We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

3,700
Open access books available

108,500
International authors and editors

1.7 M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
1. Introduction

Global claim for phosphor materials as efficient sources of energy that can supply sustained competence is growing day by day. The phosphors are facing increased global challenges including high production of rare earth materials, environmental and recycling issues, and necessity to supply devices very quickly that may be outdated rapidly due to new technological developments arising in the industry and market. A number of applications have emerged in recent years that will change the future of the industry and new technologies like nanoscale innovations and specialty phosphors are garnering increased attention. The primary drivers for growth are the expansion of key end-use applications including solid-state lighting and fluorescent lighting. Current research in nanotechnology is focused on new materials, novel phenomena, new characterization technique and fabrication of nano devices. Y$_2$O$_2$S:Eu$^{3+}$ and Gd$_2$O$_2$S:Eu$^{3+}$ are excellent materials of current interest (Lei et al., 2010; Liu & Kuang, 2010; Li, et al., 2010; Nakkiran et al., 2007; Thirumalai et al., 2007) owing to their interesting optical and opto-electronic properties. The crystal structure of M$_2$O$_2$S (M = Y, Gd and including all lanthanides) are discussed in detail (Delgado da Vila et al., 1997; Sabot & Maestro, 1995; Mikami & Oshiyama, 1998). The crystal symmetry of the above two systems is trigonal, with the space group P3m1 (D_3d), as determined by X-ray diffraction. These systems are grouped under wide band gap (4.6 - 4.8 eV) semiconductors. Y$_2$O$_2$S:Eu$^{3+}$ and Gd$_2$O$_2$S:Eu$^{3+}$ as a red phosphor, with its sharp emission line for good calorimetric definition and high luminescence efficiency, is extensively used in the phosphor screen of display devices, fluorescent lamps used for lighting purposes, television sets used for entertainment and information gathering, X-ray imaging instruments used in hospitals and laser instruments used for experimental purposes and, many other electrical and opto-electronic equipments. They employ luminescent materials for (Nakkiran et al., 2007) electronic portal imaging devices (EPID), radioisotope distribution and so on (Yeboah & Pistorius, 2000; Chou et al., 2005). Due to the large size and weight of CRTs, developments of flat-panel displays (FPDs) are of great interest. Among several FPD technologies, liquid-crystal displays (LCDs) dominate the FPD market and plasma display panels (PDPs) are now commercially available in the large area TV market (Yu et al., 2005). New and enhanced
properties are expected due to size confinement in nanoscale dimensions that can revolutionize the display devices market in future. Commercially available bulk oxysulfides are quite expensive and are not easily available. So, for the time being, Y₂O₃:Eu³⁺ and Gd₂O₃:Eu³⁺ nanocrystals are relatively a good choice while compared with the bulk systems. However, for an extensive use in the commercial applications, Y₂O₃:Eu³⁺ and Gd₂O₃:Eu³⁺ nanocrystals must be prepared at lower temperatures. Therefore, it is necessary to develop a low-temperature synthesis technology for the growth of oxysulfide nanophosphors. In this background, this chapter has been devoted to the nanophosphors development using these two systems. The realm of novel devices from this wonderful material is yet to be accomplished in full. To give a quantitative report on the state of art of Y₂O₃:Eu³⁺ and Gd₂O₃:Eu³⁺ is quite difficult and an attempt has been made to give an account of the synthesis of the nanophosphors in this chapter.

