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1. Introduction 

The necessity of increasing the productivity per cultivation area is a peremptory demand 
since, on hand, the available surface is limited, even worse it has diminished due to the 
degradation of the soil; and on the other hand, it is necessary to supply the food demand of 
a steadily increasing population.  
To supply this demand of the current world population, about six thousand million, it is 
required to produce more and more. To do this is necessary to use massively chemicals, 
known generically as agrochemicals (insecticides, fungicides, acaricides, nematocides and 
herbicides). The use of these chemicals has allowed for significant reduction of the 
agriculture plagues and consequently increased the productivity. Among the pesticides, the 
herbicides deserve special attention since, due to the resistance developed by weeds, new 
products have to be steadily introduced to market. 
Plants and many microorganisms are able to synthesize from inorganic precursors all the 
metabolites needed for their survival. In contrast, animals must obtain many compounds, 
such as vitamins, essential fatty acids and certain amino acids, from their diet. This is 
because they lack the full biosynthetic machinery, so there are metabolic pathways and their 
component enzymes that are not found in animals. The branched-chain amino acids 
(BCAAs) are synthesized by plants, algae, fungi, bacteria and archae, but no by animals. 
Therefore, the enzymes involved in the BCAA biosynthetic pathway are potential targets for 
the development of herbicides, fungicides, and antimicrobial compounds. 

Pyrimidinylsalicylic acid (PSA) based compounds show potent herbicidal activity. This 
activity has been identified as a result of the inhibition of acetohydroxyacid synthase, 
AHAS. Unfortunately, this family of compounds has been poorly characterized from the 
physical-chemical point of view. This lack of information has prevented the assessment of 
their impact in the environment. The difficulty to obtain accurate experimental values arise 
mainly from limitations of analytical techniques, cost, safety and time. For this reason, it is 
very useful to be able to predict  these  properties. Such a prediction may be important 
additionally for the design of novel herbicides since their properties could be predicted 
prior to synthesis and consequently the design may, in this way, be guided by the results of 
calculations. Once these properties are known the effect of these chemicals on the 
environment could be evaluated in advance, reaching in this way the desired compromise 
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between productivity and environment protection. In this chapter, classical and quantum 
chemical methods are applied to predict and calculate important properties of PSA based 
herbicides.  

2. Partitioning of a chemical in the environment 

When a chemical is released in the environment it distributes among the diverse 
compartments which comprise it, Figure 1, (Stangroom et al., 2000; Ballschmiter, 1992).  A 
knowledge of chemical partitioning is needed to assess pathways of pollutant transport and 
transformation. Hence, a detailed understanding of chemical partitioning behaviour is a 
fundamental requirement for the development of environment models for the assessment of 
contaminant fate. An improved understanding of chemical partitioning would facilitate the 
estimation of exposure levels in the various environment compartments (soil, water, air and 
biota). Being the acid dissociation constant pKa one of the most important of such parameters 
because ionization alters the macro properties such as solubility and lipophilicity. 
 

 

Fig. 1. Distribution of PSA compounds in the environment. 

3. Pyrimidinyl salicylic acids 

The synthesis and herbicidal activity of  pyrimidinylsalicylic acid (PSA) based compounds, 

Figure 2, was reported for first time by Nezu et al. (Nezu et al., 1996; Nezu et al., 1998). 

These compounds show highly potent herbicidal activity characteristic of AHAS inhibition. 

The effect of substituents R introduced into various positions of the benzene ring is striking. 

Some substituents at the 6-position increase the AHAS inhibitory activity enormously, 

whereas others, as well as most substituents at the other positions, have the reverse effect. 

The replacement of O, in the X position, with S does not much affect the AHAS inhibition 

except for a few pairs of analogs. The phytotoxicity in the oxy-series is, however, reduced, in 

general, in the corresponding thio-series. The extent of the toxicity reduction varies 

depending on the crop/weed species, leading to selectively herbicidal thiosalicylic acids. 
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Fig. 2. General structure of PSA compounds: X=O, S 

4. Acetohydroxyacid synthase. 

Acetohydroxyacid synthase, AHAS, the first common enzyme in the biosynthetic route to 
the branched chain amino acids, valine, leucine and isoleucine, Figure 3, has been identified 
as the target of action of several structurally different types of chemicals (sulfonylureas, 
sulfonamides, imidazolinones and pyrimidylsalicylates) with high herbicidal activity. These 
four classes of herbicides, all obtained by traditional screening methods, have the attributes 
of low application rates, good crop selectivity, environmental safety and low mammalian 
toxicity. These herbicides act inhibiting AHAS leading to the starvation of the plant for these 
amino acids, it is this starvation that is thought to be the primary mechanism by which these 
chemicals cause plant death (Singh & Shaner, 1995; Zohar et al., 2003; Pang et al., 2002, Pang 
et al., 2003; McCourt et al., 2005; MCCourt et al., 2006; Duggleby & Pang, 2000; MCCourt & 
Duggleby, 2006). 
 

 

