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1. Introduction

With the development of robotic technology, the application areas of robots have been greatly
widened. The robots may serve as assistants (Elena et al., 2004), rescuers (Robert & Arvin,
2003) and explorers (Schenker et al., 2003). In many cases a multi-robot system has to be
used, since many tasks cannot be completed with a single robot and multi-robot system can
finish the tasks much more efficiently. As in a single robot system, knowing their relative
positions and their global positions in the environment are the preconditions for performing
tasks and coordination. Since a robot can determine the location of another robot relative
to its own when they see each other, both robots can refine their internal beliefs based on
the other robot’s estimate. In this way cooperative localization of multiple robots can greatly
improve the localization precision and efficiency (Fox et al., 2000; Trawny et al., 2009). An
area that has received some attentions in the single-robot case and very little attention in the
multi-robot case is active localization (Fox et al., 1998). In active localization, the robot(s)
may actively choose actions so as to aid in localization. Active localization has the potential
to increase the speed and accuracy of localization further. In this chapter a mechanism of
making robots coordinate their action actively during localization is proposed. In order to
determine the exploration strategy, the ability to stably track multi-hypotheses of the robot’s
own position and his partners’ positions is very important in active localization. However
using traditional particle filters for localization tends to produce premature convergence, i.e.
the hypothesis represented by particle filters converge to a small area of the state space with
high likelihood too quickly. To overcome this problem a new version of particle filters termed
co-evolution particle filters (CEPF) is proposed. Another problem of using particle filters in
multi-robot localization system is the communication problem. When several robots want to
share their estimates they have to transmit a large set of samples from one robot to another, so
a great bandwidth is needed. To solve this problem the reduced set density estimator (RSDE)
(Girolami & Chao, 2003) is used to estimate the density over robots’ pose, so that only a small
sub-set of the original samples should be transmitted between robots, which can reduce the
communication data considerably.

2. Related works

2.1 Robot localization
Localization is a basic problem of mobile robot systems. Whenever the robots explore
in an unknown environment or a known one, determining their own positions is of
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132 Multi-Robot Systems, Trends and Development

great importance for them. Localization in unknown environments is called simultaneous
localization and mapping (SLAM) (Dissanayake et al., 2001; Guivant & Nebot, 2001; Dasvison
& Murray, 2002), whose purpose is to estimate the pose of robot so as to build a consistent map
of the environment. The most popular method for SLAM is extended Kalman filter (EKF).
Cooperative simultaneous localization and mapping (CSLAM) in multi-robot system has also
been studied in recent years (Fenwick et al., 2002; Wu et al., 2009; Gil et al., 2010) . Compared
with SLAM of single robot system, CSLAM can improve the mapping efficiency and
localization precision based on the information sharing. Localization in known environment
can be divided into two sub-problems: pose tracking and global localization. In pose tracking,
the initial robot pose is known, and localization seeks to identify small, incremental errors in
a robot’s odometry. Global localization is a more challenging problem, in which the robot
is required to estimate its pose by local and incomplete observed information under the
condition of uncertain initial pose. Most recently, several approaches based on probabilistic
theory have been proposed for global localization, including grid-based approaches (Burgard
et al., 1996), topological approaches (Dayoub & Duckett, 2008; Kaelbling et al., 1996), particle
filters (PF) based approaches (Dellaert et al., 1999) and multi-hypothesis tracking (Jensfelt
& Kristensen, 2001). Since exploring actively can get more useful information for global
localization, several methods for active localization in single robot system are proposed: a
method using entropy to evaluate the utility of the robot’s action was proposed (Hongjun
& Shiyeyuki, 2002), Jensfelt proposed a active localization method with a topological map
(Jensfelt & Kristensen, 2001) and a method based on Bayes network was proposed for sensor
planning in localization (Kaelbling et al., 1996). In multi-robot system, the ability to exchange
information is particularly attractive in global localization, in which the fusion of information
can reduce the uncertainty in the estimated location. Particle filters are applied to localization
in multi-robot system (Fox et al., 2000). But it is a passive localization method with no
mechanism for the robots to actively determine their locations. In this paper we mainly
discuss the active localization of multi-robots in a known environment based on a new version
of particle filters.