A detailed survey on Y₂O₃: Eu³⁺ and Gd₂O₃: Eu³⁺ nanophosphors discusses various synthesis techniques adopted by different research groups as follows. Powder phosphors of (Y₁₋ₓREₓ)₂O₃S, (Gd₁₋ₓREₓ)₂O₃S and (La₁₋ₓREₓ)₂O₃S where RE=Eu³⁺, Tb³⁺, or Tm³⁺ that were prepared by combustion reactions from mixed metal nitrate reactants and dithiooxamide (CSNH₂)₂ with ignition temperatures of 300 – 350 °C (Bang et al., 2004). The Y₂O₃:Eu³⁺ red phosphor which was prepared by a new method of decomposing the metal complexes Y(NO₃)₃•3(DMSO) and Eu(NO₃)₃•4(DMSO) in H₂S atmosphere at 900 °C (Guo et al., 2008). Nanocrystalline Y₂O₃:Eu³⁺ was successfully prepared using a combustion synthesis method employing conventional sulfur flux (Fu et al., 2008). A method of preparing red emitting Eu³⁺:Y₂O₃S phosphors in which Yttrium sulfite doped Eu is used as starting material and the Eu-activated oxysulfide is obtained from either directly by reducing the sulfite with carbon monoxide, or by first oxidizing sulfite and then reducing the obtained oxysulfate (Koskenlinn et al., 1976). Preparation of spherical Y₂O₃ and Y₂O₃:Eu particles using a solid-gas reaction of monodispersed precursors with elemental sulfur vapor under an argon atmosphere has been investigated (Delgado da Vila et al., 1997). A one-step solvothermal process developed for the preparation of Eu³⁺ activated yttrium oxysulfide phosphor in ethylenediamine solvent at 280°C through a reaction of yttrium oxide, europium oxide, and sulfur powder (Kuang et al., 2005). Luminescent Y₂O₃:Eu³⁺ nanoceramics prepared through a gel–polymer thermolysis process employing a urea–formaldehyde resin (Dhanaraj et al., 2003). Nanocrystals of Y₂O₃:Eu³⁺ synthesized using a two step sol–gel polymer thermolysis method (Dhanaraj et al., 2004). Ensembles of Y₂O₃:Eu³⁺ widegap semiconductor nano-crystals exhibit ON-OFF fluorescence blinking phenomenon, which mimic II-VI semiconductor quantum-structures synthesized using sol-gel polymer thermolysis method (Thirumalai et al., 2007). Trivalent europium-doped yttrium oxysulfide nanocrystals synthesized using sol-gel thermolysis. A significant blue shift observed in the fundamental absorption edge for the nanocrystals having an average crystallite size (f) in the range 9–15nm indicated a strong quantum confinement with a Bohr exciton radius of 5–13 nm (Thirumalai et al., 2007; Thirumalai et al., 2008). The Y₂O₃:Eu³⁺ nanocrystallines that were prepared by a new ethanol assisted combustion synthesis method using sulfur contained organic fuel (thioacetamide) in an ethanol-aqueous solution (Xixian et. al., 2006). The luminescence dynamics of optical centers in nanocrystals depending critically on the phonon density of states (PDOS) is quite distinct from that of bulk materials. It is shown that energy transfer (ET) in nanocrystals is confined by discrete PDOS as well as direct size restriction. For applications, the nanoconfinement effects on ET
significantly reduce the efficiency of sensitized or upconversion luminescence (Chen et al., 2003). The \(\text{Y}_2\text{O}_3\text{S}:\text{Eu} \) phosphor powders were prepared with a flux fusion method and electrophoretically deposited on an ITO-coated glass substrate to form a thin layer (Tseng et al., 1998). The nanostructured yttrium oxy sulfide films prepared via vapor phase growth (V. V. Bakovets et al., 2008). Their first step was the deposition of 50-nm-thick nanostructured yttria films from yttrium dipivaloylmethanate vapor at 525 °C. Next, the films were sulfided in ammonium thiocyanate vapor at temperatures from 800 to 1100 °C. Hexagonal yttrium oxy sulfide was obtained at 900 °C and higher temperatures. The investigations of pseudobinary systems \(\text{Ln}_2\text{O}_3\text{S}---\text{La}_2\text{O}_3\text{S} \) (\(\text{Ln} = \text{Nd}, \text{Sm}, \text{Eu}, \text{Gd}, \text{Dy}, \text{Yb}, \text{Lu}, \text{and} \text{Y} \)) with complete solid solubility only for the systems like \(\text{Nd}_2\text{O}_3\text{S}---\text{La}_2\text{O}_3\text{S} \) and \(\text{Sm}_2\text{O}_3\text{S}---\text{La}_2\text{O}_3\text{S} \); a two-phase region is found for all other systems (M. Leskelä et al., 1976). The solid solubility in