ŷ(k) = ŷ−(k) + JTγ (k)R(k)
−1[z(k)− γ(x̂(k)) + Jγ x̂

−(k)]
or ŷ(k) = ŷ−(k) + i(k)

(42)

Time update: Compute

Y−(k+ 1) = P−(k+ 1)
−1

= [Jφ(k)P(k)Jφ(k)
T + Q(k)]−1 (43)

y−(k+ 1) = P−(k+ 1)
−1

x̂−(k+ 1) (44)
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Fig. 5. Fusion of the distributed state estimates of the target (obtained by the mobile robots)
with the use of the Extended Information Filter

4.3 Extended information filtering for state estimates fusion

In the Extended Information Filter each one of the local filters operates independently,
processing its own local measurements. It is assumed that there is no sharing ofmeasurements
between the local filters and that the aggregation filter (Fig. 5) does not have direct access
to the raw measurements feeding each local filter. The outputs of the local filters are
treated as measurements which are fed into the aggregation fusion filter (Lee, 2008b), (Lee,
2008a), (Vercauteren & Wang, 2005). Then each local filter is expressed by its respective error
covariance and estimate in terms of information contributions given in Eq.(36)

Pi
−1(k) = P−

i (k)
−1

+ JTγ R
(k)−1 Jγ(k)

x̂i(k) = Pi(k)(P
−
i (k)−1 x̂−i (k)) + JTγ R(k)

−1[zi(k)− γi(x(k)) + Jiγ(k)x̂
−
i (k)]

(45)

It is noted that the local estimates are suboptimal and also conditionally independent given
their own measurements. The global estimate and the associated error covariance for the
aggregate fusion filter can be rewritten in terms of the computed estimates and covariances
from the local filters using the relations

JTγ (k)R(k)
−1 Jγ(k) = Pi(k)

−1 − P−
i (k)−1

JTγ (k)R(k)
−1[zi(k)− γi(x(k)) + Jiγ(k)x̂

−(k)] = Pi(k)
−1 x̂i(k)− Pi(k)

−1 x̂i(k− 1)
(46)

For the general case of N local filters i = 1, · · · ,N, the distributed filtering architecture is
described by the following equations

P(k)−1 = P−(k)−1 + ∑
N
i=1[Pi(k)

−1 − P−
i (k)−1]

x̂(k) = P(k)[P−(k)−1 x̂−(k) + ∑
N
i=1(Pi(k)

−1 x̂i(k)− P−
i (k)−1 x̂−i (k))]

(47)
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Fig. 6. Schematic diagram of the Extended Information Filter loop

It is noted that the global state update equation in the above distributed filter can be written
in terms of the information state vector and of the information matrix

ŷ(k) = ŷ−(k) + ∑
N
i=1(ŷi(k)− ŷ−i (k))

Ŷ(k) = Ŷ−(k) + ∑
N
i=1(Ŷi(k)− Ŷ−

i (k))
(48)

The local filters provide their own local estimates and repeat the cycle at step k+ 1. In turn the
global filter can predict its global estimate and repeat the cycle at the next time step k+ 1when
the new state x̂(k + 1) and the new global covariance matrix P(k + 1) are calculated. From
Eq. (47) it can be seen that if a local filter (processing station) fails, then the local covariance
matrices and the local state estimates provided by the rest of the filters will enable an accurate
computation of the system’s state vector.