2.2 Particle filter

Over the last years, particle filters have been applied successfully in many areas for state
estimation (Doucet et al., 2000; Arulampalam et al., 2002). The key idea of particle filters is
to represent the posterior density with a set of weighted samples. Particle filters include the
following three steps:

— Re-sampling: resample N samples randomly from sample set S;_; , according to the
distribution defined by weights of samples w;_1;
— Importance Sampling: sample pose xij ) from p(xt|xt(j_) 1-ut—1) for each of the N possible

pose xgj_) 1» and evaluate the importance factor wﬁj ) = p(y: ]xgj ) ).

(k)

— Summary: normalize the importance factors w0 = wt(] ) /YN Jw;”; and calculate the
statistic property of sample set S; to estimate the pose of the robot.

By representing probability densities with samples and using the sequential Monte Carlo
importance sampling (Arulampalam et al., 2002), particle filters can represent non-linear and
non-Gaussian models well and especially can focus the computational resources on regions
with high likelihood, where things really matter. Particle filters have been successfully used
in single robot localization (Dellaert et al., 1999) and have also been tried for multi-robot
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localization (Fox et al., 2000). But using traditional particle filters for multi-robot localization
has some shortcomings. Since samples are actually drawn from a proposal density, if the
observation density moves into one of the tails of the proposal density, most of the samples’
non-normalized importance factors will be small (Doucet et al., 2001). So a large sample size
is needed to represent the true posterior density to ensure stable and precise localization.
However in multi-robot cooperative localization, since all the samples should be transmitted
from one robot to another, large sample size will not only lead to a heavy computational
burden but also a heavy communication burden. Another problem of particle filters is that
samples often converge to a single, high likelihood pose too quickly. In active localization
this will not only lead to erroneous localization but also lead to inefficient exploration
strategy. How to improve efficiency and to prevent premature convergence of particle
filters are the key concerns of the researchers. To make the samples represent the posterior
density better, Thrun et al. proposed mixture-MCL (Thrun et al., 2001), but it needs much
additional computation in the sampling process. To improve the efficiency of MCL, a method
adjusting sample size adaptively over time has been proposed (Fox, 2003), but it increases the
probability of premature convergence. Although clustered particle filters are applied to solve
premature convergence (Milstein et al., 2002), the method loses the advantage of focusing
the computational resources on regions with high likelihood because it maintains the same
sample size for all clusters.

3. Dynamic architecture of cooperative localization

We assume that robots can determine their relative positions when they see each other. And
the relative positions between robots will also be updated according to their motion model for
some time after one robot disappears from the sight of the other robots. Our active localization
approach utilizes a dynamically evolving coordination architecture. At each point of time, the
state of the system can be summarized by a graph structure where the nodes are individual
robots and the edges represent the relationship between robots (see Fig.1). An isolated node
represents that the robot doesn’t know its relative positions to the other robots and cannot
communicate with the other robots, in this case the robot tries to determine its global position
by itself as in a single robot system. Another kind of relationship between robots is that
they do not know their relative positions but they can communicate with each other, which
is represented by dotted line in Fig.1 (for example robot 2 and robot 3). In this case there
may be several hypotheses of their relative positions. In order to actively verify their relative
positions, the two robots are arranged to meet each other at a rendezvous point. As is shown
in the left picture of Fig.1, robot 2 will manage to meet robot 3 so as to determine its position
using the information gotten by robot 3. If the robots fail to meet, the hypothesis will be
rejected and they continue to select the other hypothesis to verify. A key sub-structure of our
architecture is the connected group indicated by the shade areas in Fig.1. In the connected
group, two robots that know their relative positions and can communicate with each other are
connected with a solid line. The robots in a connected group can fuse their sensor information
to improve the precision of localization. And each group determines one robot as a leader to
be responsible for coordination of their exploration (for example robot 4 and robot 9). But if
the poses of the robots in a connected group are merged to form a single state for coordination,
it is infeasible for a small number of robots due to the too high dimensional state space. So a
hierarchical structure is proposed in which each robot maintains its own belief function, i.e.
the information of its position estimated by other robots will be fused by each robot itself.
Only several summarized hypotheses of their global positions will be transmitted to their
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134 Multi-Robot Systems, Trends and Development