the isomorphous oxy sulfide series is discussed in terms of the differences in ionic radii of the two rare-earth components. The size- (submicrometer-sized) and morphology- (spherical) controlled composite Gd-Eu oxalate particles were prepared in an emulsion liquid membrane (water-in-oil-in-water emulsion) system (Hirai et al., 2002). The oxalate particles thus prepared were calcined in air to obtain \(\text{Gd}_2\text{O}_3\text{S}:\text{Eu}^{3+} \) phosphor particles and in sulfur atmosphere to obtain \(\text{Gd}_2\text{O}_3\text{S} : \text{Eu}^{3+} \) phosphor particles. Usually synthesis of any phosphor material would necessitate rigorous conditions such as heavy milling, intermediate and very high temperature heat treatment cycles, etc. Whereas the hydrothermal approach avoids all those difficult and time consuming steps by modifying the reaction parameters to suitable forms so as to react and produce target compound(s) at relatively lesser duration with the capacity to develop desired shapes and dimensions with high crystallinity. The \(\text{Y}_2\text{O}_3\text{S}:\text{Eu}^{3+} \) and \(\text{Gd}_2\text{O}_3\text{S}:\text{Eu}^{3+} \) nanostructures show optimum properties (perfect crystalline structure, high stability and good morphological) when they are grown on perfect hydrothermal conditions. In addition to the conventional vapor-phase method, which includes vapor transport and condensation (Kong et al., 2001), metal-organic chemical vapor deposition (Zhang et al, 2004), thermal evaporation (Pan et al, 2001) and solution-phase methods have been developed as alternative ways to synthesized semiconductor nanostructures with different shapes and dimensions. Hydrothermal method is a widely used technique that can control the shape and dimension of nanostructures among all solution-based approaches (Zhang et al, 2002). Unlike conventional vapor-phase methods, the hydrothermal method can produce various nanostructures at a relatively low temperature (below 200 °C) using simple equipments; however, the reaction time required for the growth of nanostructures is too long (usually from a few hours to several days) (Wang & Li, 2003; Wang et al, 2003; Zhang et al, 2002). The various low-dimentional nanostructures, such as nanowires, nanotubes, nanosheets and fullerenes like nanoparticles that have been selectively synthesized from rare-earth compounds (hydroxides, fluorides) based on a facile hydrothermal method (Wang & Li, 2003; Wang et al, 2003). The subsequent dehydration, sulfidation and fluorination processes lead to the formation of rare-earth oxide, oxy sulfide and oxyhalide nanostructures, which can be functionalized further by doping with other rare-earth ions. An effective method to synthesize \(\text{Y}_2\text{O}_3\text{S}:\text{Eu}^{3+}, \text{Mg}^{2+}, \text{Ti}^{4+} \) nanoparticles. Tube-like \(\text{Y(OH)}_3 \) were firstly synthesized by hydrothermal method to serve as the precursor. Nanocrystalline long-lasting phosphor \(\text{Y}_2\text{O}_3\text{S}:\text{Eu}^{3+}, \text{Mg}^{2+}, \text{Ti}^{4+} \) was obtained by calcinating the precursor with co-activators and S powder (Li. et. al., 2010). The afterglow properties of \(\text{Eu}^{3+} \) activated long lasting \(\text{Gd}_2\text{O}_3\text{S} \) phosphor by hydrothermal route. Rod-like \(\text{Gd(OH)}_3 \)
were firstly synthesized by hydrothermal method to serve as the precursor. Long lasting Gd\textsubscript{2}O\textsubscript{3}:Eu3+,Ti4+,Mg2+ phosphor were obtained by calcinating the precursor with co-activators and S powder (Hang et al., 2008). Hydrothermally prepared Gd(OH)\textsubscript{3} nanorod precursor, codoped with Eu, Ti and Mg, was converted into the desired phosphor by calcinating the precursor in CS\textsubscript{2} atmosphere (Mao et al., 2008). Therefore, the development of a simple and fast synthetic route that can control the shape of nanostructures under ambient conditions is the need of the hour and hydrothermal technique has many advantages and technological possibilities. Earlier (Wang & Li, 2003; Wang et al, 2003; Hang et al., 2008; Mao et al., 2008) hydrothermal method was used to synthesize oxysulfide nanotubes and nanorods.