5. Distributed state estimation using the unscented information filter

5.1 Unscented kalman filtering at local processing units

It is also possible to estimate the cartesian coordinates and bearing of the target through the
fusion of the estimates provided by local Sigma-Point Kalman Filters. This can be succeeded
using the Distributed Sigma-Point Kalman Filter, also known as Unscented Information Filter
(UIF) (Lee, 2008b), (Lee, 2008a). First, the functioning of the local Sigma-Point Kalman Filters
will be explained. Each local Sigma-Point Kalman Filter generates an estimation of the target’s
state vector by fusing the estimate of the target’s coordinates and bearing obtained by each
mobile robot with the distance of the target from a reference surface, measured in an inertial
coordinates system. Unlike EKF, in Sigma-Point Kalman Filtering no analytical Jacobians
of the system equations need to be calculated as in the case for the EKF (Julier et al., 2000),
(Julier & Uhlmann, 2004), (Särrkä, 2007). This is achieved through a different approach for
calculating the posterior 1st and 2nd order statistics of a random variable that undergoes a
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nonlinear transformation. The state distribution is represented again by a Gaussian random
variable but is now specified using aminimal set of deterministically chosen weighted sample
points. The basic sigma-point approach can be described as follows:
1. A set of weighted samples (sigma-points) are deterministically calculated using the mean
and square-root decomposition of the covariance matrix of the system’s state vector. As a
minimal requirement the sigma-point set must completely capture the first and second order
moments of the prior random variable. Higher order moments can be captured at the cost of
using more sigma-points.
2. The sigma-points are propagated through the true nonlinear function using functional
evaluations alone, i.e. no analytical derivatives are used, in order to generate a posterior
sigma-point set.
3. The posterior statistics are calculated (approximated) using tractable functions of the
propagated sigma-points and weights. Typically, these take on the form of a simple weighted
sample mean and covariance calculations of the posterior sigma points.
It is noted that the sigma-point approach differs substantially from general stochastic
sampling techniques, such as Monte-Carlo integration (e.g Particle Filtering methods) which
require significantly more sample points in an attempt to propagate an accurate (possibly
non-Gaussian) distribution of the state. The deceptively simple sigma-point approach results
in posterior approximations that are accurate to the third order for Gaussian inputs for
all nonlinearities. For non-Gaussian inputs, approximations are accurate to at least the
second-order, with the accuracy of third and higher-ordermoments determined by the specific
choice of weights and scaling factors.
The Unscented Kalman Filter (UKF) is a special case of Sigma-Point Kalman Filters. The
UKF is a discrete time filtering algorithm which uses the unscented transform for computing
approximate solutions to the filtering problem of the form

x(k+ 1) = φ(x(k)) + L(k)U(k) +w(k)
y(k) = γ(x(k)) + v(k)

(49)

where x(k)∈Rn is the system’s state vector, y(k)∈Rm is the measurement, w(k)∈Rn is a
Gaussian process noise w(k)∼N(0,Q(k)), and v(k)∈Rm is a Gaussian measurement noise
denoted as v(k)∼N(0,R(k)). The mean and covariance of the initial state x(0) are m(0) and
P(0), respectively.
Some basic operations performed in the UKF algorithm (Unscented Transform) are summarized
as follows:
1) Denoting the current state mean as x̂, a set of 2n+ 1 sigma points is taken from the columns

of the n×n matrix
√

(n+ λ)Pxx as follows:

x0 = x̂

xi = x̂+ [
√

(n+ λ)Pxx]i, i = 1, · · · ,n
xi = x̂− [

√

(n+ λ)Pxx]i, i = n+ 1, · · · ,2n
(50)

and the associate weights are computed:

W
(m)
0 = λ

(n+λ)
W

(c)
0 = λ

(n+λ)+(1−α2+b)

W
(m)
i = 1

2(n+λ)
, i = 1, · · · ,2n W

(c)
i = 1

2(n+λ)

(51)

where i = 1,2, · · · ,2n and λ = α2(n + κ) − n is a scaling parameter, while α, β and κ are
constant parameters. Matrix Pxx is the covariance matrix of the state x.
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2) Transform each of the sigma points as

zi = h(xi) i = 0, · · · ,2n (52)

3) Mean and covariance estimates for z can be computed as

ẑ≃∑
2n
i=0W

(m)
i zi

Pzz = ∑
2n
i=0W

(c)
i (zi − ẑ)(zi − ẑ)T

(53)

4) The cross-covariance of x and z is estimated as

Pxz = ∑
2n
i=0W

(c)
i (xi − x̂)(zi − ẑ)T (54)

The matrix square root of positive definite matrix Pxx means a matrix A =
√
Pxx such that

Pxx = AAT and a possible way for calculation is Singular Values Decomposition (SVD).
Next the basic stages of the Unscented Kalman Filter are given:
As in the case of the Extended Kalman Filter and the Particle Filter, the Unscented Kalman
Filter also consists of prediction stage (time update) and correction stage (measurement
update) (Julier & Uhlmann, 2004), (Särrkä, 2007).
Time update: Compute the predicted state mean x̂−(k) and the predicted covariance Pxx

−(k)
as

[x̂−(k),P−
xx(k)] = UT( fd, x̂(k− 1),Pxx(k− 1))

P−
xx(k) = Pxx(k− 1) + Q(k− 1)

(55)

Measurement update: Obtain the new output measurement zk and compute the predictedmean
ẑ(k) and covariance of the measurement Pzz(k), and the cross covariance of the state and
measurement Pxz(k)