Fig. 3. Branched-chain amino acid biosynthesis pathway 

Valine, leucine and isoleucine are synthesized by a common pathway in micro organisms 
and plants. One unusual feature of this pathway is the employment of parallel steps leading 
to the formation of valine and isoleucine. These parallel steps involve four enzymes, namely 
the anabolic AHAS, ketol-acid reductoisomerase, dihydroxyacid dehydratase, and a 
transaminase, each of which is capable of catalyzing two slightly different reactions. 
The anabolic AHAS catalyzes the first of the parallel steps and is at branch point in the 
pathway because its reactions will determine the extent of carbon flow through to the 
branched-chain amino acids. The reactions involve the irreversible decarboxylation of 
pyruvate and the condensation of the acetaldehyde moiety with a second molecule of 
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pyruvate to give 2-acetolactate or with a molecule of 2-ketobutyrate to yield 2-aceto-2-
hydroxybutyrate. 
Each of the products in then converted further in three reactions to give valine and 
isoleucine; for leucine biosynthesis, four additional enzymes are required using valine 
precursor 2-ketoisovalerate as the starting point for synthesis. 
The regulation of the biosynthesis of the branched–chain amino acids is complex and 
carefully controlled. This regulation is essential, not only to ensure a balanced supply of the 
amino acids within cells, but also because its intermediates interact with other cellular 
metabolic pathway. Even through microbes and plants share the common branched-chain 
amino acid pathway, its regulation may vary among organisms and is not fully understood. 
AHAS belongs to a super family of thiamine diphosphate, ThDP, dependent  enzymes that 
are capable of catalyzing a variety of rections, including both the oxidative and non-
oxidative decarboxylation of 2-ketoacids. This cofactor is bound by a divalent metal ion such 
as Mg+2, which coordinates to the diphosphate group of ThDP and two highly conserved 
residues in these proteins (Mc Court et al., 2006). AHAS also binds a molecule of flavin 
adenine dinucleotide, FAD. There is no intrinsic feature of the reaction catalyzed that  
demands this requirement, and is demonstrated by the fact  that there is an FAD-
independent form of the enzyme in some bacteria. The hypothesis that FAD plays a purely 
structural role is supported by comparison of the structures of the FAD-dependent and 
FAD-independent enzyme (Pang et al., 2004). 

5. Molecular approaches to studying chemistry in solution. 

Modern chemistry is oriented more and more towards elucidating in detail how the 
macroscopic properties are determined by the microscopic properties of matter, thus 
enabling subsequent experimentation to be concentrated in the most promising directions. 
There exist several approaches for the prediction of chemical properties in solution, which 
may be classified as: discrete, classical and quantum chemical methods. 
Discrete methods based on statistical mechanics, link those two pictures through the 
probabilistic treatment of particle ensembles. The most popular are molecular dynamics 
(MD) and the Monte Carlo (MC) method. In both cases, the condensed system is represented 
by an assembly of interacting particles, the statistical distribution of any property, or its 
evolution in time, is obtained as a sum over all particles, with appropriate rules. 
Applications of such techniques to study phase equilibria have been reported widely in 
literature (Frenkel & Smit, 1996; Siepmann, 1999; Duffy & Jorgensen, 2000; Kollman, 1993). 
Although some simple hydrocarbons can nowadays be reasonably well described by MD 
and MC methods, water and especially water mixtures, still represent challenges for such 
simulations techniques despite 30 years of active parameterization of appropriate force-
fields. This is due to the extremely strong and complicated electrostatic and hydrogen-
bonding interactions (Estrada et al., 2007). 
The best developed classical method is the multivariate quantitative structure-
activity/property relationship (QSAR/QSPR) methodology (Katritzky at al., 1997; Karelson 
et al., 1996; Hansch at al., 1996; Hansch, 1993, Cramer at al., 1988; Klebe at al., 1994). The 
underlying assumption in this methodology is that the molecular structure of an organic 
compound contains, in principle, coded within it all of the information which predetermines 
the chemical, biological and physical properties of that compound. If we could elucidate in 
detail how these properties are determined by structure, we could predict such properties 
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simply from a knowledge of the molecular structure. A major goal of a QSAR/QSPR study 
is to find a mathematical relationship between a certain property and one or more 
descriptive parameters, known as descriptors, related to the structure of the molecule. These 
descriptors are numerical representations of structural features of molecules that attempt to 
encode important information that causes structurally different compounds to have 
different property values. These models so developed are important for the design of novel 
compounds since properties can be predicted prior to synthesis, and in this way the design 
of new chemicals, with specific properties, may be guided by the calculation results. 
Quantum mechanical continuum solvation methods (Tomasi & Persico, 1994; Cramer, 2002; 

Young, 2001) are based on the self-consistent reaction field (SCRF) approach which 

considers the solvent as a structureless and continuous dielectric medium, characterized 

with a dielectric constant ε, with the solute placed in a suitable shaped hole within it.  The 

SCRF method is an adaptation of the Poisson method for ab initio calculations. There are 

quite a number of variations on this method. One point of difference is the shape of the 

solvent cavity. Various models use spherical cavities, spheres for each atom, or an isosurface  

of electron density. The second difference is the description of the solute, which could be a 

dipole, multipole expansion, or numerical integration over the charge density. 

The quantum mechanical based methods have been developed to the point that they are 

useful tools for predicting thermodynamic properties and phase behaviour of some 

substances to an accuracy useful in engineering calculations (Sandler, 2003). 

6. Prediction of PSA properties: three case studies 

6.1 Quantitative prediction of AHAS inhibition by PSA compounds 

We have studied AHAS inhibition by PSA based herbicides within the framework of 

quantitative structure-activity relationship (QSAR) methodology (Diaz & Delgado, 2009). A 

general model for this family of herbicides has been developed to predict molar pI50, i.e, the 

logarithm of the reciprocal molar concentration of herbicide required for 50% inhibition of 

the AHAS activity. The model involves only four descriptors: two geometric and two 

quantum chemical, accounting for the steric, electrostatic and hydrogen bonding 

interactions responsible for the binding of the herbicide to the enzyme. 

6.1.1 Chemical data 

The data set of the pI50 was taken from the data reported by Nezu et al. (1998).  The set 
contains 46 structures of substituted O-(4,6-dimethoxypyrimidin-2-yl)salicylic acids and thio 
analogs inhibiting AHAS,  including 6-substituted(thio)-, 5- and 6- substituted salicylic 
acids;  covering a pI50 range from  about 3 to 8 units.  

6.1.2 Methodology 

Empirical evidences show that the acidic carboxyl group of these  pyrimidylsalicylates is 

indispensable for AHAS inhibition; moreover, it has been suggested the carboxylate group 

is responsible for the binding of the inhibitor molecule to the enzyme (Nezu at al., 1998). 