To the best of the author’s knowledge, no systematic study has been reported on other nanostructures like nanocrystals, nanosheets, nanobelts, nanotubes, nanorods, nanowires and nanoflowers of this oxysulfide system (Thirumalai et al, 2008; Thirumalai et al, 2009 a, b). Hence maximum efforts were to be put forth in selecting techniques for the synthesis of various nanostructures with good crystallinity, so also any other oxysulfide nanostructures of high research potential activity. Therefore, the present study has been undertaken with a view to synthesizing uncontaminated, highly crystalline Y\textsubscript{2}O\textsubscript{3}:Eu3+ and Gd\textsubscript{2}O\textsubscript{3}:Eu3+ adopting two methods of hydrothermal routes owing to the relatively lower temperature with respect to the bulk counterpart (solid-state reaction method): Template – free method (two-step synthesis) involving the synthesis of as-prepared Y(OH)\textsubscript{3} and Gd(OH)\textsubscript{3}, followed by subsequent Eu3+ doping and sulfurization leading to conversion of Y\textsubscript{2}O\textsubscript{3}:Eu3+ and Gd\textsubscript{2}O\textsubscript{3}:Eu3+ nanostructures, respectively, seemed to be a topotactic reaction. Template – assisted method (single-step synthesis) involving Anodic Aluminium Oxide (AAO) membranes used for synthesizing of Y\textsubscript{2}O\textsubscript{3}:Eu3+ and Gd\textsubscript{2}O\textsubscript{3}:Eu3+ nanostructures. Furthermore, being a low temperature and an easy-to-adopt methodology, this method yields phase pure Y\textsubscript{2}O\textsubscript{3}:Eu3+ and Gd\textsubscript{2}O\textsubscript{3}:Eu3+ nanostructures with better reproducibility, definite shape and dimensions. Hydrothermal method is basically a simple, easy and fast synthetic route where the most important synthesis parameters are the precursors, the solution concentration, solution pH value, solvent, temperature and time. Also, this processing route provides the basis for a nearly low cost, low temperature method for the preparation of homogeneous nano-sized ceramics compared to any other existing methods.

