
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

3

Robot Learning of Domain Specific Knowledge
from Natural Language Sources

Ines Čeh, Sandi Pohorec, Marjan Mernik and Milan Zorman
University of Maribor

Slovenia

1. Introduction

The belief that problem solving systems would require only processing power was proven
false. Actually almost the opposite is true: for even the smallest problems vast amounts of
knowledge are necessary. So the key to systems that would aid humans or even replace
them in some areas is knowledge. Humans use texts written in natural language as one of
the primary knowledge sources. Natural language is by definition ambiguous and therefore
less appropriate for machine learning. For machine processing and use the knowledge must
be in a formal; machine readable format. Research in recent years has focused on knowledge
acquisition and formalization from natural language sources (documents, web pages). The
process requires several research areas in order to function and is highly complex. The
necessary steps usually are: natural language processing (transformation to plain text,
syntactic and semantic analysis), knowledge extraction, knowledge formalization and
knowledge representation. The same is valid for learning of domain specific knowledge
although the very first activity is the domain definition.
These are the areas that this chapter focuses on; the approaches, methodologies and

techniques for learning from natural language sources. Since this topic covers multiple

research areas and every area is extensive, we have chosen to segment this chapter into five

content segments (excluding introduction, conclusion and references). In the second

segment we will define the term domain and provide the reader with an overview of domain

engineering (domain analysis, domain design and domain implementation). The third

segment will present natural language processing. In this segment we provide the user with

several levels of natural language analysis and show the process of knowledge acquirement

from natural language (NL). Sub segment 3.1 is about theoretical background on syntactic

analysis and representational structures. Sub segment 3.2 provides a short summary of

semantic analysis as well as current sources for semantic analysis (WordNet, FrameNet).

The fourth segment elaborates on knowledge extraction. We define important terms such as

data, information and knowledge and discuss on approaches for knowledge acquisition and

representation. Segment five is a practical real world (although on a very small scale)

scenario on learning from natural language. In this scenario we limit ourselves on a small

segment of health/nutrition domain as we acquire, process and formalize knowledge on

chocolate consumption. Segment six is the conclusion and segment seven provides the

references.

www.intechopen.com

 Robot Learning

44

2. Domain engineering

Domain engineering (Czarnecki & Eisenecker, 2000) is the process of collecting, organizing
and storing the experiences in domain specific system (parts of systems) development. The
intent is to build reusable products or tools for the implementation of new systems within
the domain. With the reusable products, new systems can be built both in shorter time and
with less expense. The products of domain engineering, such as reusable components,
domain specific languages (DSL) (Mernik et al., 2005), (Kosar et al., 2008) and application
generators, are used in the application engineering (AE). AE is the process of building a
particular domain system in which all the reusable products are used. The link between
domain and application engineering, which often run in parallel, is shown on Fig. 1. The
individual phases are completed in the order that domain engineering takes precedence in
every phase. The outcome of every phase of domain engineering is transferred both to the
next step of domain engineering and to the appropriate application engineering phase.

Domain

Analysis

Domain

Design

Domain

Implementation

Requirement

Analysis

System

Implementation

DOMAIN ENGINEERING

APPLICATION ENGINEERING

System

design

domain

knowledge

domain

model
architecture(s)

new

requirements

features
product

configuration product
customer

needs

DSL

Generators

Components

Fig. 1. Software development with domain engineering

The difference between conventional software engineering and domain engineering is quite
clear; conventional software engineering focuses on the fulfilment of demands for a
particular system while domain engineering develops solutions for the entire family of
systems (Czarnecki & Eisenecker, 2000). Conventional software engineering is comprised of
the following steps: requirements analysis, system design and the system implementation.
Domain engineering steps are: domain analysis, domain design and domain
implementation. The individual phases correspond with each other, requirement analysis
with domain analysis, system design with domain design and system implementation with
domain implementation. On one hand requirement analysis provides requirements for one
system, while on the other domain analysis forms reusable configurable requirements for an
entire family of systems. System design results in the design of one system while domain
design results in a reusable design for a particular class of systems and a production plan.
System implementation performs a single system implementation; domain implementation
implements reusable components, infrastructure and the production process.

www.intechopen.com

Robot Learning of Domain Specific Knowledge from Natural Language Sources

45

2.1 Concepts of domain engineering

This section will provide a summary of the basic concepts in domain engineering, as
summarized by (Czarnecki & Eisenecker, 2000), which are: domain, domain scope, relationships
between domains, problem space, solution space and specialized methods of domain engineering.
In the literature one finds many definitions of the term domain. Czarnecki & Eisenecker
defined domain as a knowledge area which is scoped to maximize the satisfaction of the
requirements of its stakeholders, which includes a set of concepts and a terminology
familiar to the stakeholders in the area and which includes the knowledge to build software
system (or parts of systems) in the area.
According to the application systems in the domain two separate domain scope types are
defined: horizontal (systems category) and a vertical (per system) scope. The former refers
to the question how many different systems exist in the domain; the latter refers to the
question which parts of these systems are within the domain. The vertical scope is increased
according to the sizes of system parts within the domain. The vertical scope determines
vertical versus horizontal and encapsulated versus diffused paradigms of domains. This is
shown on Fig. 2, where each rectangle represents a system and the shaded areas are the
system parts within the domain. While vertical domains contain entire systems, the
horizontal ones contain only the system parts in the domain scope. Encapsulated domains
are horizontal domains, where system parts are well localized with regard to their systems.
Diffused domains are also horizontal domains but contain numerous different parts of each
system in the domain scope. The scope of the domain is determined in the process of
domain scoping. Domain scoping is a subprocess of domain analysis.

System C

System B

System A

System C

System B

System A

System C

System B

System A

systems in the

scope of a

vertical domain

systems in the scope

of a horizontal,

encapsulated domain

systems in the scope

of a horizontal,

diffused domain

Fig. 2. Vertical, horizontal, encapsulated and diffused domains

Relationships between domains A and B are of three major types:
• A is contained in B: All knowledge in domain A is also in the domain B. We say that A

is a subdomain of domain B.

• A uses B: Knowledge in domain A addresses knowledge in domain B in a typical way.
For instance it is sensible to represent aspects of domain A with terms from the domain
B. We say that domain B is a support domain of domain A.

• A is analogous to B: There are many similarities between A and B; there is no necessity
to express the terms from one domain with the terms from the other. We say that
domain A is analogous to domain B.

A set of valid system specifications in the domain is referred to as the problem space while a
set of concrete systems is the solution space. System specifications in the problem space are
expressed with the use of numerous DSL, which define domain concepts. The common

www.intechopen.com

 Robot Learning

46

structure of the solution space is called the target architecture. Its purpose is the definition of
a tool for integration of implementation components. One of the domain engineering goals
is the production of components, generators and production processes, which automate the
mapping between system specifications and concrete systems. Different system types (real-
time support, distribution, high availability, tolerance deficiency) demand different
(specialized) modelling techniques. This naturally follows in the fact that different domain
categories demand different specialized methods of domain engineering.