Enzymes are proteins which are actives under relative mild reactions conditions: 

temperature below 1000C, atmospheric pressure and nearly neutral pH. Therefore, at these 

conditions of pH the PSA compounds will be in their anionic form, since their pKa values go 

from about 3.3 to 4.4 (Delgado, 2009).  
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Modeling was performed in order to set the anions in their lowest energy 3D conformations. 

To achieve this goal, initial three-dimensional geometries of the chemical structures were 

generated using Hyperchem 7.0 molecular modeling package. These 3D structures were 

refined later using Ampac 5.0, a semiempirical molecular modeling program, using AM1 

parameterization. To determine the lowest-energy conformations for each molecule, 

geometry optimizations were carried out allowing one or more torsional angles to vary 

systematically. The keyword CHARGE= -1 was always used in all cases. The Ampac output 

files, containing the lowest–energy  structures and the respective electron wave functions of 

individual compounds, were loaded into the Codessa program to calculate the molecular 

descriptors. This pool of descriptors was reduced by removing descriptors that could not be 

calculated for every structure in the data set, and by eliminating one descriptor from those 

pairs highly correlated. Afterwards, from this reduced pool of descriptors the best 

multilinear correlation QSAR model was searched using the Sigmastat statistical package  

6.1.3 Results 

A total of 184 descriptors, 12 geometrical and 172 quantum chemical, were calculated for all 

compounds. The best regression equation found involves only four descriptors, two 

geometrical and two quantum chemical: SM, the molecular surface area; SXY, the normalized 

shadow area of the molecule projected on the XY plane; HOMO, the energy of the highest 

occupied molecular orbital; and FNSA, the fractional partial negatively charged surface 

area. It is noteworthy that these descriptors individually correlate poorly with the property  

(R2 = 0.22, 0.27, 0.11, 0.01 for SM, SXY, HOMO and FNSA, respectively), however they 

collectively correlate pretty well with the property, R2 = 0.89. This is an interesting result 

since, from the respective  individual correlation coefficient,  these descriptors are seemingly 

not relevant  for predicting inhibition. Nevertheless, the  relevance of these descriptors it is 

made evident only when the correlation with the collective is considered. This means that 

the interaction of information among the descriptors add an important additional  

predictive value which goes further from the simple sum of the information contained in the 

individual descriptors. This finding is in agreement with the widely accepted idea that 

inhibition is driven by several interactions (steric, electrostatic and hydrogen-bonding) 

which occur simultaneously and synergically. The best regression equation found is the 

following: 

 50 13.70 0.04 18.77 0.79 4.99M XYpI S S HOMO FNSA= − + + −  (1) 

and its respective statistics is shown in Tables 1 and 2.  
In these tables the statistical parameters have the usual meaning. The p-values indicate that 

all descriptors are statistically significant at the 99% confidence level. On the other hand, the 

VIF values, about 1, indicate there is no serious collinearity between the involved 

descriptors (Ott & Longnecker, 2001). Therefore, it is concluded that all the independent 

variables included in the model are relevant. 

The experimental and calculated values of pI50 along with the values of the descriptors 
involved in the model are shown in Table 3. The respective scatter plot is shown in Figure 4. 
To check the predictive capability of the model, it was tested with an external set of 

chemicals not contains in the training set. The validation data set included 13 chemicals 
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including 5- and 6- substituted salicylic acids as well as  6- substituted thio analogs.  In Table 

4, the values of the molecular descriptors along with the experimental and calculated values 

of pI50 for the validation set are shown. The statistics for the validation is as follows:   

R2 = 0.84, s = 0.33, F= 59. These results confirm the prediction capability of the model. 

 
 

 Coefficient Std. Error p-value VIF 

Constant 13.70 2.76 < 0.001  

SM -0.04 0.003 < 0.001 1.31 

SXY 18.77 2.39 < 0.001 1.81 

HOMO 0.79 0.26 0.006 1.99 

FNSA(1) -4.99 1.30 < 0.001 1.11 

R2 = 0.89 , R2CV = 0.85 , R2df = 0.88 , s = 0.43 

Table 1. Statistical parameters for the best  QSAR model 

 

Analysis of Variance 

 DF SS MS F P 

Regression 4 37.38 9.34 52 < 0.001 

Residual 25 4.53 0.18   

Total 29 41.91 1.44   

Table 2. Analysis of variance of  the best QSAR model 

 

 

 
 
 

Fig. 4. Scatter plot of the calculated vs. experimental pI50 
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Y SM SXY HOMO FNSA(1) 
pI50 

(exp)
pI50 

(calc) 
Diff. 