[ẑ(k),Pzz(k),Pxz(k)] = UT(hd , x̂
−(k),P−

xx(k))
Pzz(k) = Pzz(k) + R(k)

(56)

Then compute the filter gain K(k), the state mean x̂(k) and the covariance Pxx(k), conditional
to the measurement y(k)

K(k) = Pxz(k)P−1
zz (k)

x̂(k) = x̂−(k) + K(k)[z(k)− ẑ(k)]
Pxx(k) = P−

xx(k)− K(k)Pzz(k)K(k)T
(57)

The filter starts from the initial mean m(0) and covariance Pxx(0). The stages of state vector
estimation with the use of the Unscented Kalman Filter algorithm are depicted in Fig. 7.

5.2 Unscented information filtering

The Unscented Information Filter (UIF) performs fusion of the state vector estimates which
are provided by local Unscented Kalman Filters, by weighting these estimates with local
Information matrices (inverse of the local state vector covariance matrices which are again
recursively computed) (Lee, 2008b), (Lee, 2008a), (Vercauteren & Wang, 2005)]. The Unscented
Information Filter is derived by introducing a linear error propagation based on the unscented
transformation into the Extended Information Filter structure. First, an augmented state
vector xα

−(k) is considered, along with the process noise vector, and the associated covariance
matrix is introduced.

x̂−α (k) =

(

x̂−(k)
ŵ−(k)

)

, Pα−(k) =
(

P−(k) 0
0 Q−(k)

)

(58)
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Fig. 7. Schematic diagram of the Unscented Kalman Filter loop

As in the case of local (lumped) Unscented Kalman Filters, a set of weighted sigma points

Xi
α
−
(k) is generated as

X−
α,0(k) = x̂−α (k)

X−
α,i(k) = x̂−α (k) + [

√

(nα + λ)P−
α (k− 1)]

i
, i = 1, · · · ,n

X−
α,i(k) = x̂−α (k) + [

√

(nα + λ)P−
α (k− 1)]

i
, i = n+ 1, · · · ,2n

(59)

where λ = α2(nα + κ) − nα is a scaling, while 0≤α≤1 and κ are constant parameters. The
corresponding weights for the mean and covariance are defined as in the case of the lumped
Unscented Kalman Filter

W
(m)
0 = λ

nα+λ W
(c)
0 = λ

(nα+λ)+(1−α2+β)

W
(m)
i = 1

2(nα+λ)
, i = 1, · · · ,2nα W

(c)
i = 1

2(nα+λ)
, i = 1, · · · ,2nα

(60)

where β is again a constant parameter. The equations of the prediction stage (measurement
update) of the information filter, i.e. the calculation of the information matrix and the
information state vector of Eq. (36) now become

ŷ−(k) = Y−(k)∑2nα

i=0W
m
i Xx

i (k)

Y−(k) = P−(k)−1 (61)

where Xx
i are the predicted state vectors when using the sigma point vectors Xw

i in the

state equation Xx
i (k + 1) = φ(Xw

i
−(k)) + L(k)U(k). The predicted state covariance matrix
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is computed as

P−(k) =
2nα

∑
i=0

W
(c)
i [Xx

i (k)− x̂−(k)][Xx
i (k)− x̂−(k)]T (62)

As noted, the equations of the Extended Information Filter (EIF) are based on the linearized
dynamic model of the system and on the inverse of the covariance matrix of the state vector.
However, in the equations of the Unscented Kalman Filter (UKF) there is no linearization
of the system dynamics, thus the UKF cannot be included directly into the EIF equations.
Instead, it is assumed that the nonlinear measurement equation of the system given in Eq.
(24) can be mapped into a linear function of its statistical mean and covariance, which makes
possible to use the information update equations of the EIF. Denoting Yi(k) = γ(Xx

i (k))

(i.e. the output of the system calculated through the propagation of the i-th sigma point Xi

through the system’s nonlinear equation) the observation covariance and its cross-covariance
are approximated by

P−
YY(k) = E[(z(k)− ẑ−(k))(z(k)− ẑ−(k))T ]

≃Jγ(k)P−(k)Jγ(k)T
(63)

P−
XY(k) = E[(x(k)− x̂(k)−)(z(k)− ẑ(k)−)T ]