2.2 Domain engineering process
The domain engineering process is comprised of three phases (Czarnecki & Eisenecker,
2000), (Harsu, 2002): domain analysis, domain design and domain implementation.

Domain analysis

Domain analysis is the activity that, with the use of the properties model, discovers and
formalizes common and variable domain properties. The goal of domain analysis is the
selection and definition of the domain and the gathering and integration of appropriate
domain information to a coherent domain (Czarnecki & Eisenecker, 2000). The result of
domain analysis is an explicit representation of knowledge on the domain; the domain
model. The use of domain analysis provides the development of configurable requirements
and architectures instead of static requirements which result from application engineering
(Kang et al., 2004).
Domain analysis includes domain planning (planning of the sources for domain analysis),
identification, scoping and domain modelling. These activities are summarized in greater
detail in Table 1.
Domain information sources are: existing systems in the domain, user manuals, domain
experts, system manuals, textbooks, prototypes, experiments, already defined systems
requirements, standards, market studies and others. Regardless of these sources, the process
of domain analysis is not solely concerned with acquisition of existing information. A
systematic organization of existing knowledge enables and enhances information spreading
in a creative manner.
Domain model is an explicit representation of common and variable systems properties in the domain
and the dependencies between variable properties (Czarnecki & Eisenecker, 2000). The domain
model is comprised (Czarnecki & Eisenecker, 2000) of the following activities:
• Domain definition defines domain scope and characterizes its content with examples

from existing systems in the domain as well as provides the generic rules about the
inclusion or exclusion of generic properties.

• Domain lexicon is a domain dictionary that contains definitions of terms related to the
domain. Its purpose is to enhance the communication process between developers and
impartial persons by simplifying it and making it more precise.

• Concept models describe concepts in the domain in an appropriate modelling formalism.
• Feature models define a set of reusable and configurable requirements for domain

systems specifications. The requirements are called features. The feature model
prescribes which property combinations are appropriate for a given domain. It
represents the configurability aspect of reusable software systems.

The domain model is intended to serve as a unified source of references in the case of
ambiguity, at the problem analysis phase or later during implementation of reusable
components, as a data store of distributed knowledge for communication and learning and
as a specification for developers of reusable components (Falbo et al., 2002).

www.intechopen.com

Robot Learning of Domain Specific Knowledge from Natural Language Sources

47

Domain
Analysis major

process
components

Domain analysis activities

Select domain
Perform business analysis and risk analysis in order to determine which
domain meets the business objectives of the organization.
Domain description
Define the boundary and the contents of the domain.
Data source identification
Identify the sources of domain knowledge.

Domain
characterization
(domain
planning and
scoping)

Inventory preparation
Create inventory of data sources.
Abstract recovery
Recover abstraction
Knowledge elicitation
Elicit knowledge from experts
Literature review

Data collection
(domain
modelling)

Analysis of context and scenarios
Identification of entities, operations, and relationships
Modularization
Use some appropriate modelling technique, e.g. object-oriented analysis
or function and data decomposition. Identify design decisions.
Analysis of similarity
Analyze similarities between entities, activities, events, relationship,
structures, etc.
Analysis of variations
Analyze variations between entities, activities, events, relationship,
structures, etc.
Analysis of combinations
Analyze combinations suggesting typical structural or behavioural
patterns.

Data analysis
(domain
modelling)

Trade-off analysis
Analyze trade-offs that suggest possible decompositions of modules and
architectures to satisfy incompatible sets of requirements found in the
domain.
Clustering
Cluster descriptions.
Abstraction
Abstract descriptions.
Classification
Classify description.
Generalization
Generalize descriptions.

Taxonomic
classification
(domain
modelling)

Vocabulary construction

Evaluation Evaluate the domain model.

Table 1. Common Domain Analysis process by Arango (Arango, 1994)

www.intechopen.com

 Robot Learning

48

Domain analysis can incorporate different methodologies. These differentiate by the degree
of formality in the method, products or information extraction techniques. Most known
methodologies are: Domain Analysis and Reuse Environment - DARE (Frakes et al., 1998),
Domain-Specific Software Architecture – DSSA (Taylor et al., 1995), Family-Oriented
Abstractions, Specification, and Translation - FAST (Weiss & Lai, 1999), Feature Reuse-
Driven Software Engineering Business - FeatureRSEB (Griss et al., 1998), Feature-Oriented
Domain Analysis - FODA (Kang et al., 1990), Feature-Oriented Reuse Method – FORM
(Kang et al., 2004), Ontology-Based Domain Engineering - ODE (Falbo et al., 2002) and
Organization Domain Modelling - ODM (Simons & Anthony, 1998).
FODA has proved to be the most appropriate (Alana & Rodriguez, 2007) and we will shortly
examine it in the following. FODA is a method of domain analysis that was developed by
the Software Engineering Institute (SEI). It is known for its models and feature modelling.
FODA process is comprised of two phases: context analysis and domain modelling. The goal
of context analysis is to determine the boundaries (scope) of the analyzed domain and the goal
of domain modelling is to develop a domain model (Czarnecki & Eisenecker, 2000). FODA
domain modelling phase in comprised of the following steps (Czarnecki & Eisenecker, 2000):
• Information analysis with the main goal of retrieving domain knowledge in the form of

domain entities and links between them. Modelling techniques used in this phase can
be in the form of semantic networks, entity-relationship modelling or object oriented
modelling. The result of information analysis is an information model that matches the
conceptual model.

• Features analysis covers application capabilities in the domain as viewed by the project
contractor and the final user. Common and variable features that apply to the family of
systems are simply called features. They are contained in the features model.

• Operational analysis results in the operational model. It shows how the application
works and covers the relations between objects in the informational model and the
features in the feature model.

An important product from this phase is the domain dictionary that defines the terminology
used in the domain (along with the definitions of domain concepts and properties). As we
mentioned FODA methodology is known by its feature modelling. Properties can be defined
as the system characteristics visible to the end user (Harsu, 2002).They are categorized into:
mandatory, alternative and optional. They are visualized on a feature diagram, which is a
key element of the domain model. The feature concept is further explained and presented in
(Czarnecki & Eisenecker, 2000).