5-substituted Pyrimidinylsalicilates 

F 279.23 0.57 -5.35 0.47 6.27 5.86 -0.41 

Cl 313.83 0.63 -4.92 0.53 5.35 5.67 0.32 

Br 318.11 0.57 -4.93 0.54 4.50 4.25 -0.25 

C2H5 310.27 0.56 -5.17 0.35 4.59 5.15 0.56 

OCH3 300.19 0.55 -5.21 0.39 4.60 5.25 0.65 

OC6H5 357.88 0.60 -5.40 0.42 3.58 3.32 -0.26 

SCH3 338.00 0.61 -4.86 0.38 4.32 4.93 0.61 

CN 301.27 0.56 -5.51 0.53 3.71 4.29 0.58 

NH2 285.19 0.57 -5.17 0.42 6.09 5.98 -0.11 

CCH 309.95 0.57 -5.28 0.50 4.70 4.45 -0.25 

6-substituted Pyrimidinylsalicilates 

H 268.10 0.57 -5.16 0.42 6.64 6.69 0.05 

F 267.34 0.61 -5.24 0.46 7.30 7.23 -0.07 

Cl 273.62 0.63 -5.18 0.50 7.62 7.21 -0.41 

I 281.59 0.60 -5.21 0.40 7.66 6.83 -0.83 

CH3 280.47 0.62 -5.13 0.38 6.89 7.51 0.62 

C2H5 294.75 0.62 -5.12 0.37 6.57 6.81 0.24 

OC3H7 309.91 0.60 -5.25 0.33 6.24 5.87 -0.37 

OCH(CH3)2 322.80 0.62 -5.22 0.37 5.73 5.54 -0.19 

SC2H5 316.95 0.62 -4.31 0.33 7.11 6.79 -0.32 

SC3H7 324.40 0.60 -4.32 0.32 6.29 6.10 -0.19 

NO2 292.87 0.63 -5.65 0.48 6.64 6.21 -0.43 

CO2CH3 307.35 0.62 -5.56 0.41 5.68 5.89 0.21 

NH2 280.47 0.62 -5.24 0.39 7.00 7.32 0.32 

6-substituted Pyrimidinyl(thio)salicylates 

F 301.31 0.70 -4.35 0.47 7.67 8.27 0.60 

Cl 308.83 0.69 -4.32 0.49 7.49 7.65 0.16 

I 294.59 0.62 -5.11 0.39 6.99 6.80 -0.19 

OC2H5 341.24 0.65 -4.19 0.36 6.70 6.30 -0.40 

OC6H5 364.64 0.70 -4.37 0.44 5.60 5.69 0.09 

NO2 324.48 0.69 -4.71 0.51 6.69 6.63 -0.06 

COCH3 326.72 0.68 -4.43 0.44 7.14 6.87 -0.27 

 
Table 3. Molecular descriptors and values of experimental and calculated pI50 for the  
training set. 
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Y SM SXY HOMO FNSA(1) pI50 (exp)
pI50 

(calc) 
Diff. 

5-substituted Pyrimidinylsalicilates 

H 268.10 0.57 -5.16 0.42 6.64 6.69 0.05 

I 321.03 0.55 -4.93 0.39 5.05 4.50 -0.55 

OH 308.43 0.69 -4.87 0.48 7.20 7.29 0.09 

6-substituted Pyrimidinylsalicylates 

C3H7 310.23 0.61 -5.15 0.35 5.89 6.17 0.28 

OC2H5 302.35 0.66 -5.22 0.33 7.05 7.37 0.32 

OC4H9 328.96 0.64 -5.15 0.32 6.21 5.98 -0.23 

CF3 289.31 0.68 -5.51 0.52 6.96 7.15 0.19 

6-substituted Pyrimidinyl(thio)salicylates 

Br 288.99 0.63 -5.08 0.40 7.40 7.23 -0.17 

CH3 286.51 0.67 -4.98 0.41 7.53 8.05 0.52 

OCH3 323.96 0.67 -4.20 0.39 7.05 7.18 0.13 

SC2H5 345.36 0.65 -4.26 0.35 6.67 6.13 -0.54 

CF3 326.52 0.69 -4.52 0.55 6.02 6.48 0.46 

COC6H5 366.52 0.72 -4.46 0.45 5.19 5.75 0.56 

Table 4. Molecular descriptors and values of experimental and calculated pI50 for the 
validation set. 

6.1.4 Discussion 

From the explanations suggested in literature,  it seems to be logical to think the first 
requirement that the inhibitors must meet is the steric factor, since the chemicals must fit in 
the active site channel. To this the chemical has to have the adequate size and the shape. 
Consequently, the more relevant descriptors in the model are the molecular surface area and 
the shadow area of the molecule projected on the XY plane. These descriptors encode the 
size and the geometrical shape of the molecule, respectively. The normalized shadow 
indices, introduced by Jurs as molecular shape descriptors (Stanton & Jurs, 1990), are 
calculated as the ratio of the areas of three orthogonal projections to the maximum 
dimensions along the respective axes, taking the X coordinate along the main axis of inertia 
and so on.  
The correlation coefficients for the above two descriptors have opposite sign, indicating size 
and shape have antagonistic effects on inhibition. Thus, on one hand, the pI50 value 
decreases as the surface area increases; on the other hand,  the normalized shadow area in 
the XY plane, SXY, increases the value of pI50. Therefore, both descriptors have inverse effect 
on inhibition, disfavoring and favoring inhibition, respectively. This inverse effect is 
presumably due to the inhibitors must accommodate in a size-limited cavity  in the enzyme, 
on one hand; and to enter into the enzyme the inhibitors should  have the adequate 
conformation to facilitate the entry and to favor the diverse intermolecular interaction with 
amino acid side chains, on the other hand. The conformations which maximize the shadow 
XY area are those in which the benzene ring and the pyrimidinyl ring are aligned  in the 
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same plane in such a way the main moment of inertia lies in this plane. This conformation, 
which is observed in the thio-derivates,  facilitates the entry of the inhibitor into the active 
site channel and set the ring atoms in a favorable position  to make interactions with the 
amino acids side chains. In the other two families instead the benzene and the pyrimidinyl 
ring lies in planes almost orthogonals each other, adopting a nearly L-shaped structure 
hindering the entry into the active site tunnel. 
The correlation coefficient for the HOMO energy is positive indicating the property, pI50, 
and this descriptor vary in symmetrical way, i.e., the higher the value of the Homo energy 
the higher the value of pI50, which means a lower molar concentration for 50% inhibition of 
the enzyme activity. Therefore, the HOMO energy is a key descriptor for an increased 
inhibitory potency. The energy of the HOMO characterizes the susceptibility of the molecule 
toward attack by electrophiles. Thus, it is expected this descriptor is involved in hydrogen 
bonding interactions between partners with complementary properties, i.e. hydrogen 
acceptors on the ligand and hydrogen donors on the receptor. It has been well established 
that this type of interaction is one of the factors responsible for the binding of the inhibitor 
to the enzyme. The carboxylate group is expected to be the key  for the extent of these 
interactions due to its ability to act as hydrogen acceptor because of the high electron 
density on the oxygen atoms of this group. This could explain the empirical finding about 
the carboxylate group is indispensable for AHAS inhibition because of its crucial role in the 
binding of the inhibitor to the enzyme.  
The fourth descriptor in relevance is the fractional partial negatively charged surface area, 
FNSA(1), i.e. the ratio of the partial negatively charged surface area to the total molecular 
surface area (Stanton & Jurs, 1990); encoding features related to polar interactions. Its 
respective correlation coefficient is negative indicating this electrostatic factor  disfavors the 
inhibition. This effect is similar to that observed in the inhibition of AHAS by sulfonylurea 
herbicides (Wang at al., 2005), wherein the chemicals need contributions from positively 
charged groups to achieve enhanced inhibition, and only small areas of the active site 
channel of AHAS have preference for negatively charged groups. This analog trend between 
these two families of herbicides seems to suggest they share the same binding site in the 
enzyme or partially overlapping sites. This finding has already been observed for 
imidazolinones, as well. These results are in agreement with recently reported results 
obtained by the integration of molecular docking, CoMFA, CoMSIA and DFT calculations 
(He at al., 2007). Nevertheless, our model predicts pI50 with fewer descriptors and similar 
statistics than those models reported in the just mentioned article. In QSAR modeling, the 
Parsimony Principle (Occam´s Razor Principle) calls for using models and procedures that 
contain all that is necessary for the modeling but nothing more, i.e. given a number of 
models with nearly the same predictive error, that containing fewer parameters should be 
preferred because simplicity is desirable in itself (Estrada et al., 2004). 

