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1. Introduction

Because a Bayesian network is a complete model for the variables and their relationships, it
can be used to answer probabilistic queries about them. For example, the network can be
used to find out updated knowledge of the state of a subset of variables when other variables
(the evidence variables) are observed. This process of computing the posterior distribution
of variables given evidence is called probabilistic inference. A Bayesian network can thus be
considered a mechanism for automatically applying Bayes’ theorem to complex problems.
In the application of Bayesian networks, most of the work is related to probabilistic inferences.
Any variable updating in any node of Bayesian networks might result in the evidence prop-
agation across the Bayesian networks. How to examine and execute various inferences is the
important task in the application of Bayesian networks.
This chapter will sum up various inference techniques in Bayesian networks and provide
guidance for the algorithm calculation in probabilistic inference in Bayesian networks. Infor-
mation systems are of discrete event characteristics, this chapter mainly concerns the infer-
ences in discrete events of Bayesian networks.

2. The Semantics of Bayesian Networks

The key feature of Bayesian networks is the fact that they provide a method for decomposing
a probability distribution into a set of local distributions. The independence semantics asso-
ciated with the network topology specifies how to combine these local distributions to obtain
the complete joint probability distribution over all the random variables represented by the
nodes in the network. This has three important consequences.
Firstly, naively specifying a joint probability distribution with a table requires a number of
values exponential in the number of variables. For systems in which interactions among the
random variables are sparse, Bayesian networks drastically reduce the number of required
values.
Secondly, efficient inference algorithms are formed in that work by transmitting information
between the local distributions rather than working with the full joint distribution.
Thirdly, the separation of the qualitative representation of the influences between variables
from the numeric quantification of the strength of the influences has a significant advantage
for knowledge engineering. When building a Bayesian network model, one can focus first
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on specifying the qualitative structure of the domain and then on quantifying the influences.
When the model is built, one is guaranteed to have a complete specification of the joint prob-
ability distribution.
The most common computation performed on Bayesian networks is the determination of the
posterior probability of some random variables, given the values of other variables in the net-
work. Because of the symmetric nature of conditional probability, this computation can be
used to perform both diagnosis and prediction. Other common computations are: the com-
putation of the probability of the conjunction of a set of random variables, the computation of
the most likely combination of values of the random variables in the network and the compu-
tation of the piece of evidence that has or will have the most influence on a given hypothesis.
A detailed discussion of inference techniques in Bayesian networks can be found in the book
by Pearl (Pearl, 2000).

• Probabilistic semantics. Any complete probabilistic model of a domain must, either ex-
plicitly or implicitly, represent the joint distribution which the probability of every pos-
sible event as defined by the values of all the variables. There are exponentially many
such events, yet Bayesian networks achieve compactness by factoring the joint distribu-
tion into local, conditional distributions for each variable given its parents. If xi denotes
some value of the variable Xi and π(xi) denotes some set of values for Xi’s parents
π(xi), then P(xi|π(xi)) denotes this conditional distribution. For example, P(x4|x2, x3)
is the probability of wetness given the values of sprinkler and rain. Here P(x4|x2, x3) is
the brief of P(x4|{x2, x3}). The set parentheses are omitted for the sake of readability.
We use the same expression in this thesis. The global semantics of Bayesian networks
specifies that the full joint distribution is given by the product

P(x1, . . . , xn) = ∏
i

P(xi|π(xi)) (1)

Equation 1 is also called the chain rule for Bayesian networks.

Fig. 1. Causal Influences in A Bayesian Network.

In the example Bayesian network in Figure 1, we have

P(x1, x2, x3, x4, x5) = P(x1)P(x2|x1)P(x3|x1)P(x4|x2, x3)P(x5|x4) (2)
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Provided the number of parents of each node is bounded, it is easy to see that the num-
ber of parameters required grows only linearly with the size of the network, whereas
the joint distribution itself grows exponentially. Further savings can be achieved using
compact parametric representations, such as noisy-OR models, decision tress, or neural
networks, for the conditional distributions (Pearl, 2000).

There are also entirely equivalent local semantics, which assert that each variable is
independent of its non-descendants in the network given its parents. For example,
the parents of X4 in Figure 1 are X2 and X3 and they render X4 independent of the
remaining non-descendant, X1. That is,

P(x4|x1, x2, x3) = P(x4|x2, x3) (3)

The collection of independence assertions formed in this way suffices to derive the
global assertion in Equation 2, and vice versa. The local semantics are most useful
in constructing Bayesian networks, because selecting as parents the direct causes of
a given variable automatically satisfies the local conditional independence conditions.
The global semantics lead directly to a variety of algorithms for reasoning.