Domain design

Domain design takes the domain model built in the process of domain analysis and tries to
create a general architecture that all the domain elements are compliant with (Czarnecki &
Eisenecker, 2000). Domain design focuses on the domain space for solution planning
(solution space). It takes the configuration requirements, developed in the domain analysis
phase and produces a standardized solution for a family of systems that is configurable.
Domain design tries to create architectural patterns that try to solve common problem for
the family of systems in the domain, despite different configuration requirements
(Czarnecki & Eisenecker, 2000). Beside the pattern development the engineers have to
carefully determine the scope of individual pattern and the level of context at which the
pattern applies. Scope limitation is crucial: too much context is reflected in a pattern that is
not acceptable to many systems, too little context on the other hand is reflected in a pattern

www.intechopen.com

Robot Learning of Domain Specific Knowledge from Natural Language Sources

49

that lacks capability to an extent that it is not usable. A usable pattern has to be applicable to
many systems and of high quality (Buschmann et al., 2007).

Domain implementation

Domain implementation covers the implementation of the architecture, components and
tools designed in the phase of domain design.

3. Natural language processing

The term natural language is used to describe human languages (English, German, Chinese,
…). Processing these languages includes both written and spoken language (text and
speech). In general the term refers to processing written language since the speech
processing has evolved into a separate field of research. According to the term this segment
will focus on the written language. To implement a program to acquire knowledge from
natural language requires that we transform the language to a formal language (format) that
is machine readable. In order to perform such a task it is vital that we are able to understand
the natural language. Major problems with language understanding are that a large amount
of knowledge is required to understand the meaning of complex passages. Because of this
the first programs to understand natural language were limited to a minute environment.
One of the earliest was Terry Winograd’s SHRDLU (Winograd, 1972) which was able to
formulate conversations about a blocks world. In order to work on a larger scale where a
practical application is possible language analysis is required. Generally speaking there are
several levels of natural language analysis (Luger, 2005):
- Prosody analyses rhythm and intonation. Difficult to formalize, important for poetry,

religious chants, children wordplay and babbling of infants.
- Phonology examines sounds that are combined to form language. Important for speech

recognition and generation.
- Morphology examines word components (morphemes) including rules for word formation

(for example: prefixes and suffixes which modify word meaning). Morphology
determines the role of a word in a sentence by its tense, number and part-of-speech (POS).

- Syntax analysis studies the rules that are required for the forming of valid sentences.
- Semantics studies the meaning of words and sentences and the means of conveying the

meaning.
- Pragmatics studies ways of language use and its effects on the listeners.
When considering means to acquire knowledge from natural language sources the analysis
is a three step process: syntactic analysis, meaning analysis (semantic interpretation;
generally in two phases) and the forming of the final structure that represents the meaning
of the text. The process is shown on Fig. 3. In the next sections (3.1 and 3.2) we will provide
an overview of the syntactic and semantic analysis while the practical overview with
resources and approaches specific to the learning of domain specific knowledge will be
discussed in the following sections.

START:

input text

Syntactic

analysis

General

Semantic
analysis

Domain/

Context

Semantic

analysis

END:

structure

representation
of the text

meaning

Fig. 3. Natural language analysis process

www.intechopen.com

 Robot Learning

50

3.1 Theoretical overview of the syntactic analysis and representational structures

 The goal of syntactic analysis is to produce the parse tree. The parse tree is a breakdown of
natural language (mostly on the level of sentences) to their syntactic structure. It identifies
the linguistic relations. Syntactic analysis can be achieved with context-free or context
sensitive grammars. The theoretical background for context-free grammars was outlined by
Partee et al., 1993. An example of a system built on context-free grammars is presented in
Alshawi, 1992. Perhaps the simplest implementation of a context-free grammar is the use of
production (rewrite) rules with a series of rules with terminals (words from natural
language) and non terminals (linguistic concepts: noun phrase, verb, sentence...). An
example of the parse three with the rewrite rules is shown on Fig. 4.
An alternative approach is in the form of transition network parsers which although they
themselves are not sufficient for natural language they do form the basis for augmented
transition networks (Woods, 1970).

Fig. 4. Small set of rewrite rules and the result of syntax analysis, a parse tree

The shortcoming of context-free grammars is evident in the name itself; they lack the context
that is necessary for proper sentence analysis. Although they can be extended to take context
into consideration a more native approach to the problems seems to be the use of grammars
that are natively context aware. The main difference between the context-free (CF) and
context-sensitive (CS) grammars is that the CS grammars allow more than one symbol on
the left side of a rule and enable the definition of a context in which that rule can be applied.
CS grammars are on a higher level on the Chomsky grammar hierarchy (Chomsky, 1956)
presented on Fig. 5 than CF grammars and they are able to represent some language
structures that the CF grammars are unable but they do have several significant
shortcomings (Luger, 2005):

• they dramatically increase the number of rules and non-terminals,
• they obscure the phrase structure of the language,
• the more complicated semantic consistency checks lose the separation of syntactic and

semantic components of the language and
• they do not address the problem of building a semantic representation of the text

meaning.
It appears that despite their native context awareness CS grammars have proven to be too
complicated and they are usable only for the validation of sentence structure. For the
purpose of acquiring knowledge from natural language sources they are not usable at all
since they do not address the building of a semantic representation of the text meaning.
Various researchers have focused on enhancing context-free grammars. A new class of
grammars emerged; the augmented context-free (ACF) grammars. The approach replaces

www.intechopen.com

Robot Learning of Domain Specific Knowledge from Natural Language Sources

51

Fig. 5. Chomsky grammar hierarchy

the usage of the grammar to describe the number, tense and person. These terms become
features attached to terminals and nonterminals. Most important types of ACF grammars
are augmented phase structure grammars (Heidorn, 1975), augmentations of logic
grammars (Allen, 1987) and augmented transition networks.

3.2 Semantic analysis

We have tried to give a broad overview of the complexity of syntactic analysis of natural
language in the previous section because syntactic analysis is tightly coupled with semantic
analysis. Semantic analysis tries to determine the meaning at the level of various language
structures (words, sentences, passages). In other words semantic analysis is the process in
which words are assigned their sense. Semantic analysis is a component of a large number of
scientific research areas (Sheth et al., 2005): Information retrieval, Information Extraction,
Computational Linguistics, Knowledge Representation, Artificial Intelligence and Data
Management. Since the research areas are very different each has a very different definition
of cognition, concepts and meaning (Hjorland, 1998). Sheth et al. organized the different
views to three forms of semantics: Implicit, Formal and Powerful (Soft). Techniques based on
the analysis of unstructured texts and document repositories with loosely defined and less
formal structure in the fields of Information Retrieval, Information Extraction and
Computational Linguistics have data sources of the implicit type.
Knowledge Representation, Artificial Intelligence and Data Management fields have a more
formal data form. Information and knowledge is presented in the form of well defined
syntactic structures (and rules by which the structures can be combined to represent the
meaning of complex syntactic structures) with definite semantic interpretations associated
(Sheth et al., 2005). According to the aforementioned properties these fields rely on Formal
Semantics. Semantic web in the future will be annotated with knowledge from different
sources so it is important that the systems would be able to deal with inconsistencies. They
should also be able to increase the expressiveness of formalisms. These are the features that
would require soft (powerful) semantics (Sheth et al.)
The datasets that contain meanings of words are called sense sets. The first sense set,
“WordNet®”was created at Princeton (Miller, 1995). WordNet is a lexical database that
contains nouns, verbs, adjectives and adverbs of the English language. Words are grouped
into sets of cognitive synonyms (sysnets). Each sysnet expresses a concept. Interlinked
sysnets form a network of related words and concepts. The network is organized in
hierarchies which are defined by either a generalization or specialization. An example of a
WordNet hierarchy is presented on Fig. 6.