Fig. 1. The dynamic relationship between robots

leader, and the leader will estimate the most likely positions where the robots are located.
Then the leader will choose an action for each robot to maximize utility-cost trade-off of
the group. The active coordination structure of multi robots is shown in Fig.2. In order to
reduce the communication data between robots, a density estimator is used before the data
transmission.
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Fig. 2. Multi-robot active localization architecture

4. Cooperative localization based on co-evolution particle filters

In this section we discuss multi-robot localization based on a new version of particle filters
called co-evolution particle filters (CEPF). In the first sub-section we present co-evolution
particle filters; in the second sub-section, the algorithm of cooperative localization of multiple
robots based on CEPF is described, in which an efficient communication mechanism is
proposed to reduce the data that should be transmitted between robots.
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4.1 Co-evolution particle filters

In order to satisfy the needs of the dynamic architecture of active localization and overcome
the limitations of particle filters, samples are clustered into groups which are also called
species. And a co-evolutionary model derived from the competition of ecological species
is introduced to make the species evolve cooperatively, so the premature convergence can be
prevented. And genetic operators are used for intra-species evolution to search for optimal
samples in each species. So the samples can represent the desired posterior density better, and
precise localization can be realized with a small sample size. The improved version of particle
filters is termed co-evolution particle filters (CEPF).

1) Inter-Species Competition

The concept of co-evolution is derived from ecologic science. In ecology, much of the early
theoretical work on the interaction between species started with the Lotka-Volterra model of
competition (Shang & Cai, 1996). The model itself was a modification of the logistic model of
the growth of a single population and represented the result of competition between species
by the change of the population size of each species. It is simple and easy to use the model
although it could not embody all the complex relations between species and it has been
accepted by most of the ecologists. In this paper, Lotka-Volterra model is merged into particle
filters to solve the premature problem of particle filters. Let us assume the samples of the

r-th robot can be clustered into Qgt) species (clusters) at time t. Inspired by ecology, when
competing with other species the population growth of species can be modeled using the
Lotka-Volterra competition model. The Lotka-Volterra competition model for two species,
which are denoted using species 1 and species 2, includes two equations of population growth,

one for each of the two competing species.

(1) (1) | (12)5;(2)
dN; W N TN,

2) @), DN
AN, @)@ N TN,

r

Where nr(l)and 17?(2) are the maximum possible rates of population growth, Nr(l)and Nr(z) are
the population sizes, Kﬁl) and Kﬁz) are the upper limit of population size the environment

resources can support of species 1 and species 2 respectively, and aglz) refers to the impact

of an individual of species 2 on population growth of species 1. Actually, The Lotka-Volterra
model of inter-specific competition also includes the effects of intra-specific competition on

population of the species. When aﬁlz) or Nr(z) equals 0, the population of the species 1 will

grow according to the logistic growth model which models the intra competition between
individuals in a species. These equations can be used to predict the outcome of competition
over time. To do this, we should determine equilibria, i.e. the condition that population

growth of both species will be zero. Let dNr(l)/dt =0 and dN,(Z)/dt =0. If 1751)Nr(1) and
(2)

1752) N;”’ do not equal 0, we get two line equations which are called the isoclines of the species.

They can be plotted in four cases, as are shown in Fig. 3. According to the figure, there are

four kinds of competition results determined by the relationship between K;l), KEZ), 0412) and

V.
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1. When K )/ ocr <K , vy zxr ) KS ), species 1 will always win and the balance point
is N( ) _ K( ), N( ) _

2. When K / ocr > K£ ,K / zxr < KS ), species 2 will always win and the balance point
is NV = o,N? —K(z).

3. When K / ocr (1),K£1) / 04512) < Kﬁz), they can win each other; the initial population
of them determmes who will win.

4. When / tx, > K£ ),K(l) / a£12) > Kﬁz), there is only one balance point and they can
coexist w1th their own population size.