• Evidential reasoning. From the product specification in Equation 2, one can express the
probability of any desired proposition in terms of the conditional probabilities specified
in the network. For example, the probability that the sprinkler was on, given that the
pavement is slippery, is

P(X3 = on|X5 = true) (4)

=
P(X3 = on, X5 = true)

P(X5 = true)

=
∑x1,x2,x4

P(x1, x2, X3 = on, x4, X5 = true)

∑x1,x2,x3,x4
P(x1, x2, x3, x4, X5 = true)

=
∑x1,x2,x4

P(x1)P(x2|x1)P(X3 = on|x1)P(x4|x2, X3 = on)P(X5 = true|x4)

∑x1,x2,x3,x4
P(x1)P(x2|x1)P(x3|x1)P(x4|x2, x3)P(X5 = true|x4)

These expressions can often be simplified in the ways that reflect the structure of the
network itself.

It is easy to show that reasoning in Bayesian networks subsumes the satisfiability prob-
lem in propositional logic and hence reasoning is NP-hard (Cooper, 1990). Monte Carlo
simulation methods can be used for approximate inference (Pearl, 1987), given that es-
timates are gradually improved as the sampling proceeds. (Unlike join-tree methods,
these methods use local message propagation on the original network structure.) Alter-
natively, variational methods (Jordan et al., 1998) provide bounds on the true probabil-
ity.

• Functional Bayesian networks. The networks discussed so far are capable of support-
ing reasoning about evidence and about actions. Additional refinement is necessary
in order to process counterfactual information. For example, the probability that "the
pavement would not have been slippery had the sprinkler been OFF, given that the
sprinkler is in fact ON and that the pavement is in fact slippery" cannot be computed
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from the information provided in Figure 1 and Equation 2. Such counterfactual prob-
abilities require a specification in the form of functional networks, where each condi-
tional probability P(xi|π(i)) is replaced by a functional relationship xi = fi(π(i), ǫi),
where ǫi is a stochastic (unobserved) error term. When the functions fi and the distri-
butions of ǫi are known, all counterfactual statements can be assigned unique proba-
bilities, using evidence propagation in a structure called a "twin network". When only
partial knowledge about the functional form of fi is available, bounds can be computed
on the probabilities of counterfactual sentences (Balke & Pearl, 1995) (Pearl, 2000).

• Causal discovery. One of the most exciting prospects in recent years has been the pos-
sibility of using Bayesian networks to discover causal structures in raw statistical data
(Pearl & Verma, 1991) (Spirtes et al., 1993) (Pearl, 2000), which is a task previously con-
sidered impossible without controlled experiments. Consider, for example, the follow-
ing pattern of dependencies among three events: A and B are dependent, B and C are
dependent, yet A and C are independent. If you ask a person to supply an example of
three such events, the example would invariably portray A and C as two independent
causes and B as their common effect, namely, A → B ← C. Fitting this dependence
pattern with a scenario in which B is the cause and A and C are the effects is mathemat-
ically feasible but very unnatural, because it must entail fine tuning of the probabilities
involved; the desired dependence pattern will be destroyed as soon as the probabilities
undergo a slight change.

Such thought experiments tell us that certain patterns of dependency, which are totally
void of temporal information, are conceptually characteristic of certain causal direction-
alities and not others. When put together systematically, such patterns can be used to
infer causal structures from raw data and to guarantee that any alternative structure
compatible with the data must be less stable than the one(s) inferred; namely, slight
fluctuations in parameters will render that structure incompatible with the data.

• Plain beliefs. In mundane decision making, beliefs are revised not by adjusting numer-
ical probabilities but by tentatively accepting some sentences as "true for all practical
purposes". Such sentences, called plain beliefs, exhibit both logical and probabilis-
tic characters. As in classical logic, they are propositional and deductively closed; as
in probability, they are subject to retraction and to varying degrees of entrenchment.
Bayesian networks can be adopted to model the dynamics of plain beliefs by replac-
ing ordinary probabilities with non-standard probabilities, that is, probabilities that are
infinitesimally close to either zero or one (Goldszmidt & Pearl, 1996).