6.2 DFT calculation of pKa´s for PSA based herbicides 

The acid-dissociation constant, pKa, of a compound influences many characteristics of the 
compound such as its reactivity. In biochemistry, the pKa values of pesticides are of major 
importance for the activity of the related enzymes. In environment chemistry, this property 
is of general importance because ionization of a compound alters its physical behavior and 
macro properties such as solubility and lipophilicity. The nature and location of substituents 
may induce drastic changes in the values of the acid-dissociation constants, and consequently 
important changes in the physical and chemical properties. The interest in determine the 
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pKa values of diversely substituted chemicals is, on one hand,  to correlate the substituent 
effect and the  observed pKa  value; and, on the other hand, to evaluate its effect on derived 
physical-chemical properties. We have calculated the acid-dissociation constants for 39 PSA 
derived herbicides by using density functional theory (DFT) methods at B3LYP/6-31G(d,p) 
level of theory (Delgado, 2009). 

6.2.1 Computational methods 

The quantum chemical calculations were carried out using Jaguar and its graphic interface 
Maestro. Gas-phase molecular geometries and electronic energies were computed at DFT 
B3LYP/6-31G(d,p) level of theory. To determine the lowest-energy conformations for each 
molecule, geometry optimizations were carried out allowing one or more torsional angles to 
vary systematically. Free energies of solvation in water were computed by single point 
calculation on the gas-phase optimized geometry using the Poisson-Boltzmann Solvation 
Model (PB) (Marten at al., 1996). The pKa values were calculated with the Jaguar pKa 
prediction module using the following thermodynamic cycle, scheme 1, and subsequent 
equation: 
 

 

Scheme 1. Thermodynamic cycle used to calculate the pKa. 

  
1

2.3
apK D

RT
=  (2) 

where D is the free energy change involved in the step D, and may be calculated from the 

free energy changes of the other cycle steps by the following relation: D = A+ C - B. In this 

cycle, the BH+ species refers to the adduct formed from the reaction between the electron-

pair donor B species, Lewis base, and the electron-pair acceptor H+ species, Lewis acid. 

6.2.2 Results and discussion 

The calculated values of pKa’s, Table 5,  fall in a very narrow range going from 3.3 to 4.4,  as 

it was conjectured by Nezu et al. (1998). However, small differences in the pKa scale may 

entail large changes in the degree of ionization and related properties such as enzyme 

inhibition and environmental fate. Therefore, the knowledge of the pKa for each compound, 

rather than to take an average value for the all family, is of fundamental importance to get a 

better comprehension of the behavior of these compounds since the average value does not 

account for the differences observed in the properties of different substituted compounds.  

Unfortunately, as mentioned above, for these compounds there is no experimental pKa data 
available to validate the calculated figures. However, considering that the observed 

www.intechopen.com



 Herbicides and Environment 

 

692 

differences in the values of the pKa’s  have to  be effect of the R-substituent group, since the 
O-dimethoxypyrimidynil (ODMP) group keeps constant for all compounds, an estimation 
of the reliability of the calculated figures can be reached quantifying the effect of the R-
substituents on the pKa values. From the mid-1930’s the primary means to assess the effect 

of a substituent in the meta or para position of the benzene ring have been the Hammett σ 
constants (Hammett, 1937). The σ constants were originally formulated from the logarithm 
of the ratios of the acid-dissociation constants of substituted benzoic acids relative to the 

acid-dissociation constant of benzoic acid itself. Since the definition of σ considers a 
reference compound respect to it the effect of the substituent is measured, we hypothesize 

that for a same substituent, the σ constant value should be the same for benzoic acids and 
PSA acids, once we take the 6-H substituted PSA, (compound 1 in table 5) as reference 
structure to isolate the effect of the R substituent group.  
The results of this comparison are shown in Table 6. It is possible to observe that the 

calculated σ values of this study for the selected substituents, not only, do exhibit the correct 
qualitative trend, but also show quantitative accuracy, within the error reported by 
Hammett. This finding validates the quality of the pKa’s values calculated in this study.  