www.intechopen.com

 Robot Learning

52

A global repository of wordnets in languages other than English (more than fifty are
available) is available on the Global WordNet Association webpage
(http://www.globalwordnet.org/).
Similar project is being conducted at Berkeley University; their FrameNet
(http://framenet.icsi.berkeley.edu/ is based on frame semantics. Frame semantics is a
development of case grammar. Essentially to understand a word one has to know all
essential knowledge that relates to that word. A semantic frame is a structure of concepts
interconnected in such a way that without knowing them all one lacks knowledge of anyone
in particular. A frame describes a situation or an event. Currently FrameNet contains more
than 11.600 lexical units (6800 fully annotated) in more than 960 semantic frames.

artificial object

air

natural object

object

land

water

vehicle

airplane

fuselage

...

...

specialization generalization

Fig. 6. Example of WordNet network of interlinked sysnets in the form of a directed acyclic
graph

4. Knowledge extraction

Knowledge extraction is a long standing goal of research in the areas within artificial
intelligence (Krishnamoorthy & Rajeev, 1996), (Russell & Norvig, 2003). Numerous sources,
such as philosophy, psychology, linguistics, have contributed to a wealth of ideas and a
solid foundation in applied science. In the early years there was a general consensus that
machines will be able to solve any problem as efficiently as the world foremost experts.
Scientist believed that there is the theoretical possibility of creating a machine designed for
problem solving that could take on any problem with a minimum amount of information.
The machine would use its enormous computing power to solve the problem. Only when
the work began on building such a machine, everyone realized that the solution to problem
solving lies in knowledge, not computing power. Actual machines require excessive amount
of knowledge to perform even the most basic intelligent tasks. The knowledge must be in a
structural form so that it can be stored and used when necessary. These machines are known
as expert systems. Actually they are knowledge based systems (KBS) (Kendal & Creen, 2007);
expert systems are just a part of knowledge based systems.
Knowledge engineers quickly realized that acquisition of quality knowledge appropriate for
quality and robust systems is a time consuming activity. Consequentially knowledge
acquisition was designated the bottleneck of expert system implementation. Because of this
knowledge acquisition became the primary research area of knowledge engineering (Kendal

www.intechopen.com

Robot Learning of Domain Specific Knowledge from Natural Language Sources

53

& Creen, 2007). Knowledge engineering is the process of developing knowledge systems in
any field, public or private sector, sales or industry (Debenham, 1989).
In knowledge engineering it is essential that one understands these terms: data, information
and knowledge. Their hierarchy is presented on Fig. 7.
Before we can begin to understand “knowledge” we must first understand the terms data
and information. Literature provides many definitions of these terms (Kendal & Green,
2007), (Zins, 2007). Their meaning becomes clear only when we look for the differences
between them. There exist no universal definition of data or information and no definition is
applicable in all situations. Data becomes information when their creator supplements them
with an added value. Different ways in which this can occur is presented in (Valente, 2004).
When we examine some of the definitions of knowledge, such as:”knowledge is the result of
information understanding” (Hayes, 1992), “knowledge is information with context and
value that make it usable” (Gandon, 2000), it becomes clear that knowledge is something
that one has after he understands information.
So as information derives from knowledge, knowledge also derives from information.
During the derivation one of the following transformations (Gandon, 2000) takes place:
comparison (how can the information on this situation be compared to another familiar
situation), consequences (what consequences does the information have on decisions and
courses of action), connections (how this part of knowledge connects to other parts) and
conversation (what is the people’s opinion on this information). It should be clear that data,
information and knowledge are not static by nature; they are the stages in a process of
applying data and its transformation to knowledge. From the knowledge engineering
standpoint it is positive to handle knowledge as something that is expressed as a rule or is
usable for decision support. For instance: “IF it rains, THEN use an umbrella”. The value of
data increases as it is transformed into knowledge as knowledge enables the making of
useful decisions. Knowledge can be regressed to information and data. Davenport and
Prusak (Davenport & Prusak, 1998) called this process „de-knowledging“. It occurs when
there is too much knowledge and the knowledge worker can no longer grasp the sense of it.

KNOWLEDGE

INFORMATION

DATA

Fig. 7. Data, information and knowledge

Knowledge engineer usually works with three types of knowledge: declarative, procedural
and meta-knowledge. Declarative knowledge describes the objects (facts and rules), that are
in the experts systems scope, and the relations between them. Procedural knowledge
provides alternative actions, which are based on the use of facts for knowledge acquirement.
Meta-knowledge is knowledge about knowledge that helps us understand how experts use
knowledge for their decisions.
Knowledge engineers have to be able to distinguish between these three knowledge types
and to understand how to encode different knowledge types into a specific form of
knowledge based systems.

www.intechopen.com

 Robot Learning

54

Knowledge based systems (KBS) are computer programs that are intended to mimic the
work of specific knowledge areas experts (Kendal & Creen 2007). They incorporate vast
amounts of knowledge, rules and mechanisms in order to successfully solve problems. The
main types of knowledge systems are: expert systems, neural networks, case-based
reasoning, genetic algorithms, intelligent agents, data mining and intelligent tutoring
systems. These types are presented in detail in (Kendal & Creen, 2007). KBS can be used on
many tasks, which were once in the domain in humans. Compared to human counterparts
they have some advantages as well as disadvantages. For example while human knowledge
is expensive, KBS are relatively cheap. On the other side humans have a wider focus and
understanding; KBS are limited to a particular problem and cannot be applied on other
domains.
Since mid eighties knowledge engineers have developed several principles, methods and
tools for the improvement of the knowledge acquirement process. These principles cover the
use of knowledge engineering on actual world problems. Some key principles that are
discussed in detail in (Shadbolt & Milton, 1999), are that different types of knowledge,
experts (expertise), knowledge representation and knowledge usage exist and that structural
methods should be used in order to increase efficiency.
Development of knowledge based applications is difficult for the knowledge engineers.
Knowledge based projects cannot be handled with the techniques for software engineering.
Life-cycle of knowledge based application and software applications are different in several
aspects. With the intent to achieve impartiality in knowledge engineering the life-cycle of
applications focuses on the six critical phases presented on Fig. 8.