• Models of cognition. Bayesian networks may be viewed as normative cognitive models
of propositional reasoning under uncertainty (Pearl, 2000). They handle noise and par-
tial information by using local, distributed algorithm for inference and learning. Unlike
feed forward neural networks, they facilitate local representations in which nodes cor-
respond to propositions of interest. Recent experiments (Tenenbaum & Griffiths, 2001)
suggest that they capture accurately the causal inferences made by both children and
adults. Moreover, they capture patterns of reasoning that are not easily handled by any
competing computational model. They appear to have many of the advantages of both
the "symbolic" and the "subsymbolic" approaches to cognitive modelling.

Two major questions arise when we postulate Bayesian networks as potential models
of actual human cognition.
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Firstly, does an architecture resembling that of Bayesian networks exist anywhere in the
human brain? No specific work had been done to design neural plausible models that
implement the required functionality, although no obvious obstacles exist.

Secondly, how could Bayesian networks, which are purely propositional in their ex-
pressive power, handle the kinds of reasoning about individuals, relations, properties,
and universals that pervades human thought? One plausible answer is that Bayesian
networks containing propositions relevant to the current context are constantly being
assembled as needed to form a more permanent store of knowledge. For example, the
network in Figure 1 may be assembled to help explain why this particular pavement
is slippery right now, and to decide whether this can be prevented. The background
store of knowledge includes general models of pavements, sprinklers, slipping, rain,
and so on; these must be accessed and supplied with instance data to construct the
specific Bayesian network structure. The store of background knowledge must utilize
some representation that combines the expressive power of first-order logical languages
(such as semantic networks) with the ability to handle uncertain information.

3. Reasoning Structures in Bayesian Networks

3.1 Basic reasoning structures

3.1.1 d-Separation in Bayesian Networks

d-Separation is one important property of Bayesian networks for inference. Before we define
d-separation, we first look at the way that evidence is transmitted in Bayesian Networks.
There are two types of evidence:

• Hard Evidence (instantiation) for a node A is evidence that the state of A is definitely a
particular value.

• Soft Evidence for a node A is any evidence that enables us to update the prior proba-
bility values for the states of A.

d-Separation (Definition):
Two distinct variables X and Z in a causal network are d-separated if, for all paths between X

and Z, there is an intermediate variable V (distinct from X and Z) such that either

• the connection is serial or diverging and V is instantiated or

• the connection is converging, and neither V nor any of V’s descendants have received
evidence.

If X and Z are not d-separated, we call them d-connected.

3.1.2 Basic structures of Bayesian Networks

Based on the definition of d-seperation, three basic structures in Bayesian networks are as
follows:

1. Serial connections

Consider the situation in Figure 2. X has an influence on Y, which in turn has an in-
fluence on Z. Obviously, evidence on Z will influence the certainty of Y, which then
influences the certainty of Z. Similarly, evidence on Z will influence the certainty on X

through Y. On the other hand, if the state of Y is known, then the channel is blocked,
and X and Z become independent. We say that X and Z are d-separated given Y, and
when the state of a variable is known, we say that it is instantiated (hard evidence).
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We conclude that evidence may be transmitted through a serial connection unless the
state of the variable in the connection is known.

Fig. 2. Serial Connection. When Y is Instantiated, it blocks the communication between X and
Z.

2. Diverging connections

The situation in Figure 3 is called a diverging connection. Influence can pass between
all the children of X unless the state of X is known. We say that Y1, Y2, . . . , Yn are d-
separated given X.

Evidence may be transmitted through a diverging connection unless it is instantiated.

Fig. 3. Diverging Connection. If X is instantiated, it blocks the communication between its
children.

3. Converging connections

Fig. 4. Converging Connection. If Y changes certainty, it opens for the communication be-
tween its parents.

A description of the situation in Figure 4 requires a little more care. If nothing is known
about Y except what may be inferred from knowledge of its parents X1, . . . , Xn, then
the parents are independent: evidence on one of the possible causes of an event does
not tell us anything about other possible causes. However, if anything is known about
the consequences, then information on one possible cause may tell us something about
the other causes.

This is the explaining away effect illustrated in Figure 1. X4 (pavement is wet) has
occurred, and X3 (the sprinkler is on) as well as X2 (it’s raining) may cause X4. If
we then get the information that X2 has occurred, the certainty of X3 will decrease.
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Likewise, if we get the information that X2 has not occurred, then the certainty of X3

will increase.