In Fig. 5, the pKa values are plotted as function of σ for benzoic acids and PSA compounds 
with the same substituents. The figure shows a strong correlation between the pKa’s and the 
 

Compound R pKa Compound R pKa 

1 6-H 4.0 21 6-OCH(CH3)2 4.3 

2 6-F 3.4 22 6-OC4H9 4.2 

3 6-Cl 3.4 23 6-OCHF2 3.8 

4 5-F 3.7 24 6-OC6H5 4.0 

5 5-Cl 3.6 25 5-OCH3 3.8 

6 3-F 3.9 26 5-OC6H5 3.9 

7 5,6-(Cl)2 3.3 27 6-SCH3 4.1 

8 6-C6H5 4.4 28 6-SC2H5 4.2 

9 6-CH3 4.0 29 6-SC3H7 4.2 

10 6-C2H5 4.0 30 5-SCH3 4.0 

11 6-C3H7 4.0 31 6-CO2CH3 4.1 

12 6-CF3 3.5 32 6-COC6H5 4.2 

13 5-CH3 4.0 33 6-COCH3 3.6 

14 5-C2H5 4.0 34 6-NO2 3.7 

15 5-CN 3.4 35 6-CH3SO2 3.9 

16 5-CCH 3.7 36 6-NH2 4.3 

17 3-CH3 4.0 37 5-NH2 3.7 

18 6-OCH3 4.3 38 5-NO2 3.4 

18 6-OC2H5 4.1 39 5-OH 3.8 

20 6-OC3H7 4.2    

Table 5. Calculated acid-dissociation constants for R-substituted PSA  compounds. 
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Substituent Benzoic acids [42] DMPS  acids 

 pKa σ pKa σ 

m-chloro 3.83 0.37 ± 0.04 3.6 0.4 

m-cyano 3.60 0.678 3.4 0.6 

m-fluor 3.87 0.34 ± 0.08 3.7 0.3 

m-hydroxy 4.08 0.12 3.8 0.2 

m-methoxy 4.09 0.12 ± 0.12 3.8 0.2 

m-methyl 4.27 -0.07 ± 0.04 4.0 0.0 

m-nitro 3.49 0.71 ± 0.07 3.4 0.6 

Table 6. pKa’s and Hammet σ constants for selected substituents of benzoic acids and PSA 
compounds.  

 

Fig. 5. pKa vs the Hammett σ constants (open circles: benzoic acids; solid circles: PSA 
compounds.   

σ constants for the two families of compounds. Both straight lines are shifted in an extent 

that we identify as a consequence of the substituent effect of the ODMP group.  

Additionally to the above checking procedure, we propose a second checking test in order 

to discard the presence of potential systematic errors in the method. The reported 

correlation equation of pKa as function of σ for benzoic acids is (Hollingsworth at al., 2002): 

 4.20apK σ= −  (3) 

This equation allows us to predict the pKa’s of the compounds of this study if we consider 
the ODMP group as a substituent of the respective benzoic acids, once the value of the 

Hammett σ constant for this group is known. This value can be determined by taking the 
logarithm of the ratios of the acid-dissociation constants of the R-substituted PSA 
compounds to the respective R-substituted benzoic acids shown in Table 6, in analogy to the 
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original definition of Hammett for σ for benzoic acids.  This procedure allows to isolate the 
substituent effect of the ODMP group. 
The results of these calculations are shown in Table 7; the resulting mean is 0.21. With this  

value of σ for the ODMP group and the respective value for the other substituent, we are 
able to predict the pKa´s for the family of compounds of this study using the empirical 
equation (3) obtained for substituted benzoic acids. The predicted pKa’s coincide exactly 
with those values calculated in this study using DFT methodology, Figure 6. 
 

Substituent σODMP 

6-H 0.189 

5-F 0.169 

5-Cl 0.228 

5-CH3 0.270 

5-CN 0.200 

5-OCH3 0.288 

5-NO2 0.089 

5-OH 0.278 

Table 7. Hammett σ constants for the O-dimethoxypyrimidinyl group (ODMP) 

 

Fig. 6. Calculated pKa (this study) vs. predicted pKa (eqn. 3) for PSA compounds. 

6.3 Theoretical calculation of partition coefficients pf PSA compounds 

Continuing with the physicochemical characterization of this family of herbicides, we have 
reported environmentally important partition coefficients, Henry´s law constant, H, 
octanol/water, KOW, and octanol/air, KOA, partition coefficients for 39 PSA compounds 
(Delgado, 2010). These coefficients are calculated using  density functional theory (DFT) at 
B3LYP/6-31G(d,p) level of theory using the Poisson-Boltzmann solvation model. These 

3) 
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properties have not been reported previously for this family of herbicides, neither 
experimentally nor theoretically. 

6.3.1 Thermodynamics 

Free energy of solvation  0
SGΔ , in addition to its fundamental interest, may combined with 

other thermodynamic data to predict  a variety of equilibrium constants, being one of the 

most  important the partitioning of a solute between two immiscible phases. Therefore, 0
SGΔ  

is a key property to estimate the fate of a chemical once it is released  in the environment. 

From an environmental point of view, three of the most important partition coefficients are 

the Henry´s law constant (H), the octanol/air (KOA) and the octanol/water (KOW) partition 

coefficients which can be calculated straightforwardly from the free energies of solvation in 

water and octanol by means of the well known  equations: 

  0ln ln( ) ( ) /sH RT G water RT= + Δ  (4)           

 0log ( ) / 2.303OA sK G oct RT= −Δ  (5)  

  { }0 0log ( ) ( ) / 2.303OW s sK G water G oct RT= Δ − Δ  (6)                          

6.3.2 Computational methods 

Initial three-dimensional geometries of the chemical structures were generated using 

Hyperchem 7.0 molecular modeling package. These 3D structures were refined later using 

the Jaguar suite and its graphic interface Maestro. Gas-phase molecular geometries and 

electronic energies were obtained by density functional theory (DFT) calculations at the 

same level of theory, basis set including polarization functions on all atoms in conjunction 

with the hybrid functional B3LYP, which uses a combination of the three-parameter Becke 

exchange functional along with the Lee-Yang-Parr nonlocal correlation functionals: 

B3LYP/6-31G(d,p). To determine the lowest-energy conformation for each molecule, 

geometry optimizations were carried out allowing one or more torsional angles to vary 

systematically. Free energies of solvation in water and octanol were computed by single 

point calculations, including implicit solvation, on the gas-phase optimized geometry using 

the Poisson-Boltzmann Solvation Model (Marten et al., 1996). 