2. Formation, structure, and morphology of the Y\textsubscript{2}O\textsubscript{3}:Eu3+ and Gd\textsubscript{2}O\textsubscript{3}:Eu3+ nanostructures

2.1 Template – free Method

A systematic study has been undertaken on other nanostructures like nanocrystals, nanosheets, nanobelts, nanotubes, nanorods, nanowires and nanoflowers by varying reaction parameters such as solution concentration, pH, growth temperature and reaction time and solvent using template-free method. The effect of these parameters are studied using various characterization studies and the optimized reaction conditions are arrived for Y\textsubscript{2}O\textsubscript{3}:Eu3+ and Gd\textsubscript{2}O\textsubscript{3}:Eu3+ nanostructures. The detailed synthesis procedure is discussed in detail (Thirumalai et al, 2008; Thirumalai et al, 2009 a, b).

Structural studies (XRD) reveal that the products Y\textsubscript{2}O\textsubscript{3}:Eu3+ and Gd\textsubscript{2}O\textsubscript{3}:Eu3+ are pure hexagonal phase and they are in good agreement with standard JCPDS [(Y\textsubscript{2}O\textsubscript{3}:Eu3+; [Gd\textsubscript{2}O\textsubscript{3}:Eu3+].
Synthesis and morphology control of Eu³⁺ doped M₂O₂S [M=Y, Gd] nanostructures

JCPDS # 24-1424 and (Gd₂O₂S:Eu³⁺; JCPDS # 26-1422) data (Thirumalai et al, 2008; Thirumalai et al, 2009 a, b) and they are highly crystalline in nature. It is already stated that, the conversion from hydroxide to oxysulfide seems to be a topotactic reaction. Firstly, the hydroxide(s) [Y(OH)₃ and Gd(OH)₃] of nanocrystals / nanosheets, nanobelts, nanotubes, nanorods and nanowires are selectively synthesized based on the preparation of colloidal hydroxide precipitates at room temperature, and the subsequent hydrothermal treatment at 100 – 180 °C for approximately 12 – 48 hours (Thirumalai et al, 2008; Thirumalai et al, 2009 a, b). The hydrothermal method was shown to be effective in the synthesis of zero- and one-dimensional nanostructures. By the simple tuning of factors such as pH, temperature and concentration, the experimental conditions could be chosen to favor the anisotropic growth of materials. In the present work, nanostructures of hydroxide(s) were successfully obtained through this precipitation-hydrothermal synthetic method by properly tuning the temperature, pH and time, the crystal structures have been found to be responsible for the growth of hydroxide nanostructures with nearly controllable aspect ratios. The conversion of hydroxide to oxysulfide seems to be a topotactic reaction (i.e., the morphology does not change while the phase of the material changes). However in any topotactic reactions, where significant atomic rearrangement due to chemical changes take place, though the morphology remains intact. Yet it is possible to change the resulting morphology. With this important criteria the as-synthesized Y(OH)₃ and Gd(OH)₃ were converted to Y₂O₃:S:Eu³⁺ and Gd₂O₂S:Eu³⁺ nanostructures. To investigate the optimized growth of the Y₂O₃:S:Eu³⁺ and Gd₂O₂S:Eu³⁺ nanostructures, SEM and TEM (Thirumalai et al, 2008; Thirumalai et al, 2009 a, b) micrographs of nanocrystals, nanosheets, nanobelts nanotubes, nanorods and nanowires, respectively, were obtained by varying the reaction parameters (pH ~ 6 – 13, 100 – 180 °C, 24 – 48 hrs) and its resulting morphological features and crystallinity are found to be good and were discussed in Table I (Thirumalai et al, 2009 a, b). The studies reveal that by altering the reaction conditions (like solution concentration, pH, temperature and time) the morphology, shape and crystallinity may be perfectly controlled. The SEM and TEM results are discussed and presented in Fig. 1-4. Fig. 1a, 2a and Fig. 3b, 4b show that growth is clearly seen indicating the nanocrystals formed due to combination of spherical and hexagonal-like structure at a pH of 6, 100°C, 48 hrs, respectively. Fig. 1b, 2b and Fig. 3c, 4c show stacked nanosheets of the oxysulfide(s) growth at pH ~ 8, 120°C, 12 hrs, respectively. This may be attributed to the two-dimensional growth tendency of the oxysulfide(s) nanosheets at lower pH. Nevertheless, Fig. 1c, 2c and Fig. 3d, 4d, show the nanobelts of Y₂O₃:S:Eu³⁺ and Gd₂O₂S:Eu³⁺ grown at a pH of 8 – 9, 180°C, 24 hrs, respectively. These nanosheets and/or nanobelts curl from the edge, indicating a possible rolling process for the formation of the nanotubes/rods/wires. Fig. 1(d, e, f), 2(d, e, f) and Fig. 3(e, f, g), 4(e, f, g) show that the nanotubes, rods, wires were grown at a pH of 12 – 13, 140 – 180°C, 24 – 48 hrs and has no template to drive the directional growth of nanotubes, rods and wires. The images indicate that the samples are single crystalline in nature and uniformly distributed. Also, based on the above studies it is evident that these nanostructures are stable under thermal treatment, which may be rather useful for their subsequent applications as catalysts. Furthermore, the morphology of these nanostructures is likely to be a near-quantum structure. It is having high surface-to-volume ratio, that plays a major role in the density of singly ionized oxygen vacancies and the charge state of these defects, that may be due to the existence of surface depletion.
Fig. 1. SEM images show the optimal experimental conditions of Y$_2$O$_2$S:Eu$^{3+}$ nanostructures using template-free method.