The three preceding cases cover all ways in which evidence may be transmitted through a
variable.

4. Classification of Inferences in Bayesian Networks

In Bayesian networks, 4 popular inferences are identified as:

1. Forward Inference

Forward inferences is also called predictive inference (from causes to effects). The infer-
ence reasons from new information about causes to new beliefs about effects, following
the directions of the network arcs. For example, in Figure 2, X → Y → Z is a forward
inference.

2. Backward Inference

Backward inferences is also called diagnostic inference (from effects to causes). The in-
ference reasons from symptoms to cause, Note that this reasoning occurs in the opposite
direction to the network arcs. In Figure 2 , Z → Y is a backward inference. In Figure 3 ,
Yi → X(i ∈ [1, n]) is a backward inference.

3. Intercausal Inference

Intercausal inferences is also called explaining away (between parallel variables). The
inference reasons about the mutual causes (effects) of a common effect (cause). For
example, in Figure 4, if the Y is instantiated, Xi and Xj(i, j ∈ [1, n]) are dependent.
The reasoning Xi ↔ Xj(i, j ∈ [1, n]) is an intercausal inference. In Figure 3, if X is not
instantiated, Yi and Yj(i, j ∈ [1, n]) are dependent. The reasoning Yi ↔ Yj(i, j ∈ [1, n]) is
an intercausal inference.

4. Mixed inference

Mixed inferences is also called combined inference. In complex Bayesian networks, the
reasoning does not fit neatly into one of the types described above. Some inferences are
a combination of several types of reasoning.

4.1 Inference in Bayesian Networks

4.1.1 inference in basic models

• in Serial Connections

– the forward inference executes with the evidence forward propagation. For ex-
ample, in Figure 5, consider the inference X → Y → Z. 1

If Y is instantiated, X and Z are independent, then we have following example:

P(Z|XY) = P(Z|Y);

P(Z+|Y+) = 0.95;

P(Z−|Y+) = 0.05;

P(Z+|Y−) = 0.01;

1 Note: In this chapter, P(X+) is the abbreviation of P(X = true), P(X−) is the abbreviation of P(|X =
f alse). For simple expression, we use P(Y|X) to denote P(Y = true|X = true) by default. But in express
P(Y+|X), X denotes both situations X = true and X = f alse.

www.intechopen.com



Bayesian Network46

Fig. 5. Inference in Serial Connection

P(Z
−|Y−) = 0.99;

if Y is not instantiated, X and Z are dependent, then

P(Z
+|X+

Y) = P(Z
+|Y+)P(Y+|X+) + P(Z

+|Y−)P(Y−|X+)

= 0.95 ∗ 0.85 + 0.01 ∗ 0.15 = 0.8075 + 0.0015 = 0.809;

P(Z
−|X−

Y) = P(Z
−|Y+)P(Y+|X−) + P(Z

−|Y−)P(Y−|X−)

= 0.05 ∗ 0.03 + 0.99 ∗ 0.97 = 0.0015 + 0.9603 = 0.9618.

– the backward inference executes the evidence backward propagation. For exam-
ple, in Figure 5, consider the inference Z → Y → X.

1. If Y is instantiated (P(Y+) = 1 or P(Y−) = 1), X and Z are independent,
then

P(X|YZ) = P(X|Y) =
P(X)P(Y|X)

P(Y)
(5)

P(X
+|Y+

Z) = P(X
+|Y+) = P(X

+)P(Y+ |X+)
P(Y+)

= 09∗0.85
1 = 0.765;

P(X
+|Y−

Z) = P(X
+|Y−) = P(X

+)P(Y− |X+)
P(Y−)

= 09∗0.15
1 = 0.135.