6.3.3 Results 

The calculated free energies of solvation in water and octanol, along with the respective 
values of the Henry´s law constants, the octanol/air partition and the octanol/water 
partition coefficients are shown in Table 8.   
From this table it is possible to observe that all these compounds have low values of 

gas/solvent partition coefficients, consequently they show low volatility and a clear 

preference for the condensed phases. The preferred condensed phase, either water or 

octanol, is determined by the value of KOW.  The calculated values of log KOW range from –

0.50 to about 3.0, breaking down in the following way: two cases, compounds 35 and 39, 

with negative values; three cases, compounds 24, 26 and 38, with values greater than 2; and 

the remaining compounds having intermediate values between 0 and 2.  
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 R 

0
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( )

( )

SG water

kJ mol−
Δ

 
0

1

( tan )

( )

SG oc ol

kJ mol−
Δ

 
H 

(Pa m3 
mol-1) 

KOA 
Log 
KOW 

1 6-H -44.22 -49.20 4.44E-05 4.17E+08 0.87 
2 6-F -42.80 -48.79 7.88E-05 3.53E+08 1.05 
3 6-Cl -43.39 -47.82 6.21E-05 2.39E+08 0.78 
4 5-F -42.47 -48.20 9.00E-05 2.78E+08 1.00 
5 5-Cl -40.46 -46.74 2.02E-04 1.54E+08 1.10 
6 3-F -43.89 -48.41 5.08E-05 3.03E+08 0.79 
7 5,6-(Cl)2 -40.79 -46.11 1.77E-04 1.20E+08 0.93 
8 6-C6H5 -49.75 -55.10 4.77E-06 4.51E+09 0.94 
9 6-CH3 -38.99 -45.69 3.66E-04 1.01E+08 1.17 
10 6-C2H5 -40.25 -45.77 2.20E-04 1.05E+08 0.97 
11 6-C3H7 -39.96 -45.35 2.48E-04 8.84E+07 0.94 
12 6-CF3 -42.09 -47.99 1.05E-04 2.56E+08 1.03 
13 5-CH3 -43.64 -48.33 5.61E-05 2.93E+08 0.82 
14 5-C2H5 -42.30 -47.78 9.64E-05 2.35E+08 0.96 
15 5-CN -52.93 -64.22 1.32E-06 1.79E+11 1.98 
16 5-CCH -44.35 -53.76 4.22E-05 2.63E+09 1.65 
17 3-CH3 -44.89 -45.40 3.39E-05 8.99E+07 0.09 
18 6-OCH3 -43.43 -52.43 6.11E-05 1.53E+09 1.58 
18 6-OC2H5 -42.89 -51.76 7.60E-05 1.17E+09 1.55 
20 6-OC3H7 -42.47 -51.55 9.00E-05 1.07E+09 1.59 
21 6-OCH(CH3)2 -48.74 -54.77 7.17E-06 3.94E+09 1.06 
22 6-OC4H9 -41.63 -51.34 1.26E-04 9.87E+08 1.70 
23 6-OCHF2 -45.06 -55.23 3.17E-05 4.74E+09 1.78 
24 6-OC6H5 -37.74 -54.35 6.07E-04 3.33E+09 2.91 
25 5-OCH3 -45.98 -54.81 2.18E-05 4.01E+09 1.55 
26 5-OC6H5 -39.08 -56.74 3.53E-04 8.71E+09 3.09 
27 6-SCH3 -45.06 -50.12 3.17E-05 6.05E+08 0.89 
28 6-SC2H5 -44.98 -50.58 3.27E-05 7.29E+08 0.98 
29 6-SC3H7 -44.77 -50.25 3.56E-05 6.37E+08 0.96 
30 5-SCH3 -43.64 -48.33 5.61E-05 2.93E+08 0.82 
31 6-CO2CH3 -52.26 -59.41 1.73E-06 2.57E+10 1.25 
32 6-COC6H5 -55.31 -61.21 5.07E-07 5.30E+10 1.03 
33 6-COCH3 -55.61 -59.12 4.49E-07 2.28E+10 0.61 
34 6-NO2 -50.25 -61.42 3.90E-06 5.77E+10 1.96 
35 6-CH3SO2 -76.36 -74.64 1.04E-10 1.20E+13 -0.30 
36 6-NH2 -53.76 -57.24 9.47E-07 1.07E+10 0.61 
37 5-NH2 -65.73 -66.32 7.58E-09 4.16E+11 0.10 
38 5-NO2 -48.41 -61.04 8.20E-06 4.96E+10 2.21 
39 5-OH -69.50 -66.40 1.66E-09 4.30E+11 -0.54 

 

Table 8. Calculated free energy of solvation in water and octanol, Henry´s law constant, 
octanol-air partition coefficient and octanol-water partition coefficient for R-substituted O-
pyrimidinylsalicylic acids. 
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Those with negative values show preference for the aqueous phase. This behavior is 
explained, in the case of compound 35, by the high polar nature of the sulfonyl group which 
provides an highly hydrophilic character. Moreover, it is well known that sulfones are able 
to stabilize negative charges on neighbor atoms, such as those of the carboxylic group. On 
the other hand, in the compound 39, the hydroxyl group in meta position with respect to the 
carboxylic group strengthens the acidity by inductive effect, favoring in consequence its 
water solubility. 
On the other hand, those compounds with values of log KOW > 2 will have preference for the 
octanol phase. This behavior is explained in terms of the high hydrophobic character 
provided by the OC6H5 and NO2 substituent groups present in compounds 24, 26 and 38. 
This finding is in agreement with the empirical evidence of the surprisingly low solubility in 
water of these compounds, therefore in the ambient they will be preferably found in the 
lipids of aquatic and animal biota and potentially they could scale in the food chain. 