KBE Application Lifecycle

1. Identify 2. Justify 6. Activate3. Capture 5. Package 4. Formalize

Fig. 8. Knowledge based engineering application lifecycle

According to the specifics of each principle element, numerous knowledge engineering
techniques have been developed. Well known, used in many projects, techniques are:
Methodology and tools Oriented to Knowledge-Based Engineering Applications - MOKA
(Stokes, 2001), Structured Process Elicitation Demonstrations Environment - SPEDE
(Pradorn, 2007) and Common Knowledge Acquisition and Design System - CammonKADS
(Schreiber et al., 1999).
Knowledge acquisition is difficult, both for humans and machines. Phrase “knowledge
acquisition” generally refers to gathering knowledge from knowledge rich sources and the
appropriate classification to a knowledge base. As well as this it also refers to improving
knowledge in existing knowledge bases. The process of knowledge acquisition can be
manual or automatic. In the manual mode the knowledge engineer receives knowledge
from one or more domain experts. In automatic mode a machine learning system is used for
autonomous learning and improvement of real world knowledge.
Manual knowledge acquirement is difficult because of two reasons. First, the knowledge
engineer has to maintain contact with the experts for a substantial amount of time, in some
cases several years. And second because in some cases the experts cannot formally express
their knowledge. These problems can be avoided with autonomous knowledge encoding
with the use of machine learning. The approach is presented on Fig. 9. The database is

www.intechopen.com

Robot Learning of Domain Specific Knowledge from Natural Language Sources

55

formed with the use of experts and various reasoning/inference systems. Machine learning
uses the data in the database to infer new knowledge. This newly found knowledge is then
transformed into a knowledge base.
Knowledge representation is concerned with researching knowledge formalization and
machine processing. Automation inference techniques enable computer system to infer
conclusions from machine readable knowledge. It is the goal of knowledge representation
and inference to plan computer systems, that would, similar as humans, infer on machine
interpretable representations of the real world.
An overview of state of the art technologies of the semantic web and the use cases clearly
show that knowledge representation is in many different formats. Most widely used
representations are semantic networks, rules and logic. We continue with a short
examination of these representations, a more detailed presentation can be found in (Grimm
et al., 2007).

Other

reasoning

Systems

Machine

learning

System

Dynamic

Knowledge base

Acquired

knowledge

Database

Experts

Fig. 9. Principles of automated knowledge acquisition

The term semantic network encompasses a family of graph-based representations which share
a common set of assumptions and concerns. A visual representation is that of a graph where
node connections are the relations between concepts. Nodes and connections are labelled to
provide the necessary information about the concept and type of association. Fig. 10 shows
an example of a semantic network for a domain of animals. The concepts are represented by
ellipses and the connections are arrows. The network is a representation of this natural
language passage:
„Mammals and reptiles are animals. Dogs and dolphins are mammals, snakes and
crocodiles are reptiles. Snakes are reptiles without legs; crocodiles are reptiles with four legs.
While dolphins live in the sea, the dogs live on land. Dogs have four legs. Labrador retriever
is a medium sized dog.“ The nouns in this text refer to concepts; the verbs are links between
them.
Newer models of a network representation language are conceptual graphs. A conceptual

graph is (Luger 2005) a finite, connected, bipartite graph. The nodes in the graph are either

concepts or conceptual relations. Conceptual graphs do not use labeled arcs; instead the

conceptual relation nodes represent relations between concepts. Because conceptual graphs

are bipartite, concepts only have arcs to relations, and vice versa. Example shown on Fig. 11

a) represents a simple proposition “Cat’s color is white”. A more complex graph on Fig. 11

b) represents the sentence “John bought Joan a large ice cream” indicates how conceptual

graphs are used to formalize natural language.

Semantic networks are especially appropriate for the extraction of taxonomic structures or
domain objects categories and for the expression of general sentences on the domain of

www.intechopen.com

 Robot Learning

56

AnimalMammal

Reptile

Dog

Dolphin

Crocodile Snake

4 legs No_legs

Sea

Labrador

retriever
Medium

large

is a

is a

is a

is a

lives

kind of

size

is a is a

has has
Land

lives

has

Fig. 10. Semantic net: animals

CAT COLOR WHITE

»Cat's color is white«

»John bought Joan a large ice cream«

bought

Ice

cream
agent

Person:

Joan

Person:
John

size

large

a)

b)

Fig. 11. Conceptual graphs of “Cat's colour is white” and “John bought Joan a large ice
cream”

interest. Inheritance and other relations between these kinds of categories can be
represented and inferred from the hierarchies the network naturally contains. Individual
representatives or even data values like numbers or strings are not compatible with the idea
of semantic networks (Grimm, 2007).
Another natural form of knowledge expression is expression with rules that mimic the
principle of consequence. They are in the form of IF-THEN constructs and support the
expression of various complex sentences.
Rules are found in logic programming systems, such as the well known programming
language Prolog (Sterling & Shapiro, 1994), deductive data bases (Minker, 1987) or business
rules systems (Grimm, 2007). „IF“ part of the rule is the body, while the„THEN“ part is the
head of the rule. An example of a rule that refers to Fig. 10 is:

www.intechopen.com

Robot Learning of Domain Specific Knowledge from Natural Language Sources

57

 IF something is a Labrador retriever THEN it is also a dog.

Because rules in natural language are not appropriate for machine processing these kinds of
phrases are formalized with the use of predicates and object variables in the domain of
interest. Formalized, the example above would be written like this:

 Dogs(?t) :- Labrador retriever (?t).

In most logical programming languages the rule is read as an inverse implication, which
starts with the head followed by the body. It is identified with the „:-“ symbol that is a
synonym for the reversed arrow (Grimm, 2007).
Afore mentioned forms, semantic networks and rules, are formalized with logic that
provides the exact semantics. Without that kind of precise formalization they would be
ambiguous and consequently not appropriate for machine processing. The most featured
and fundamental logical formalism that is typically used for knowledge representation is
the first order logic (Gašević et al., 2006). First order logic provides means to describe the
domain of interest as a composition of objects and the construction of logical formulas
around those objects. The objects are formed with the use of predicates, functions, variables
and logic connectives.
Similar to semantic networks, most natural language sentences can be expressed with terms
from logic sentences about the objects in the target domain with the appropriate choice of
predicates and function symbols (Grimm, 2007).
Axiomatising parts of the semantic network on Fig. 10 will be used to demonstrate the use
of logic for knowledge representation. For instance, subsumption on Fig. 12 can be directly
expressed with logical implication which is formulated in (1):

Dog
Labrador

retriever

kind of

Fig. 12. Example of subsumption

 : (_ () ())x Labrador retriever x Dogs x∀ → (1)

Logic can also be used to represent rules. IF-THEN rules can be expressed as a logical

implication with universal quantity variables. For instance the basic formalization of the

rule: „IF something is a Labrador retriever THEN it is also a dog“ is also translated to the

same logic formula (1).