≃P−(k)Jγ(k)T
(64)

where z(k) = γ(x(k)) and Jγ(k) is the Jacobian of the output equation γ(x(k)). Next,
multiplying the predicted covariance and its inverse term on the right side of the information
matrix Eq. (35) and replacing P(k)Jγ(k)T with P−

XY(k) gives the following representation of
the information matrix (Lee, 2008b), (Lee, 2008a), (Vercauteren & Wang, 2005)

I(k) = Jγ(k)
TR(k)−1 Jγ(k)

= P−(k)−1
P−(k)Jγ(k)

TR(k)−1 J−γ (k)P−(k)T(P−(k)−1
)T

= P−(k)−1
P−
XY(k)R(k)

−1P−
XY(k)

T
(P−(k)−1

)T
(65)

where P−(k)−1
is calculated according to Eq. (62) and the cross-correlation matrix PXY(k) is

calculated from

P−
XY(k) =

2nα

∑
i=0

W
(c)
i [Xx

i (k)− x̂−(k)][Yi(k)− ẑ−(k)]T (66)

where Yi(k) = γ(Xx
i (k)) and the predicted measurement vector ẑ−(k) is obtained by ẑ−(k) =

∑
2nα

i=0W
(m)
i Yi(k). Similarly, the information state vector ik can be rewritten as

i(k) = Jγ(k)TR(k)−1[z(k)− γ(x(k)) + Jγ(k)T x̂−(k)]
= P−(k)−1P−(k)Jγ(k)TR(k)−1[z(k)− γ(x(k)) + Jγ(k)T(P−(k))T(P−(k)−1)T x̂−(k)]

= P−(k)−1P−
XY(k)R(k)

−1[z(k)− γ(x(k)) + P−
XY(k)(P

−(k)−1
)T x̂−(k)]

(67)

To complete the analogy to the information contribution equations of the EIF a
”measurement” matrix HT(k) is defined as

H(k)T = P−(k)−1
P−
XY(k) (68)

In terms of the ”measurement” matrix H(k) the information contributions equations are
written as

i(k) = HT(k)R(k)−1[z(k)− γ(x(k)) + H(k)x̂−(k)]
I(k) = HT(k)R(k)−1H(k)

(69)
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The above procedure leads to an implicit linearization in which the nonlinear measurement
equation of the system given in Eq. (24) is approximated by the statistical error variance and
its mean

z(k) = γ(x(k))≃H(k)x(k) + ū(k) (70)

where ū(k) = γ(x̂−(k))− H(k)x̂−(k) is a measurement residual term.

5.3 Calculation of local estimations in terms of UIF information contributions

Next, the local estimations provided by distributed (local) Unscented Kalmans filters will be
expressed in terms of the information contributions (information matrix I and information
state vector i) of the Unscented Information Filter, which were defined in Eq. (69) (Lee, 2008b),
(Lee, 2008a), (Vercauteren &Wang, 2005). It is assumed that the observation vector z̄i(k+ 1)
is available from N different sensors, and that each sensor observes a common state according
to the local observation model, expressed by

z̄i(k) = Hi(k)x(k) + ūi(k) + vi(k) (71)

where the noise vector vi(k) is taken to be white Gaussian and uncorrelated between sensors.
The variance of the composite observation noise vector vk of all sensors is written in terms
of the block diagonal matrix R(k) = diag[R1(k)

T , · · · ,RN(k)
T ]T. Then one can define the

local information matrix Ii(k) and the local information state vector ii(k) at the i-th sensor,
as follows

ii(k) = HT
i (k)Ri(k)

−1[zi(k)− γi(x(k)) + Hi(k)x̂
−(k)]

Ii(k) = HT
i (k)Ri(k)

−1Hi(k)
(72)

Since the information contribution terms have group diagonal structure in terms of the
innovation and measurement matrix, the update equations for the multiple state estimation
and data fusion are written as a linear combination of the local information contribution terms

ŷ(k) = ŷ−(k) + ∑
N
i=1ii(k)

Y(k) = Y−(k) + ∑
N
i=1 Ii(k)

(73)

Then using Eq. (61) one can find the mean state vector for the multiple sensor estimation
problem.
As in the case of the Unscented Kalman Filter, the Unscented Information Filter running at
the i-th measurement processing unit can be written in terms of measurement update and time
update equations:
Measurement update: Acquire measurement z(k) and compute

Y(k) = P−(k)−1 + HT(k)R−1(k)H(k)
or Y(k) = Y−(k) + I(k) where I(k) = HT(k)R−1(k)H(k)

(74)