6.3.4 Discussion 

The validation of the calculated figures unfortunately can not be made in a direct way since 
for this family of compounds there is no experimental data available to check the calculated 
values. However, indirectly we can have an estimation of their reliability. For instance, a 
recent paper reports the following model, based on the fragmental method, to predict the 
log KOW of halogenated benzoic acids in terms of certain group and factor values (Qiao et al., 
2008): 

  
11 2

1 1

log 1.117HBz
OW i i j j

i j

K n g l f
= =

= + +∑ ∑   (7) 

where ni  is the number of  i-type groups, gi is the value of the group i, lj is the number of  j-

type factors,  f1 and  f2 denote the factors for ortho and para substituents, respectively. The 

model reproduces the experimental data of log KOW for halogenated benzoic acids with an 

average absolute error of 0.22 log units. Since, the DMPS-compounds of our study can be 

viewed as benzoic acids substituted in the ortho position with a O-dimethoxypyrimidynil 

(ODMP) group, we hypothesize this model should be also valid to our compounds. If it is 

so, we could apply the model to determine the group value for the ODMP group using our 

calculated values of log KOW and the group and factor values reported by Qiao for the 

analog R-substituted benzoic acids. The results of these calculations are shown in Table 9; 

the resulting mean is –0.768. If this value for the ODMP group is correct, we should be able 

to reproduce the experimental values of log KOW for R-substituted benzoic acids from the 

calculated log KOW for the analog R-substituted PSA compound, since structurally benzoic 

acids can be viewed as DMPS acids without the ODMP group; therefore the application of 

eqn. (7) leads to the following equation: 

 2log logHBz PSA
OW OW ODMPK K g f g= − − − Δ  (8) 

where gODMP is the value for the ODMP group, f2 is the factor value for ortho substituents, 

and Δg accounts for the difference in the group value of the benzene ring with two and three 
substituents. The results of these calculations are shown in Table 10. The average absolute 
error of log KOW is 0.26, quite comparable with the reported error (0.22) for the original data 
set of halogenated benzoic acids. This result allows to confirm the quality of the values of 

www.intechopen.com



 Herbicides and Environment 

 

698 

KOW calculated in this study, and also it validates the applicability of eqn. (7) for this family 
of compounds.  
 

Substituent ODMP group value 

6-H -0.679 

6-F -0.260 

6-Cl -1.039 

5-F -0.726 

5-Cl -1.135 

Table 9. Group values for the O-dimethoxypyrimidinyl group (ODMP). 
 

Compound Exp. log KOW (Qiao et al., 2008) Calc. log KOW   (eqn. 8) 

Benzoic acid 1.87 2.06 

o-chlorobenzoic acid 2.05 1.87 

m-chlorobenzoic acid 2.68 2.19 

o-fluorobenzoic acid 1.77 2.14 

m-fluorobenzoic acid 2.15 2.09 

Table 10. Experimental and calculated log KOW  for benzoic acids. 

The value of the Henry´s law constant is determined fundamentally by the free energy of 

solvation in water according to eqn. (4). The reliability of the methodology used in this 

article to calculate 0
SGΔ  in water was confirmed in an earlier article (Delgado, 2010), and 

consequently the values of H derived from it.  
Since the calculated values of KOW and H are supported by the above checking procedures, 
then the calculated values of KOA should be also checked considering that these three 
coefficients are related by the well known equation (Meylan & Howard, 2005):   

 OW
OA

K
K RT

H
=  (9) 

Thus, the plot of KOA, calculated according to eqn. (5), vs (KOW / H) should give rise to a 
straight line whose slope equals to RT. The plot, shown in Figure 7, confirm this fact and 
therefore supports the calculated values of KOA. Moreover, the value of the slope 
corresponds to the value of RT at 298 K, within the error of the methodology. 

7. Concluding remarks.  

Modern chemistry is oriented more and more towards the elucidation in detail of how the 
macroscopic properties are determined by the microscopic properties of matter, this current 
tendency is motivated by both academic and applied reasons. From academic point of view, 
it allows to have a detailed picture of the intermolecular interactions that determine the 
macro properties; and from an applied point of view, it allows systematize the search of a 
compound with desired properties in base of its molecular structure, selecting, in this way, 
the most promising compounds to be synthesized on a rational base. Quantum chemical 
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Fig. 7. Calculated KOA (eqn. 2) vs (KOW /H) 

calculations allow the most accurate description of the electronic and geometric structure of 
molecules, as well as their interactions. These methods, which range from semi-empirical to 
ab initio approaches, have advantages and drawbacks which are necessary to evaluate before 
their use, since there exists a compromise among accuracy, computation time, physical 
interpretation and applicability. 
Several computer-assisted quantum chemical approaches have been successfully applied to 
a variety of chemical systems,  ranging their applicability from biological chemistry (Lie & 
Schiott, 2008) to chemical engineering (Sandler, 1999, 2003), passing by pesticide (Wan et al., 
2004) and environmental chemistry (Delgado & Alderete, 2002). Thus, theoretical studies 
often may be considered not only as other option, but also as the only option in those cases 
in which the empirical information is not ready available, like those showed in this chapter.  
In closing, we believe that computer-assisted quantum chemical studies represent one of the 
most important approaches in the present and future of chemistry, since they, on one hand, 
allow to obtain information not available from other techniques, and, on the other hand,  the 
phenomena can be understood at molecular level, this is essential for the design of novel 
herbicides since their properties may be predicted prior to synthesis and consequently the 
design may, in this way, be guided by the results of calculations. 
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