5. Practical case of learning from natural language

This section will focus on a chronological sequence of learning from natural text. It will
present a short example on how to use the aforementioned methodologies, approaches and
techniques on a small example. We have to stress that this is only a short practical example
and so the approaches chosen in it are somewhat simplified to allow for better
understanding of the example. The example is not intended to be a cookbook for learning
from natural language; it is merely used to present the user with a real world scenario with
a chronological sequence of the steps and actions necessary for the incorporation of natural
language knowledge in a formalized fashion. We will use the health/nutrition domain and

www.intechopen.com

 Robot Learning

58

we will be focusing on the consumption of chocolate and its influence on patients. The
scenario will outline the entire process of learning in the proper order. The sequence of
actions is the following:

• Definition of the target domain.
• Acquisition of natural language resources and pre-processing.
• Knowledge extraction and formalization.

5.1 Domain definition

The first step cannot be automated. A knowledge engineer has to determine what the
boundaries of the target domain are. He accomplishes this with an extensive examination of
the target domain in order to familiarize himself with the domain concepts. Almost
exclusively a knowledge engineer is someone with background in computer science and
with the exception that the target domain falls within his area of expertise he usually has
only the most basic understanding of the target domain. To be able to successfully
incorporate his skills in the entire process it is vital that he understands the target domain at
least to a certain degree. This first step is concluded when the domain is firmly, formally
defined in such a way that there are no ambiguities on the question what falls inside the
domain and what lies on the outside. In our example a short definition of the domain would
be the following: The main two entities in the domain are chocolate and patients. The
domain scope will be limited to milk, sweet and dark chocolate only. The goal of the
learning will be the positive and negative effect of chocolate consumption with regard to
quantity. Fig. 13 shows a simplified model of the domain. Additionally the source of
learning will be the news reporting on studies being done by the research community. The
news selection policy will be based on top level breadth-first policy; if the title contains a
keyword from the domain the news is included in the knowledge base.

Patient

Male Female

Chocolate

-Chocolate + sugar

Sweet chocolate

-Dry cocoa solids => 25%

Milk chocolate

-Dry cocoa solids => 35%

Dark chocolate

Consumption

-Quantity => 1 bar a day

Excesive consumption

-Quantity =< 30g a day

Normal consumption

*

1 *

1

Fig. 13. Domain model for chocolate consumption

5.2 Acquisition of natural language resources and pre-processing

In this step the knowledge engineer determines which natural language sources are
available to him and which can be added during the process. He has to determine the source

www.intechopen.com

Robot Learning of Domain Specific Knowledge from Natural Language Sources

59

format (documents, web pages...) and the necessary processing for the transformation to the
final format. For the example which we are providing we have chosen reports on research
projects and studies as the primary source of data. The data will be acquired by RSS feeds
from selected health websites. A snippet of the XML file compliant with the RSS 2.0
specification is shown on Fig. 14. News, published by CNN, titled “Daily chocolate may keep
the heart doctor away” is selected because it contains keyword from the domain model
(“chocolate”). On a similar principle other news are selected and inserted to a relational
database for local storage and queued for further processing. The collection of domain
documents can be enhanced with periodical download of the RSS feeds.
Pre-processing of the selected news is comprised from:

• the download of the full news,
• transformation to plaintext (stripping of HTML tags) and
• sentence level tokenization.
The download of the full news is necessary because the RSS feeds contain only short content
(title, short description...) and the target web address of the news.

Fig. 14. Snippet from the news feed

5.3 Knowledge extraction and formalization

The first step in knowledge extraction is the part-of-speech (POS) analysis. It can be
performed with the use of existing POS taggers, for example the TnT (Brants, 2000) or
TreeTagger (Schmid, 1994). The latter achieved 96% accuracy on the Penn-Treebank data. In
the example we are following, the news has been fully downloaded, the text transformed to
plaintext and tokenized to individual sentences. The sentences to be used can be classified
by a simple TFIDF (Term Frequency Inverse Document Frequency) metric. For our purposes
the documents in the formula are sentences. The metric is defined as follows:

 () (,) ()i
i id TF W d IDF W= (2)

The IDF is defined:

 () log
()

i

i

D
IDF W

DF W
= (3)

D is the number of documents, DF(W) is the number of documents in which the word (W)
occurs at least once and TF(W, d) is the number of word W occurrences in the document d.

www.intechopen.com

 Robot Learning

60

Additionally the metric can be normalized so that the TFIDF of individual words is divided
by the square root of the sum of all TFIDF word frequencies as follows:

 ,

2
,

i j

i ji

TFIDF
nTFIDF

TFIDF
=

∑
 (4)

The very first sentence provides useful knowledge and we will follow the example on this
sentence. It is stated as:
“Eating as little as a quarter of an ounce of chocolate each day may lower your risk of
experiencing heart attack or stroke!”. The POS analysis provides the tags listed in.
This is processed by semantic interpretation that uses existing domain knowledge (defined
in the domain definition phase) to produce a representation of the meaning. Fig. 15 shows
an internal representation in the form of a conceptual graph. Semantic interpretation uses
both the knowledge about word meanings (within the domain) and linguistic structure.

Word Tag Word Tag Word Tag
Eating VBG as RB little JJ
as IN a DT quarter NN
of IN an DT ounce NN
of IN chocolate NN each DT
day NN may MD lower VB
your PRP$ risk NN of IN
experiencing VBG a DT heart NN
attack NN or CC stroke VB

Legend: IN - Preposition or subordinating conjunction, JJ - Adjective, MD - Modal,
NN - Noun, singular or mass, PRP$ - Possessive pronoun, RB - Adverb, VB - Verb,
base form, VBG - Verb, gerund or present participle