ŷ(k) = ŷ−(k) + HT(k)R−1(k)[z(k)− γ(x̂(k)) + H(k)x̂−(k)]
or ŷ(k) = ŷ−(k) + i(k)

(75)

Time update: Compute

Y−(k+ 1) = (P−(k+ 1))−1

where P−(k+ 1) = ∑
2nα

i=0W
(c)
i [Xx

i (k+ 1)− x̂−(k+ 1)][Xx
i (k+ 1)− x̂−(k+ 1)]T

(76)

ŷ(k+ 1) = Y(k+ 1)∑
2nα

i=0W
(m)
i Xx

i (k+ 1)
where Xx

i (k+ 1) = φ(Xw
i (k)) + L(k)U(k)

(77)
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Fig. 8. Schematic diagram of the Unscented Information Filter loop

5.4 Distributed unscented information filtering for state estimates fusion

It has been shown that the update of the aggregate state vector of the Unscented Information
Filter architecture can be expressed in terms of the local information matrices Ii and of the
local information state vectors ii, which in turn depend on the local covariance matrices P
and cross-covariance matrices PXY. Next, it will be shown that the update of the aggregate
state vector can be also expressed in terms of the local state vectors xi(k) and in terms of the
local covariance matrices Pi(k) and cross-covariance matrices Pi

XY(k). It is assumed that the
local filters do not have access to each other row measurements and that they are allowed to
communicate only their information matrices and their local information state vectors. Thus
each local filter is expressed by its respective error covariance and estimate in terms of the
local information state contribution ii and its associated information matrix Ii at the i-th filter
site. Then using Eq. (61) one obtains

Pi(k)
−1 = P−

i (k)
−1

+ HT
i (k)Ri(k)

−1Hi(k)

x̂i = Pi(k)(P
−
i (k)x̂−i (k) + HT

i (k)Ri(k)
−1[zi(k)− γi(x(k)) + Hi(k)x̂

−(k)])
(78)

Using Eq. (78), each local information state contribution ii and its associated information
matrix Ii at the i-th filter are rewritten in terms of the computed estimates and covariances of
the local filters

HT
i (k)Ri(k)

−1Hi(k) = Pi
−1(k)− P−

i (k)−1

HT
i (k)Ri(k)

−1[zi(k)− γi(x(k)) + Hi(k)x̂
−(k)]) = Pi(k)

−1 x̂i(k)− P−
i (k)−1 x̂−i (k)

(79)

where according to Eq.(68) it holds Hi(k) = P−
i (k)−1P−

XY,i(k). Next, the aggregate estimates
of the distributed Unscented Information Filtering are derived for a number of N local
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filters i = 1, · · · ,N and sensor measurements, first in terms of covariances (Lee, 2008b),(Lee,
2008a),(Vercauteren & Wang, 2005).

P(k)−1 = P−(k)−1
+ ∑

N
i=1[Pi(k)

−1 − P−
i (k)

−1
]

x̂(k) = P(k)[P−(k)−1
x̂−(k) + ∑

N
i=1(Pi(k)

−1 x̂i(k)− P−
i (k)

−1
x̂−i (k))]

(80)

and also in terms of the information state vector and of the information state covariance matrix

ŷ(k) = ŷ−(k) + ∑
N
i=1(ŷi(k)− ŷ−i (k))

Y(k) = Y−(k) + ∑
N
i=1[Yi(k)− Y−

i (k)]
(81)

State estimation fusion based on the Unscented Information Filter (UIF) is fault tolerant. From
Eq. (80) it can be seen that if a local filter (processing station) fails, then the local covariance
matrices and local estimates provided by the rest of the filters will enable a reliable calculation
of the system’s state vector. Moreover, the UIF is computationally more efficient comparing
to centralized filters and results in enhanced estimation accuracy.

6. Simulation tests

6.1 Estimation of target’s position with the use of the extended information filter

The number of mobile robots used for target tracking in the simulation experiments was
N = 10. However, since the mobile robots ensemble (mobile sensor network) is modular a
larger number of mobile robot’s could have been also considered. It is assumed that each
mobile robot can obtain an estimation of the target’s cartesian coordinates and bearing, i.e.
the target’s position [x,y] as well as the target’s orientation θ. To improve the accuracy of the
target’s localization, the target’s coordinates and bearing are fused with the distance of the
target from a reference surface measured in an inertial coordinates system (see Fig. 2 and 9).