2. If Y is not instantiated, X and Z are dependent (See the dashed lines in Figure
5). Suppose P(Z

+) = 1 then

P(X
+|YZ

+) = P(X
+

YZ
+)

P(YZ+)
= P(X

+
YZ

+)
∑X P(XYZ+)

;

P(X
+

YZ
+) = P(X

+
Y
+

Z
+) + P(X

+
Y
−

Z
+) = 0.9 ∗ 0.85 ∗ 0.95 + 0.9 ∗ 0.15 ∗

0.05 = 0.72675 + 0.00675 = 0.7335;

∑X P(XYZ
+) = P(X

+
Y
+

Z
+)+ P(X

+
Y
−

Z
+)+ P(X

−
Y
+

Z
+)+ P(X

−
Y
−

Z
+)

= 0.9 ∗ 0.85 ∗ 0.95 + 0.9 ∗ 0.15 ∗ 0.99 + 0.1 ∗ 0.03 ∗ 0.95 + 0.1 ∗ 0.97 ∗ 0.01
= 0.72675 + 0.13365 + 0.00285 + 0.00097 = 0.86422;

P(X
+|YZ

+) = P(X
+

YZ
+)

∑X P(XYZ+)
= 0.7335

0.86422 = 0.8487.

In serial connections, there is no intercausal inference.

• in Diverging Connections

– the forward inference executes with the evidence forward propagation. For ex-
ample, in Figure 6, consider the inference Y → X and Y → Z, the goals are easy
to obtain by nature.
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Fig. 6. Inference in Diverging Connection

– the backward inference executes with the evidence backward propagation, see
the dashed line in Figure 6, consider the inference (XZ) → Y, X and Z are instan-
tiated by assumption, suppose P(X

+ = 1), P(Z
+ = 1). Then,

P(Y+|X+
Z
+) =

P(Y+
X
+

Z
+)

P(X+Z+)
=

P(Y+)P(X
+|Y+)P(Z

+|Y+)

P(X+Z+)

=
0.98 ∗ 0.95 ∗ 0.90

1
= 0.8379 (6)

– the intercausal inference executes between effects with a common cause. In Figure
6, if Y is not instantiated, there exists intercausal inference in diverging connec-
tions. Consider the inference X → Z,

P(X
+|YZ

+) = P(X
+

YZ
+)

P(YZ+)
= P(X

+
Y
+

Z
+)+P(X

+
Y
−

Z
+)

P(Y+Z+)+P(Y−Z+)
;

= 0.98∗0.95∗0.90+0.02∗0.01∗0.03
0.98∗0.90+0.02∗0.03 = 0.94936.

• in Converging Connections,

– the forward inference executes with the evidence forward propagation. For ex-
ample, in Figure 7, consider the inference (XZ) → Y, P(Y|XZ) is easy to obtain
by the definition of Bayesian Network in by nature.

– the backward inference executes with the evidence backward propagation. For
example, in Figure 7, consider the inference Y → (XZ).

P(Y) = ∑XZ P(XYZ) = ∑XZ(P(Y|XZ)P(XZ)),

P(XZ|Y) = P(Y|XZ)P(XZ)
P(Y)

= P(Y|XZ)P(X)P(Z)
∑XZ(P(Y|XZ)P(XZ))

.

Finally,

P(X|Y) = ∑Z P(XZ|Y),

P(Z|Y) = ∑X P(XZ|Y).

– the intercausal inference executes between causes with a common effect, and the
intermediate node is instantiated, then P(Y+) = 1 or P(Y−) = 1. In Figure 7,
consider the inference X → Z, suppose P(Y+) = 1,
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Fig. 7. Inference in Converging Connection

P(Z
+|X+Y+) = P(Z+X+Y+)

P(X+Y+)
= P(Z+X+Y+)

∑Z P(X+Y+Z)
;

P(Z+X+Y+) = P(X+)P(Z+)P(Y+|X+Z+);

∑Z P(X+YZ) = P(X+Y+Z+) + P(X+Y+Z−);

P(Z+|X+Y+) = P(Z+X+Y+)
∑Z P(X+Y+Z)

= P(X+)P(Z+)P(Y+ |X+Z+)
P(X+Y+Z+)+P(X+Y+Z−)

.

4.1.2 inference in complex model

For complex models in Bayesian networks, there are single-connected networks, multiple-
connected, or event looped networks. It is possible to use some methods, such as Triangu-
lated Graphs, Clustering and Join Trees (Bertele & Brioschi, 1972) (Finn & Thomas, 2007 )
(Golumbic, 1980), etc., to simplify them into a polytree. Once a polytree is obtained, the infer-
ence can be executed by the following approaches.
Polytrees have at most one path between any pair of nodes; hence they are also referred to as
singly-connected networks.
Suppose X is the query node, and there is some set of evident nodes E, X /∈ E. The posterior
probability (belief) is denoted as B(X) = P(X|E), see Figure 8.
E can be splitted into 2 parts: E+ and E−. E− is the part consisting of assignments to variables
in the subtree rooted at X, E+ is the rest of it.
πX(E+) = P(X|E+)
λX(E−) = P(E−|X)