Fig. 2. SEM images show the optimal experimental conditions of Gd$_2$O$_2$S:Eu$^{3+}$ nanostructures using template-free method.
Fig. 2. SEM images show the optimal experimental conditions of Gd$_2$O$_2$S:Eu$^{3+}$ nanostructures using template-free method.
Fig. 3. (a) SEM image of hexagonal-shaped bulk Y$_2$O$_2$S:Eu$^{3+}$ (A). The TEM images of Y$_2$O$_2$S:Eu$^{3+}$ nanostructures (template - free method) from the sample A$_7$ to A$_{12}$: (b) Nanocrystals, (c) Nanosheets, (d) Nanobelts, (e) Nanotubes, (f) Nanorods, (g) Nanowires, (h) a close up of the boxed area in (g) shows a structure of single-nanowire, (i) HRTEM image of Y$_2$O$_2$S:Eu$^{3+}$ nanowire.

Fig. 4. (a) SEM image of hexagonal-shaped bulk Gd$_2$O$_2$S:Eu$^{3+}$ (B). The TEM images of Gd$_2$O$_2$S:Eu$^{3+}$ nanostructures (template - free method) from the sample B$_7$ to B$_{12}$: (b) Nanocrystals, (c) Nanosheets, (d) Nanobelts, (e) Nanotubes (inset: shows TEM image of the end portion of a single-nanotube), (f) Nanorods, (g) Nanowires, (h) a close up of the boxed area in (g) shows a structure of single-nanowire, (i) HRTEM image of Gd$_2$O$_2$S:Eu$^{3+}$ nanowire. The spacing between two adjacent lattice planes is 0.325 nm, which corresponds to the separation of the hexagonal phase lattice planes (110), and the inset shows Fast Fourier transform (FFT) pattern of the corresponding nanowire.

Fig. 3. (a) SEM image of hexagonal-shaped bulk Y$_2$O$_2$S:Eu$^{3+}$. (A). The TEM images of Y$_2$O$_2$S:Eu$^{3+}$ nanostructures (template - free method) from the sample A$_7$ to A$_{12}$: (b) Nanocrystals, (c) Nanosheets, (d) Nanobelts, (e) Nanotubes (inset: shows TEM image of the end portion of a single-nanotube), (f) Nanorods, (g) Nanowires, (h) a close up of the boxed area in (g) shows a structure of single-nanowire, (i) HRTEM image of Y$_2$O$_2$S:Eu$^{3+}$ nanowire.

Fig. 4. (a) SEM image of hexagonal-shaped bulk Gd$_2$O$_2$S:Eu$^{3+}$ (B). The TEM images of Gd$_2$O$_2$S:Eu$^{3+}$ nanostructures (template - free method) from the sample B$_7$ to B$_{12}$: (b) Nanocrystals, (c) Nanosheets, (d) Nanobelts, (e) Nanotubes (inset: shows TEM image of the end portion of a single-nanotube), (f) Nanorods, (g) Nanowires, (h) a close up of the boxed area in (g) shows a structure of single-nanowire, (i) HRTEM image of Gd$_2$O$_2$S:Eu$^{3+}$ nanowire. The spacing between two adjacent lattice planes is 0.325 nm, which corresponds to the separation of the hexagonal phase lattice planes (110), and the inset shows Fast Fourier transform (FFT) pattern of the corresponding nanowire.