Fig. 9. Distance of the target’s reference point i from the reference plane Pj, measured in the
inertial coordinates systemOXY

The inertial coordinates system OXY is defined. Furthermore the coordinates system O′X′Y′
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is considered (Fig. 2). O′X′Y′ results from OXY if it is rotated by an angle θ (Fig. 2).
The coordinates of the center of the wheels axis with respect to OXY are (x,y), while the
coordinates of the reference point i that is mounted on the vehicle, with respect to O′X′Y′ are
x
′
i ,y

′
i. The orientation of the reference point with respect to OX′Y′ is θ

′
i . Thus the coordinates

of the reference point with respect to OXY are (xi,yi) and its orientation is θi, and are given
by:

xi(k) = x(k) + x
′
isin(θ(k)) + y

′
icos(θ(k))

yi(k) = y(k)− x
′
icos(θ(k)) + y

′
isin(θ(k))

θi(k) = θ(k) + θi

(82)

Each plane Pj in the robot’s environment can be represented by P
j
r and P

j
n (Fig. 9), where (i) P

j
r

is the normal distance of the plane from the origin O, (ii) P
j
n is the angle between the normal

line to the plane and the x-direction.
The target’s reference point i is at position xi(k),yi(k) with respect to the inertial coordinates
systemOXY and its orientation is θi(k). Using the above notation, the distance of the reference

point i, from the plane Pj is represented by P
j
r ,P

j
n (see Fig. 9):

d
j
i(k) = P

j
r − xi(k)cos(P

j
n)− yi(k)sin(P

j
n) (83)

Assuming a constant sampling period ∆tk = T the measurement equation is z(k + 1) =
γ(x(k)) + v(k), where z(k) is the vector containing target’s coordinates and bearing estimates
obtained from a mobile sensor and the measurement of the target’s distance to the reference
surface, while v(k) is a white noise sequence∼ N(0,R(kT)). The measure vector z(k) can thus
be written as

z(k) = [x(k) + v1(k),y(k) + v2(k),θ(k) + v3(k),d
j
1(k) + v4(k)] (84)

with i = 1,2, · · · ,ns, dji(k) to be the distance measure with respect to the plane Pj and j =
1, · · · ,np to be the number of reference surfaces. By definition of the measurement vector one

has that the output function γ(x(k)) is given by γ(x(k)) = [x(k),y(k),θ(k),d11(k)].
To obtain the Extended Kalman Filter (EKF), the kinematic model of the target described in
Eq. (2) is discretized and written in the discrete-time state-space form of Eq.(24) (Rigatos,
2009a),(Rigatos, 2010b).
The measurement update of the EKF is

K(k) = P−(k)JTγ (x̂
−(k))[Jγ(x̂−(k))P−(k)JTγ (x̂

−(k)) + R(k)]−1

x̂(k) = x̂−(k) + K(k)[z(k)− γ(x̂−(k))]
P(k) = P−(k)− K(k)JTγ P

−(k)

The time update of the EKF is

P−(k+ 1) = Jφ(x̂(k))P(k)J
T
φ (x̂(k)) + Q(k)

x̂−(k+ 1) = φ(x̂(k)) + L(k)U(k)

where

L(k) =

⎛

⎝

Tcos(θ(k)) 0
Tsin(θ(k)) 0

0 T

⎞

⎠
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and

Jφ(x̂(k)) =

⎛

⎝

1 0 −v(k)sin(θ)T
0 1 −v(k)cos(θ)T
0 0 1

⎞

⎠

while Q(k) = diag[σ2(k),σ2(k),σ2(k)], with σ2(k) chosen to be 10−3 and φ(x̂(k)) = [x̂(k), ŷ(k), θ̂(k)]T,
γ(x̂(k)) = [x̂(k), ŷ(k), θ̂(k),d(k)]T, i.e.

γ(x̂(k)) =

⎛

⎜

⎜

⎝

x̂(k)
ŷ(k)
θ̂(k)

P
j
r − xi(k))cos(P

j
n)− yi(k)sin(P

j
n)

⎞

⎟

⎟

⎠

(85)

The vector of the control input is given by U(k) = [v(k),ω(k)]T. Assuming one reference
surface in the target’s neighborhood one gets

JTγ (x̂
−(k)) = [Jγ1(x̂

−(k)), Jγ2(x̂
−(k)), Jγ3(x̂

−(k)), Jγ4(x̂
−(k))]T, i.e.