B(X) = P(X|E) = P(X|E+E−) =
P(E−|XE+)P(X|E+)

P(E−|E+)
=

P(E−|X)P(X|E+)

P(E−|E+)
= απX(E+)λX(E−)

(7)
α is a constant independent of X.
where

λX(E−) = {
1 i f evidence is X = xi

0 i f evidence is f or another xj
(8)

πX(E+) = ∑
u1,...,um

P(X|u1, ..., um)∏
i

πX(ui) (9)
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Fig. 8. Evidence Propagation in Polytree

1. Forward inference in Polytree

Node X sends π messages to its children.

πX(U) = {
1 i f xi ∈ X is entered
0 i f evidentce is f or another value xj

∑u1,...um
P(X|u1, ...um)∏i πX(ui) otherwise

(10)

2. Backward inference in Polytree Node X sends new λ messages to its parents.

λX(Y) = ∏
yj∈Y

[∑
j

P(yj|X)λX(yj)] (11)

4.2 Related Algorithms for Probabilistic Inference

Various types of inference algorithms exist for Bayesian networks (Lauritzen & Spiegelhalter,
1988) (Pearl, 1988) (Pearl, 2000) (Neal, 1993). Each class offers different properties and works
better on different classes of problems, but it is very unlikely that a single algorithm can solve
all possible problem instances effectively. Every resolution is always based on a particular
requirement. It is true that almost all computational problems and probabilistic inference
using general Bayesian networks have been shown to be NP-hard by Cooper (Cooper, 1990).
In the early 1980’s, Pearl published an efficient message propagation inference algorithm for
polytrees (Kim & Pearl, 1983) (Peal, 1986). The algorithm is exact, and has polynomial com-
plexity in the number of nodes, but works only for singly connected networks. Pearl also
presented an exact inference algorithm for multiple connected networks called loop cutset
conditioning algorithm (Peal, 1986). The loop cutset conditioning algorithm changes the con-
nectivity of a network and renders it singly connected by instantiating a selected subset of
nodes referred to as a loop cutset. The resulting single connected network is solved by the
polytree algorithm, and then the results of each instantiation are weighted by their prior prob-
abilities. The complexity of this algorithm results from the number of different instantiations
that must be considered. This implies that the complexity grows exponentially with the size
of the loop cutest being O(dc), where d is the number of values that the random variables
can take, and c is the size of the loop cutset. It is thus important to minimize the size of the
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loop cutset for a multiple connected network. Unfortunately, the loop cutset minimization
problem is NP-hard. A straightforward application of Pearl’s algorithm to an acyclic digraph
comprising one or more loops invariably leads to insuperable problems ( Koch & Westphall,
2001) (Neal, 1993).
Another popular exact Bayesian network inference algorithm is Lauritzen and Spiegelhalter’s
clique-tree propagation algorithm (Lauritzen & Spiegelhalter, 1988). It is also called a "clus-
tering" algorithm. It first transforms a multiple connected network into a clique tree by clus-
tering the triangulated moral graph of the underlying undirected graph and then performs
message propagation over the clique tree. The clique propagation algorithm works efficiently
for sparse networks, but still can be extremely slow for dense networks. Its complexity is
exponential in the size of the largest clique of the transformed undirected graph.
In general, the existent exact Bayesian network inference algorithms share the property of run
time exponentiality in the size of the largest clique of the triangulated moral graph, which is
also called the induced width of the graph (Lauritzen & Spiegelhalter, 1988).

5. Conclusion

This chapter summarizes the popular inferences methods in Bayesian networks. The results
demonstrates that the evidence can propagated across the Bayesian networks by any links,
whatever it is forward or backward or intercausal style. The belief updating of Bayesian net-
works can be obtained by various available inference techniques. Theoretically, exact infer-
ences in Bayesian networks is feasible and manageable. However, the computing and in-
ference is NP-hard. That means, in applications, in complex huge Bayesian networks, the
computing and inferences should be dealt with strategically and make them tractable. Simpli-
fying the Bayesian networks in structures, pruning unrelated nodes, merging computing, and
approximate approaches might be helpful in the inferences of large scale Bayeisan networks.
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