For an environment that includes () species, the competition equation can be modified as:

dN, (1) j=1,j#i
== ND(1 - 0 ) ©)
Ky
b o k@ g o
(w ’
K, s
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il m )
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Fig. 3. The isoclines of two co-evolution species

2) Intra-Species Evolution

Since genetic algorithm and particle filters have many common aspects, Higuchi(Higuchi,
1997) has merged them together. In CEPF the genetic operators, crossover and mutation,
are applied to search for optimal samples in each species independently. The intra-species
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evolution will interact with inter-species competition: the evolution of individuals in a species
will increase its ability for inter-species competition, so as to survive for a longer time. Because

the observation density p (oﬁt) |x£t) ) includes the most recent observed information of the robot,
it is defined as the fitness function. The two operators: crossover and mutation, work directly
over the floating-points to avoid the trouble brought by binary coding and decoding. The
crossover and mutation operator are defined as the following: Crossover: for two parent

(t) (t)) (x(f) (£)

samples (x,,",w,,"), (x,, ,w,, )from the samples of a species of the r-th robot. The crossover
operator mates them by Equation 4 to generate two children samples.

/

e (1 - )2,

IO
&) () | = (D

x/rz = ( g) rl +§xr2 4 (4)
/(1) _ )

w’ r P(Or |x ])

w’g =p( or \x

Where¢ ~ UJ0,1], and UJ0,1]represents uniform distribution. And two samples with the
largest importance factors are selected from the four samples for the next generation.

(t) ()>

Mutation: for a parent sample (x W from the samples of a species of the r-th robot, the
mutation operator on it is defined by Equation 5.

(t)
{ (1t =X, +T 5)

rl —P O” |xrl>

Where T ~ N(0,X) is a three-dimensional vector and N(0,X) represents normal distribution.
The sample with larger importance factor is selected from the two samples for next generation.
In CEPF, the crossover operator will perform with probability p. and mutation operator will
perform with probability p,,. Because the genetic operator can search for optimal samples,
the sampling process is more efficient and the number of samples required to represent the
posterior density can be reduced considerably.

3) Splitting and Merging of Species

()

We assume the samples of the r-th robot are clustered into (), species at time step ¢ and

(£) (£)

each sample is a n-dimensional point. Samples of the i-th species S’ = {(;x, S ,lwﬁjt)] j=

1,--- ,Nr(i)} are contained in a sub-domain DSi) which is an hypercube of the state space.

If the sub-domains of two species such as sub-domain Dﬁi) and Dﬁj ) cover each other, the
two species will be merged and the their corresponding sub-domain will also be merged.

()

We call this the merging process. Let us assume there are ('}
process. In the splitting process the sub-domain Dﬁl) of the i-th species is partitioned into
small hyper-rectangular grids of equal size. And samples in the i-th species are mapped into
the grids. The weight of each grid is the average importance factor of the samples that fall in
it. A threshold T = pis used to classify the grids into two groups; here the coefficienty € (0,1).
Grids with weight larger than T are picked out to form a grid set V. Using the network defined
through neighborhood relations between the grids, the set V is divided into connected regions
(i.e. sets of connected grids). Assuming there are Bﬁl) connected regions, these connected
regions are used as seeds for the clustering procedure. A city-block distance is used in the

network of grids. As in image processing field, the use of distance and seeds permits to define

species after the merging
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influence zones, and the boundary between influence zones is known as SKIZ (skeleton by

(1)

influence zone) (Serra, 1982). So the sub-domain D,"’ will be split into B parts. This process

oMY
will perform for each species and the number of species of t+1 step is Q£t+1) = Eg’l B.. The
merging and splitting process is shown in Table 1.