JTγ (x̂
−(k)) =

⎛

⎜

⎜

⎝

1 0 0
0 1 0
0 0 1

−cos(P
j
n) −sin(P

j
n) {x′

icos(θ − P
j
n)− y

′
isin(θ − P

j
n)}

⎞

⎟

⎟

⎠

(86)

The use of EKF for fusing the target’s coordinates and bearing measured by each mobile robot
with the target’s distance from a reference surface measured in an inertial coordinates system
provides an estimation of the state vector [x(t),y(t),θ(t)] and enables the successful tracking
of the target’s motion by the individual mobile robots (mobile sensors).
The tracking of the target by the swarm of the autonomous vehicles was tested in the case of
several reference trajectories, both for motion in an environment without obstacles as well
as for motion in a plane containing obstacles. The proposed distributed filtering scheme
enabled accurate estimation of the target’s state vector [x,y,θ]T through the fusion of the
measurements of the target’s coordinates and orientation obtained by each mobile robot with
the measurement of the distance from a reference surface in an inertial coordinates frame.
The state estimates provided by the Extended Kalman Filters running at each mobile sensor
were fused into one single state estimate using Extended Information Filtering. The aggregate
estimated coordinates of the target (x̂∗, ŷ∗) provided the reference setpoint for the distributed
motion planning algorithm. Each mobile sensor was made to move along the path defined
by (x̂∗, ŷ∗). The convergence properties of the distributed motion planning algorithm were
described in Section 3. The tracking of the target’s trajectory by the mobile robots ensemble as
well as the accuracy of the two-level sensor fusion-based estimation of the target’s coordinates
is depicted in Fig. 10 to Fig. 14. The target is marked as a thick-line rectangle and the
associated reference trajectory is plotted as a thick line.
It is noted that using distributed EKFs and fusion through the Extended Information Filter is
more robust comparing to the centralized EKF since (i) if a local processing unit is subject
to a fault then state estimation is still possible and can be used for accurate localization
of the target, as well as for tracking of target’s trajectory by the individual mobile sensors
(autonomous vehicles), (ii) communication overhead remains low even in the case of a large
number of distributed mobile sensors, because the greatest part of state estimation procedure
is performed locally and only information matrices and state vectors are communicated
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Fig. 10. (a) Distributed target tracking by an ensemble of autonomous vehicles when the
target follows a circular trajectory in an obstacles-free motion space, (b) Aggregate estimation
of the target’s position with the use of Extended Information Filtering (continuous line) and
target’s reference path (dashed line).
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Fig. 11. (a) Distributed target tracking by an ensemble of autonomous vehicles when the
target follows an eight-shaped trajectory in an obstacles-free motion space, (b) Aggregate
estimation of the target’s position with the use of Extended Information Filtering (continuous
line) and target’s reference path (dashed line)
.
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Fig. 12. (a) Distributed target tracking by an ensemble of autonomous vehicles when the
target follows a curve-shaped trajectory in an obstacles-free motion space, (b) Aggregate
estimation of the target’s position with the use of Extended Information Filtering (continuous
line) and target’s reference path (dashed line).
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Fig. 13. (a) Distributed target tracking by an ensemble of autonomous vehicles when the
target follows a line path in a motion space with obstacles, (b) Aggregate estimation of the
target’s position with the use of Extended Information Filtering (continuous line) and target’s
reference path (dashed line).
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Fig. 14. (a) Distributed target tracking by an ensemble of autonomous vehicles when the
target follows a circular path in a motion space with obstacles, (b) Aggregate estimation of
the target’s position with the use of Extended Information Filtering (continuous line) and
target’s reference path (dashed line).

between the local processing units, (iii) the aggregation performed on the local EKF also
compensates for deviations in state estimates of local filters (which can be due to linearization
errors).