2.2 Possible formation mechanism

A schematic diagram of the shape-selective synthesis of doped oxysulfide nanostructures via hydrothermal route is shown in Fig. 5. Based on these experimental results and discussions, a possible formation mechanism from nanocrystals to nanowires of hydroxides might be proposed as follows: When the Y/Gd(NO$_3$) and NaOH solutions are mixed together, the resultant hydroxide nanocrystals can accommodate some Na ions and water molecules between their adjacent surfaces. According to Kerr (Kerr, 1996), these Na ions and water molecules are then exchanged and fused to form nanosheet or nanobelt according to the pH and temperature variation as indicated by the schematic diagram in Fig. 5. As the reaction continues the conformational variation inevitably causes torsional movement within the chains (Colomban, 1999; Mazerolles, 1999), causing the nanosheet / nanobelt to roll up. Because the thin lamellar nanosheet / nanobelt has very good flexibility, they curl and buckle with appropriately 45 degree rotation. As the curling continues, they bind tighter and fuse together at the two edges to form a nanotube with a cylindrical cross section. Furthermore, nanorods and nanowires are obtained according to reaction time, pH and temperature following the same formation kinetics.

Fig. 5. A schematic diagram of the shape-selective synthesis of doped oxysulfide nanostructures via hydrothermal route (template – free method).
3. Template-assisted method

In order to synthesize one-dimensional nanomaterial into a device, a fabrication method that enables well-ordered nanomaterials with uniform diameter and length is important. Template-directed growth is a nanomaterials fabrication method that uses a template, which has arrays of nanopores with uniform diameter and length that is needed for a device. Template-based growth is commonly a solution or colloidal dispersion based process. It is less expensive and readily scalable to mass production. The diameter, density and length of nanotubes, nanorods and nanowires are easily controlled independently. It also offers the advantage of less contamination and is environmentally benign. However, template-based synthesis slightly suffers from the polycrystalline nature of the resultant nanowires and nanorods, in addition to the difficulties to find appropriate templates with pore channels of desired diameter, length, and surface chemistry to remove the template completely without compromising the integrity of grown nanotubes, nanorods and nanowires and is another cumbersome work. In this work the Y$_2$O$_3$:Eu$^{3+}$ and Gd$_2$O$_3$:Eu$^{3+}$ of highly ordered arrays of super-nanostructures like, nanotubes, nanorods and nanoflowers were synthesized by hydrothermal synthesis via template assisted synthesis using commercially available AAO templates [Whatman Nuclepore® Inc., (13 mm diameter, 6 μm thickness)]. In comparison with the bulk, this template assisted nanosynthesis route offer several advantages for property study and practical applications. As a whole, to the best of our knowledge, this is the first attempt to prepare such nanostructures from the zero- to three-dimensional scale using both template – free and template – assisted method for these two systems.

We have extended the method to the synthesis of various nanostructures like nanotubes, nanorods and nanoflowers preparation using template-assisted hydrothermal technique by varying reaction parameters such as solution pH, solvent temperature, time, etc. The porous AAO templates were immersed into a required amount of [Y/Gd(CH$_3$COO)$_3$ ·4H$_2$O] and [Eu(CH$_3$COO)$_3$ ·4H$_2$O] solution, respectively, and evacuated for about 15 min using a vacuum pump to get rid of bubbles within the nanopores. The template was taken out of the solution, rinsed with distilled water and dried in air. This procedure was repeated several times at regular intervals.