Table 2. POS tags of a news sentence

The sentence is separated into two distinct categories: cause (IF) and effect (THEN). Both are
associated with the object. In the figure the application used knowledge that ounce is a unit
of amount, day is a unit of time and that a person normally eats chocolate not the other way
around. So combining this knowledge produced the resulting representation of knowledge
in the sentence. The agent (the one that influences) is chocolate, the object (the recipient of the
action) is the word your and the action (agent to object) is eating. Combining that to eat is
associated with the domain concept of amount and that ounce is a unit of amount the
application can effectively reason that the meaning of the cause part (Fig. 15 segment A) of
the sentence is: object that eats a 0.25 ounce of chocolate in a period of one day. The effect side
(Fig. 15 segment C) has the meaning of: the object experiences the influence of reduced
possibility of a disease of type heart attack/stroke. This internal representation is then
generalized with the addition of known concepts. The object yours is a possessive pronoun
and therefore is mapped to a person which is marked as “patient„ in the domain.
The amount of quarter of an ounce is mapped to the primary unit for amount in the domain,
(grams) with the use of a conversion factor. So ¼ of an ounce becomes 7.08738078 grams.
The resulting semantic net with the additional information is the final interpretation of the
domain specific world knowledge learned from this sentence. These representations can

www.intechopen.com

Robot Learning of Domain Specific Knowledge from Natural Language Sources

61

transform to a rule base which can then be automatically evaluated and used by the final
application (the one that uses the knowledge learned).
For the example we have been following a rule would be in the following form:
 RULE chocolate consumption influence
 IF typeof (object) IS patient
 AND typeof (action) IS eat
 AND action::target IS chocolate
 AND quantityof (action) IS 7g
 AND timespan (action) IS 24h
 THEN typeof(consequence) IS influence
 AND consequence::target IS disease
 AND typeof(disease) IS heart attack/stroke
 AND relationship (consequence, consequence::target) IS reduced risk

agent

chocolate eat

object

your

amount

0.25

ounce

duration
time

unit:day

disease
Type: heart

attack/stroke

influence
reduces

A) cause B) object C) effect

Fig. 15. Internal representation of the meaning of the sentence

This is the final formalization of acquired knowledge. In this form the knowledge is fully
machine readable, providing there are inferring rules that define how to evaluate the value
entities (typeof, quantityof,…). This format can be stored and used as need arises.

6. Conclusion

We have presented the major research areas that are vital to learning domain specific
knowledge. The practical example shows the chronological sequence of the learning process.
We have shown that it is vital to formally define the target domain. Also in order for the
knowledge engineers to effectively determine the domain and evaluate the progress of the
project they have to have a more than superficial knowledge of the domain. Incorporation of
existing knowledge (dictionaries, semantic annotations etc.) is very important since every
task is very time consuming and repeating existing work is not efficient.
Knowledge extraction should have a much higher success rate if it is done on smaller
documents. It is for this reason that the practical example uses news feeds. Their content is
already summarized in the form of the short description. The full text of the news can then
be used to provide facts that show how and why the summary is correct. So in the example
we are counting on the title and short description to provide the new facts while the news

www.intechopen.com

 Robot Learning

62

body is used as the supporting information. This provides an efficient example of
knowledge learning from natural language.

7. References

Alana, E. & Rodriguez, A. I. (2007). Domain Engineering Methodologies Survey, available
on http://www.pnp-software.com/cordet/download/pdf/GMV-CORDET-RP-001_Iss1.pdf

Allen, J. (1994). Natural Language Understanding (2nd Edition), Addison Wesley, ISBN-10:
0805303340

Alshawi, H. (1992). The Core Language Engine, The MIT Press, ISBN-10: 0262011263, USA
Arango, G. (1994). Domain Analysis Methods. In Software Reusability, Schafer, W.; Prieto-

Díaz, R. & M. Matsumoto (Ed.), page numbers (17-49), Ellis Horwood
Brants, T. (2000). TnT – A Statistical Part-of-Speech Tagger, Proceedings of the sixth conference

on Applied Natural Language Processing, pp. 224-231, ISBN-10: 1558607048, Seattle,
Washington, April – May 2000, Morristown, NJ, USA

Buschmann, F.; Henney, K. & Schmidt, D. C. (2007). Pattern-Oriented Software Architecture:
On Patterns and Pattern Languages, John Wiley & Sons, ISBN-10: 0471486480,
England

Chomsky, N. (1956). Three Models for the Description of Language, IRE Transactions on
Information Theory, Vol. 2, page numbers (113-124

Czarnecki, K. & Eisenecker, U. (2000). Generative Programming: Methods, Tools
andApplications, ACM Press/Addison-Wesley Publishing Co., ISBN-10: 0201309777,
New York, NY, USA

Davenport, T. H. & Prusak, L. (1998). Working Knowledge: How Organizations Manage What
They Know, Harvard Bussiness Press, ISBN-10: 0875846556, United States of
America

Debenham, J. K. (1989). Knowledge systems design, Prentice Hall, ISBN-10: 0135164281
Falbo, R; Guizzardi, G & Duarte, K. C. (2002). An ontological approach to domain

engineering, Proceedings of the 14th international conference on Software engineering and
knowledge engineering, pp. 351-358, ISBN-10: 1581135564, Ischia, Italy, July 2002,
ACM, New York, NY, USA

Frakes, W.; Prieto-Diaz, R. & Fox, C. (1998). DARE: Domain analysis and reuse
environmrent, Annals of Software Engineering, Vol. 5, No. 1, (January 1998) page
 numbers (125-141), ISSN: 1573-7489

Gandon, F. (2000). Distributed Artifical Intelligence and Knowledge Management:
Ontologies and Multi-Agent systems for a Corporate Semantic Web. Scientific
Philosopher Doctorate Thesis in Informatics, INRIA and University of Nice.

Gašević, D.; Djurić, D. & Devedžić, V. (2006). Model Driven Architecture and Ontology
 Development, Springer-Verlag Berlin Heidelberg, ISBN-10: 3540321802, Germany
Grimm, S.; Hitzler, P. & Abecker, A. (2007). Knowledge Representation and Ontologies, In:

Semantic Web Services, Studer, R.; Grimm, S. & Abecker, A., (Ed.), page numbers (51-
105), Springer Berlin Heidelberg New Vork, ISBN-13: 9783540708940, Online
edition

Griss, M.L.; Favaro, J. & d' Alessandro M. (1998). Integrating Feature Modeling with the
RSEB, Proceedings of the 5th Internarional Conference on Software Reuse, pp. 76, ISBN-
10: 0818683775, Victoria, British Columbia, Canada, IEEE Computer Society
Washington, DC, USA

www.intechopen.com

Robot Learning of Domain Specific Knowledge from Natural Language Sources

63

Harsu, M. (2002). A survey on domain engineering. Report 31, Institute of Software Systems,
Tempere University of Technology

Hayes, R. (1992). Measurement of information, Information Processing & Management, Vol. 29,
 No. 1, (January-February 1993), page numbers (1-11), ISSN: 0306-4573
Heidorn, G. E. (1975). Augmented phrase structure grammars, Proceedings of the 1975

Workshop on Theoretical issues in natural language processing, pp. 1-5, Cambridge,
Massachusetts, June 1975, Association for Computational Linguistics, Morristown,
NJ, USA

Hjorland, B. (1998). Information retrieval, text composition and semantics, Knowledge
 Organization, Vol. 25, No. 1-2, (1998), page numbers (16-31), ISSN: 0943-7444
Kang, K.; Cohen, S.; Hess, J.; Novak, W. & Peterson, S. (1990). Feature-Oriented Domain