6.2 Estimation of target’s position with the use of unscented information filtering

Next, the estimation of the target’s state vector was performed using the Unscented
Information Filter. Again, the proposed distributed filtering enabled precise estimation of the
target’s state vector [x,y,θ]T through the fusion of measurements of the target’s coordinates
and bearing obtained by each mobile sensor with the distance of the target from a reference
surface measured in an inertial coordinates system. The state estimates of the local Unscented
Kalman Filters running at each mobile sensor (autonomous vehicle) were aggregated into a
single estimation by the Unscented Information Filter. The estimated coordinates [x̂∗, ŷ∗] of
the target were used to generate the reference path which was followed by the mobile robots.
The tracking of the target’s trajectory by the mobile robots ensemble as well as the accuracy
of the two-level sensor fusion-based estimation of the target’s position is shown in Fig. 15 to
Fig. 19.
As previously analyzed, the Unscented Information Filter is a derivative-free distributed
filtering approach in which the local Unscented Kalman Filters provide estimations of the
target’s coordinates using the update in-time of a number of suitably chosen sigma-points.
Therefore, unlike the Extended Information Filter and the local Extended Kalman Filters
contained in it, in the Unscented Information Filter there is no need to calculate Jacobians
through the computation of partial derivatives. Additionally, unlike the case of local
Extended Kalman Filters there is no truncation of higher order Taylor expansion terms and
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Fig. 15. (a) Distributed target tracking by an ensemble of autonomous vehicles when the
target follows a circular trajectory in an obstacles-free motion space, (b) Aggregate estimation
of the target’s position with the use of Unscented Information Filtering (continuous line) and
target’s reference path (dashed line)

no linearization errors are introduced at the local estimators. In that sense the Unscented
Information Filter provides a robust distributed state estimation and enables accurate tracking
of the target by the mobile sensors (autonomous vehicles).

7. Conclusions

The paper has examined the problem of coordinated tracking of a target by an ensemble
of mobile robots (unmanned ground vehicles). Each mobile robot was able to obtain
measurements of the target’s cartesian coordinates and orientation while a measurement
of the target’s distance from a reference surface in an inertial coordinates frame was also
communicated to the mobile robots. The state estimates of local Extended Kalman Filters
running at each mobile robot were fused into one single estimate using the Extended
Information Filter. Similarly, the state estimates of local Unscented Kalman Filters running
at each mobile sensor were aggregated by the Unscented Information Filter into one single
estimation. The estimated coordinates of the target [x̂∗, ŷ∗ ]were used to generate the reference
path which was followed by the mobile robots. Next, a suitable motion planning algorithm
was designed. The algorithm assured not only tracking of the reference path by the individual
autonomous vehicles but also permitted (i) convergence of the autonomous vehicles to the
target in a synchronized manner and (ii) avoidance of collisions with obstacles in the motion
plane as well as avoidance of collisions between the autonomous vehicles. The performance
of the distributed tracking algorithm was tested through simulation experiments.
Comparing to the traditional centralized or hierarchical fusion architecture, the
network-centric architecture proposed by the paper has significant advantages which
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Fig. 16. (a) Distributed target tracking by an ensemble of autonomous vehicles when the
target follows an eight-shaped trajectory in an obstacles-free motion space, (b) Aggregate
estimation of the target’s position with the use of Unscented Information Filtering
(continuous line) and target’s reference path (dashed line).
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Fig. 17. (a) Distributed target tracking by an ensemble of autonomous vehicles when the
target follows a curve-shaped trajectory in an obstacles-free motion space, (b) Aggregate
estimation of the target’s position with the use of Unscented Information Filtering
(continuous line) and target’s reference path (dashed line).
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Fig. 18. (a) Distributed target tracking by an ensemble of autonomous vehicles when the
target follows a line path in a motion space with obstacles, (b) Aggregate estimation of the
target’s position with the use of Unscented Information Filtering (continuous line).
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Fig. 19. (a) Distributed target tracking by an ensemble of autonomous vehicles when the
target follows a circular path in a motion space with obstacles, (b) Aggregate estimation of
the target’s position with the use of Unscented Information Filtering (continuous line) and
target’s reference path (dashed line).
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are summarized as follows: (i) Scalability: since there are no limits imposed by centralized
computation bottlenecks or lack of communication bandwidth, every mobile robot (mobile
sensor) can easily join or quit the system, (ii) Robustness: in a decentralized fusion
architecture no element of the system is mission-critical, so that the system is survivable in
the event of on-line loss of part of its partial entities (mobile robots), (iii) Modularity: every
partial entity is coordinated and does not need to possess a global knowledge of the network
topology.
Using distributed EKFs or UKFs and fusion through the Extended Information Filter and the
Unscented Kalman Filter respectively, is more robust comparing to the centralized EKF and
centralized UKF since (i) if a local processing unit is subject to a fault then state estimation
of the target’s position is still possible and can be used for planning of the mobile robot’s
motion towards the target, (ii) communication overhead remains low even in the case of a
large number of mobile robots, because the greatest part of state estimation is performed
locally and only information matrices and state vectors are communicated between the local
processing units.
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