Input: Qﬁt) species of time step t;

Output: the new Q£t+1) species;

1. Q’ﬁt) = Qgt);

2. for all species do

3. if Dﬁi) and Dﬁj ) cover each other;

4. merge(SS) ,Sﬁ;) );

5. Q’St) = Q’St) —1; // Update the number of species

6. end if

7. end for

8. Q£t+1) =0

9. fori:=1to Q’ﬁt) do //Split the species

10. split the domain Dr(i) into grids;

11. calculate the weight of each grids;

12. select the grids whose weight larger than T to form set V;
13. calculate Bgi) ; //the number of connected regions in V
14. split Di into Bﬁi) sub-regions and samples in each sub-region form a new species;
15. Qﬁtﬂ) = Q£t+1) + Bﬁi) ; //Update the number of species;
16. end for

17. end

Table 1. Merging-splitting process of species

4.2 Cooperative localization based on CEPF

Multi-robot localization is to integrate measurements taken at different platforms. The
simplest way for integrating the information from different platforms is to maintain a single
state for all the robots i.e. if there are R robots the state of the system will be of 3R dimension.
But using particle filters for state estimation the dimension of state of the system should be
small, thus estimating the distribution of the pose of all the robots is infeasible for a few robots.
So a distributed representation is used in our system similar to the approach proposed by Fox
(Fox et al., 2000), in which each robot maintains its own belief function that models its own
uncertainty. The posterior of position is given by:

t t t t
p(x\, o xd01d®) = p(xP a0y . p(D1a®)y, ©)
Where R is the number of the robots, d(*)is the data items collected by all robots up to time

t. The distributed representation enables the estimation of the posteriors to be conveniently
carried out locally on each robot. When thel-th robot knows the position of the r-th robot
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relative to itself, information is transmitted from the /-th robot to the r-th robot and integrated
in the following way:

() _ (t) 4(t) (t) ) 4(t)
p(xr |d(t)) - p(x,(,t) |d7(‘ )) (xr (‘gl 2 ) ( ) (t) (t) (t) (7)
=p(x |dr )fp(xr |xl /0p, )P(xl |dl )dxz .

Where Ol( ) is the relative positions between the two robots estimated by the I-th robot. Two

cases are considered in the calculation of Ol : (1) the [-th robot can see the r-th robot; (2) the

r-th robot has just gone out the eyesight of the I-th robot. In the first case, Ol( ) is observed by

the I-th robot, and p(xr ]xl 'Ol( )) is the detection model of the /-th robot. In the second
(t)

case, 0,  is calculated using their odometry data. Since the relative positions of the two
robots according to their odometry data are much more certain than the global positions, the
information of their relative positions is used to refine their global positions. In both cases

(t)

p(xgt) |xl(t) ,0;,”) is learned from data. CEPF can be applied to solve Equation 7. Since samples

in Sﬁt)and Sl(t)are drawn randomly, it is not straightforward to establish correspondence

between individual samples in p(xgt)\dgt)) and fp(xﬁt)\xl(t),ol(:))p(xl(t)\dl(t))dxl(t). And the

sample set which represents the position of the r-th robot in the eyes of the /-th robot will
be transmitted from the /-th robot to the r-th robot. If the sample size is large, a too wide
band is needed for communication. These problems can be solved, if we turn the discrete
density represented by a large set of samples into continuous density function represented
by much fewer parameters or a small sub-set of samples. This can be implemented by many
density estimation methods such as Gaussian mixture density estimation, SV based density
estimation. But density estimation is a time- consuming process, in order to satisfy the real
time requirement we choose reduced set density estimator (RSDE) (Girolami & Chao, 2003).
RSDE is a kernel-based density estimator which is optimal in L, sense. The advantage of RSDE
is that it only requires O(n?) optimization routines to estimate the required kernel coefficients,
but the SV based method requires O(n>) optimization routines. The general form of density
estimation using a sample set with N samples can be denoted as:

N
plchy) =Y virn(x,x;) (8)
i=1

Where «j,(x,x;) are kernel functions, and < are weighting coefficients and % is the window

width. For a fixed window width £, process of estimation in RESDE is to find the parameters
4 which provides the minimum integrated squared error (ISE):

¥ =argmin [p |p(x) — p(x;h,v)|2dx
U 9
— argmin [ p2(x;1,7)dx — 2E, ) {p(xi,7)} ©)
Y

Where [, p?(x)dx has been dropped from the above due to its independence of the
ygarameters and E,x){P(-)} denotes the expectation with respect to the desired density p(x).
Equation 9 can be represented in the following form:

¥ = argmin Z 'Yz’)’]/ (X, ;) K (X, x 22% {Kh X, %;) } (10)
Y i,j=1
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Since the required optimization of ISE will cause many of the vy;terms to be driven to zero, the
desired density can be presented with a small sub-set of samples. An example of density
estimation based on RESDE is shown in Fig. 4, in which the density represented by 500
samples shown in Fig.4(a) can be estimated using 90 samples shown in Fig.4(b). Suppose
the position of the r-th robot estimated by the I-th robot is represented by ‘N, samples

! Sﬁt) = {(lx(t), lwijt-) )j=1,---,'N,} after using RSDE, the algorithm of cooperative localization

r]
t@'.@) I

is shown in Table 2.
®
@@@g@@

, qor
wend L%, Le

(a) Original samples (b) Sub-set of samples after den51ty estimation

&

Fig. 4. Density estimation based on RDSE

5. Decision-theoretic active localization

In this section we propose a strategy based on decision theory to coordinate the robots actively.
For a robot that is in a connected group, the strategy includes two steps. In the first step, the
leader of a connected group will determine the position of the group (i.e. the most likely
position of the robots) according to summarized global position hypotheses of robots in the
group; in the second step, each robot will generate several candidate actions according to the
position of the connected group and the utility and cost of the actions are calculated, then the
leader will solve the conflictions between robots and choose the next action for each robot so as
to maximize the utility-cost trade-off. For a robot that is not connected with any other robots,
it will summarize its global position using the species with the largest average importance
factor, and will explore actively taking itself as the leader.

5.1 Position estimation of the connected group

In multi-robot cooperative localization based on CEPFE, each species represents a hypothesis
of the position of the robot. In order to estimate the position of the connected group, the
summarized hypotheses of positions and the relative positions between robots are transmitted
to their leader. And the position of the leader will be estimated according to the information
from other robots. Suppose the leader of a group is the I-th robot and the r-th robot is
a member under its leadership. The probability that the leader will be in the position

represented by the hypothesis hl(f)according to the data collected by the r-th robot and the
relative positions between them can be represented by the following equation:

(t)

pn1d) = 3" p(n) 1,0l p(nD ") (1)

j=1
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Input: NULL

Output: the position hypotheses summarize from the species;

1. cluster samples into Q$ ) species, dN / dt := 0 and t:=1; / /Initialization
2. for i:=1 to Qgt) do

3. SS) =¢;

4. normalize importance factors of speciesi; // Importance factor normalization
5. Nr(i) E= max(N,(i) + dNr(i) /dt,0) //Calculate the sample size

6. resample Nr(i) samples from S S_l) ;// Resampling from species i

7. for j:=1to N, " do // Importance sampling

8. sample ; x( ) from p(xt]lx ' - ”2—1 ; // Predict next state using motion
9. iw(;) = p(or |l-x(.)) ; // Calculate importance factor

1. S( ) = S( ) U (; (;{,lw(;)) / /Incorporate the sample to SS)

10. end for

11. intra-species evolution of sample set SS) ; // Intra-species evolution
12. end for

13. if the r-th robot should send information to the I-the robot

14. estimate the state of the /-the robot and perform density estimation;

15. end if

16. if the robot receives the position information estimated by the /-th robot ;
17. Merge the information from the I-th robot;

18. end if

19. if not end

20. t = t+1 goto step 2;

21. end.

Table 2. Cooperative localization of multi robots based on CEPF

Where hl(it)is a hypothesis of position summarized by the species i of the I-th robot, hﬁ?is a

()

hypothesis of position summarized by the species j of the r-th robot, (), ’is the number of

species of the r-th robot, OS) is the relative position between the I-th robot and the r-th robot
which may not be observed directly but may be calculated according to the relative positions

between the other robots in the Cluster p(h, (t.) |d£t) ) represents the probability that the r-th
robot is at the position h£ ) and p( i \h o) ) is a probability model learned from experiment

data. The probability that the /-th robot is at the position represented by the hypothesis hl(i)

according to the data collected by all the robots in the connected group will be:

iy —“ZP D1l (12)
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Where ais a normalization parameter to make probability of all hypotheses sum to 1, and