Analysis (FODA) Feasibility Study, Technical CMU/SEI-90-TR-21, Software
Engineering Institute, Carnegie Mellon University

Kang, K. C.; Kim, S.; Lee, J.; Kim, K.; Shin, E. & Huh, M. (2004). FORM: A feature-oriented
reuse method with domain-specific reference architectures, Annals of Software
Engineering, Vol. 5, No. 1, (January 1998) page numbers (143-168), ISSN: 1573-7489

Kendal, S. & Creen, M. (2007). An Introduction to Knowledge Engineering, Springer, ISBN:
1846284759, United States of America

Kosar, T.; Martinez Lopez, P. E.; Barrientos, P. A. & Mernik, M. (2008), A preliminary study
on various implementation approaches of domain-specific language, Information
and Software Technology, Vol. 50, No. 5, (April 2008) page numbers (390-405), ISSN:
0950-5849

Krishnamoorthy, C. S. & Rajeev, S. (1996). Artifical Intelligence and Experts Systems for
Engineers, CRC-Press, ISBN-10: 0849391253, USA

Luger, G. F. (2005). Artificial intelligence, Structure and Strategies for Complex Problem Solving
 (Fifith Edition), Pearson Education Limited, ISBN-10: 0321263189, USA
Mernik, M.; Heering, J. & Sloane, A. M. (2005). When and how to develop domain-specific

languages, ACM Computing Surveys (CSUR), Vol. 37, No. 4, (December 2005), page
numbers (316-344), ISSN: 0360-0300

Miller, G. A. (1995). WordNet: A Lexical Database for English, Communications of the ACM,
 Vol. 38, No. 11, (November 1995) page numbers (39-41), ISSN: 0001-0782
Minker, J. (1987). Foundations of Deductive Databases and Logic Programming, Morgan
 Kaufmann Pub, ISBN: 0934613400, United States
Partee, B. H.; ter Meulen, A. & Wall, R.E. (1993). Mathematical methods in linguistics, Kluwer
 Academic Publishers, ISBN-10: 9027722454, Netherlands
Pradorn, S.; Nopasit, C.; Yacine, O.; Gilles, N. & Abdelaziz, B. (2007). Knowledge

Engineering Technique for Cluster Development, Springer, ISBN-13: 9783540767183
Russell, S. & Norvig, P. (2003). Artifical Intelligence A Modern Approach, Prentice Hall, ISBN:

0131038052, United States of America
Schmid, G. (1994). TreeTagger - a language independent part-of-speech tagger, available on
 http://www.ims.uni-stuttgart.de/Tools/DecisionTreeTagger.html
Schreiber, G.; Akkermans, H.; Anjewierden, A.; de Hoog, R.; Ahadbolt, N.; Van de Velde, W.
 & Wielinga, B. (1999). Knowledge Engineering and Management: The CommonKADS
 Methodology, The MIT Press, ISBN: 0262193000, USA
Shadbolt, N. & Milton, N. (1999). From Knowledge Engineering to Knowledge

Management, British Journal of Management, Vol. 10, No. 4, (December 1999), page
numbers (309-322), IISN: 1045-3172

www.intechopen.com

 Robot Learning

64

Sheth, A.; Ramakrishnan, C. & Thomas, C. (2005). Semantics for the Semantic Web: The
Implicit, the Formal and the Powerful, International Journal on Semantic Web and
 Information Systems, Vol. 1, No. 1, (January-March 2005), page numbers (1-18), ISSN:
1552-6283

Simons, M. & Anthony, J. (1998). Weaving the Model Web: A Multi-Modeling Approach to
Concepts and Features in Domain Engineering, Proceedings of the 5th International
Conference on Software Reuse, pp. 94-102, ISBN: 0818683775, Victoria, DC, Canada,
June 1998, IEEE Computer Society Washington, DC, USA

Sterling, L. & Shapiro, E. (1994). The Art of Prolog, Second Edition: Advanced Programming
Tecniques (Logic Programming), The MIT Press, ISBN: 0262193388, USA

Stokes, M. (2001). Managing Engineering Knowledge. MOKA - Methodology for Knowledge-Based
Engineering Applications, John Wiley & Sons Australia, Limited, ISBN: 1860582958

Taylor, N. R.; Tracz, W. & Coglianse, L. (1995). Software development using domain-specific
software architectures, ACM SIGSOFT Software Engineering Notes, Vol. 20, No. 5,
(December 1995) page numbers (27-38), ISSN: 0163-5948

Valente, G. (2004). Artifical Intelligence methods in Operational Knowledge Management,
Ph.D. Dissertation, University of Turin

Winograd, T. (1972). Understanding natural language, Academic Pr, ISBN-10: 0127597506,
Orlando, Florida, USA

Weiss, D. M. & Lai, C. T. R. (1999). Software Product-Line Engineering: A Family-Based Software
Development Process, Addison-Wesley Professional, ISBN: 0201694387

Woods, W.A. (1970). Transition network grammars for natural language analysis,
Communciations of the ACM, Vol. 13, No. 10, (October 1970), page numbers 591-606,
ISSN: 0001-0782

Zins, C. (2007). Conceptual approaches for defining data, information and knowledge,
Journal of the American Society for Information Science and Technology, Vol. 58, No. 4,
(February 2007), page numbers (479-493), ISSN: 1532-2882

www.intechopen.com

Robot Learning

Edited by Suraiya Jabin

ISBN 978-953-307-104-6

Hard cover, 150 pages

Publisher Sciyo

Published online 12, August, 2010

Published in print edition August, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Robot Learning is intended for one term advanced Machine Learning courses taken by students from different

computer science research disciplines. This text has all the features of a renowned best selling text. It gives a

focused introduction to the primary themes in a Robot learning course and demonstrates the relevance and

practicality of various Machine Learning algorithms to a wide variety of real-world applications from

evolutionary techniques to reinforcement learning, classification, control, uncertainty and many other important

fields. Salient features: - Comprehensive coverage of Evolutionary Techniques, Reinforcement Learning and

Uncertainty. - Precise mathematical language used without excessive formalism and abstraction. - Included

applications demonstrate the utility of the subject in terms of real-world problems. - A separate chapter on

Anticipatory-mechanisms-of-human-sensory-motor-coordination and biped locomotion. - Collection of most

recent research on Robot Learning.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Ines Čeh, Sandi Pohorec, Marjan Mernik and Milan Zorman (2010). Robot Learning of Domain Specific

Knowledge from Natural Language Sources, Robot Learning, Suraiya Jabin (Ed.), ISBN: 978-953-307-104-6,

InTech, Available from: http://www.intechopen.com/books/robot-learning/robot-learning-of-domain-specific-

knowledge-from-natural-language-sources

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