R is the number of robots in the group. The hypothesis hl(;?l

(t)

Imax the position of the connected

(t)

Imax

. With the largest probability

is supposed to be the position of the /-th robot. We call h

(t)

group. The hypothesis hrtmax that has the largest value of p(h |h£]t.) ,O’(,;) )is supposed to be

the position of the r-th robot:
hﬁtn)wx = argm%xp(hl(gaxmg),os)) (13)
rj

5.2 Exploration strategy

The world model in our system is represented by a hybrid map of grid and topology. For a
grid map a Voronoi Diagram is produced using an approach similar to the one proposed by
Thrun (Thrun, 1998). The grid map is partitioned into disjoint regions using the critical lines,
as shown in Fig.5(a), and each region corresponds to one or more topological nodes which is
the furcate point of Voronoi Diagram or the middle point if there is no furcate point as shown

in Fig.5(b).

(a) Disjoint regions of grid map (b) Topological nodes in Voronoi Diagram

Fig. 5. Hybrid map of grid and topology
(£)

By using the position hypothesis #; - ., we can get the topological nodes in the environment
around the group. At any point of time the robot in each group can be assigned either to a
topological node or to a rendezvous point of another robot. Coordination can be phrased as
the problem of finding the assignment that maximizes the utility-cost trade-off similar to the
method in (Burgard et al., 2000). More specifically, let E denote an assignment that determines
the exact target (topological nodes and rendezvous point) of each robot and E(r,j)=1 if the r-th
robot in the connected group is assigned to the j-th target. Among all assignments we choose
the one that maximizes expected utility and minus expected cost:

E* =argmax Y E(r,j)(U(r,j) — C(r.])) (14)
E (ij)eE
The utility and cost of each robot target pair (r,j) can be calculated as the following. Utility:
The entropy of the belief, obtained by the following formula:

N

Hx) = Y p(x) logp(x1)), (15)
i=1
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(t)

measures the uncertainty in the robot position. Suppose the position of the r-th robot is /1y ax
at time point ¢, and it was assigned to the target j. If command a can drive the robot from the

(t)

position /1, max to the target, we can measure the utility U(r, j) of performing an action a by the
decrease in uncertainty:
N (1) (t+1)
U(r,j) = H(xr") = Ea(H(xr ")) (16)
If the target is a topological node, E,(H (xﬁtﬂ))) denotes the expected entropy after having
performed action 2 and having fired the sensors of the robot.

Eq(H(x{"™)) —2H< U 1s,a)p(sla)

(t+1) (t+1) 17
Z—Z v p(sx ) p () a) log B Ip(na) (17)

x(r+1 p(sla)

Where s is the sensor information. If the target is a rendezvous point with another robot that

is not in the group, EL(IH (xﬁtH) )) is the expected entropy after having performed action a and

having received the information from the other robot.

E«(H™)) = S HE ™ 1dD, 0,0 p(0y]a)

Ork
18
=L T plonla)ple V1t o) logp(e Va0, 00
rk 4t

Where p(o| .4) represents the probability that the relative position between the r-th robot and

the k-th robot is o, after having performed the action 2 and the probability p(xrHl 1At 0,4)
can be calculated by:

p(x£t+1)|d(t+1),0rk) — (xr |d /p (t+1) |xkt+1 0 ;<f]t<+l)>p(x](<t+1)|d](<t))dx]£t+1)' (19)

Cost: using the occupancy grid map we can get the cost-optimal path from the current location
of the robot to the target location. And we use the cost of following the optimal path as the cost

of assigning the r-th robot to the target j. Let pocc(x£t+1)) denote the probability that location

xﬁtH) is blocked by an obstacle. The robot has to compute the probability that the target point

is occupied. Recall that the robot does not know its exact location; thus it must estimate the
probability that the point relative to the robot according to the action a is occupied:

Pocc Z P H_l pocc(fa( t+1)))~ (20)

t+1

Where f, (x£t+1)) represents the location relative to the robot after performing action a when

the robot is at the position x£t+l). Based on pocc(a), the expected path length and the

cost-optimal policy can be obtained through value iteration. And the cost C(r,j) can be
calculated according to the length of the optimal path.
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6. Experiment results

In this section we present experiments conducted using three robots: one is the HIT-Pioneer2
which is equipped with 16 sonar sensors and a CCD camera; one is the HIT-Pioneer3 which is
equipped with 16 sonar sensors, a front laser range finder and a CCD camera and the third one
is the HIT-Ghost which is equipped with two cameras (see Fig.6). The robots can detect each
other using their CCD cameras, and communicate with each other using wireless Ethernet.
Experiments are carried out in our lab building, and the map of the environment is shown in
Fig.7(a). In the topological map are created before experiment (see Fig.7(b)). And some color
marks are pasted on the wall or on the floor near the topological nodes so that HIT-Ghost can
localize with visual information. Since even in multi-robot system the robots have to perform

Y '
' 3 i

-

(a) The map drawn by hand (b) The map built by robot

Fig. 7. The map of the environment

localization by itself when they do not connect with each other, we first evaluate the quality
of CEPF for single robot localization. The HIT-Pioneer3 was placed in one of the rooms and
its destination is the door of the building. During the process of going to its destination, the
initial position of the robot is unknown and it has to make global localization using the laser
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range finder (see Fig.8(a)). After randomly running several meters, most of the samples will
move to several small areas because of the symmetry of the environment, so CEPF can cluster
the samples into clusters naturally (see Fig.8(b)). And the robot can make decision according
to the estimated location of the species. At the moment shown in Fig.8(a), the robot will make
a right turning and go to another corner of the rooms to determine the room it will be in
as is shown in Fig.8(c). Then the robot will go to the door of the room and only two most
likely hypotheses are remained (see Fig.8(d)). Then we evaluated the multi-robot localization

(b) Samples after running some time
randomly

(c) Samples after making one decision ~ (d) Samples after making another
decision

Fig. 8. Active localization of a single robot

based on CEPF with 1500 samples for each robot. The three robots are randomly placed in
the environment and explore actively by themselves as in single robot localization at the first
stage (see Fig.9). In figure 9 HIT-Pioneer3 is represented by red particles, HIT-Pioneer2 is
represented by green particles and HIT-Ghost is represented by blue particles. When the two
HIT-Pioneer robots can communicate with each other, a rendezvous point R is determined
by them to manage to meet each other (see Fig.9(a)). When they can see each other their
observation information will be exchanged, so their global positions can be refined and only
two localization hypotheses are remained for each robot (see Fig.9(b)). And HIT-Pioneer3
is assigned to be the leader to coordinate their actions to go to an optimal topological node
(see Fig.9(c)). Since the color marks in the environment are sparse and specious, the global
position of the HIT-Ghost is very uncertain. When the HIT-Ghost can communicate with the
two HIT-Pioneer robots, the utility to meet the other two robots is much larger than go to
a topological node, so the HIT-Ghost will manage to meet the HIT-Pioneer3 (see Fig.9(d)).
The time to determine the global position of the robots using no-cooperative localization,
cooperative localization and cooperative active localization based on CEPF, which are termed
CEPF, CCEPF and CACEPF for short respectively, are compared. In 20 times of experiments,
the time needed for localization of CACEPF and CCEPF are 62% and 89% of that of CEPF
respectively.
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(b) Samples after HIT-Pioneer3 meets
HIT-Pioneer2

(c) Samples after making a active (d) Samples after HIT-Ghost meets
exploration HIT-Pioneer3

Fig. 9. Multi-robot active localization based on CEPF

7. Conclusion

A novel method for active localization of multi-robot is proposed. Based on the new
version of particle filters called co-evolution particle filters (CEPF) the problem of premature
convergence can be solved, so the hypothesis of the robots” positions can be tracked stably.
And the decision theory- based coordination strategy can efficiently coordinate the action of
the robots so as to maximize the utility-cost trade-off. Experimental results have proved the
efficiency of the method of the active localization in multi-robot system.
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