Subsequently, the template was put into a Teflon-lined stainless steel autoclave, and the solution of YEu(CH$_3$COO)$_3$ and GdEu(CH$_3$COO)$_3$, respectively, followed by addition specific amount of Na$_2$S. The pH of the reaction solution was adjusted in the range from 6 to 9. After that the autoclave was tightly sealed, heated around 150 – 200 °C for 20 hrs and then allowed to cool down to room temperature naturally. For the synthesis of nanoflower-like structures, hexamethyleneetetramine (HMT) was used as surfactant. The as-obtained Y$_2$O$_3$:Eu$^{3+}$ and Gd$_2$O$_3$:Eu$^{3+}$ template was subsequently annealed at 300°C for 1 hr under inert Sulphur atmosphere, respectively, to yield the final product.

Structural studies (XRD) reveal that the products Y$_2$O$_3$:Eu$^{3+}$ and Gd$_2$O$_3$:Eu$^{3+}$ are pure hexagonal phase and they are in good agreement with standard JCPDS [(Y$_2$O$_3$:Eu$^{3+}$: JCPDS # 24-1424) and (Gd$_2$O$_3$:Eu$^{3+}$: JCPDS # 26-1422)] data (Thirumalai et al, 2008; Thirumalai et al, 2009 a,b) and they are highly single crystalline in nature. The patterns show obviously broadened diffraction peaks compared with the bulk Y$_2$O$_3$:Eu$^{3+}$ and Gd$_2$O$_3$:Eu$^{3+}$ systems, signifying the decrease in size of these crystallites. No peaks attributable to other types of oxy sulfide(s) are observed in the XRD patterns, indicating the high purity of the phases obtained. The morphology of the resulting samples synthesized by the hydrothermal
method was studied using SEM. Using the commercially available AAO templates the morphologies of highly oriented nanoarrays of structures like nanotubes, nanorods and nanoflowers of Y$_2$O$_3$:Eu$^{3+}$ and Gd$_2$O$_3$:Eu$^{3+}$ were synthesized. The optimal experimental conditions and resulting morphologies of Y$_2$O$_3$:Eu$^{3+}$ and Gd$_2$O$_3$:Eu$^{3+}$ nanostructures are given in Table – I. Fig. 6(a1-c2) & Fig. 7(a1-c2) show the SEM micrographs of the synthesized Y$_2$O$_3$:Eu$^{3+}$ and Gd$_2$O$_3$:Eu$^{3+}$ nanotubes, nanorods and nanoflowers, respectively. They were found to be single-crystalline in nature.

To investigate the optimized growth of the Y$_2$O$_3$:Eu$^{3+}$ and Gd$_2$O$_3$:Eu$^{3+}$ nanostructures, SEM micrographs shows highly oriented nanotubes, nanorods and nanoflowers, respectively, that were obtained by varying the reaction parameters (pH ~ 6 to 9, 150 ~ 200 °C, 20 hrs) and its resulting morphological features and crystallinity are found to be good. The studies reveal that by altering the reaction conditions (like solution concentration, pH, temperature and time) the morphology, shape and crystallinity are perfectly controlled. Fig 7(a1, a2) and Fig 8(a1, a2) show, the AAO templates top-view and cross-sections of the as-synthesized Y$_2$O$_3$:Eu$^{3+}$ and Gd$_2$O$_3$:Eu$^{3+}$ nanostructures, respectively. A cluster of nanotube-like arrays of the oxysulfide(s) growth were observed [Fig 7(b1, b2) and Fig 8(b1, b2)] at a pH of 6, 150 °C, 15 hrs. In Fig 7b1 and Fig 8b1 the tube and/or rod-like growth is clearly seen. The nanotubes and/or rods were grown at a pH of 6 ~ 9, 160 ~180 °C, 20 hrs and the cross-section view reveals that the nanopores are perfectly filled. The nanorods are straight and have a uniform diameter of about 80 nm, which is basically equal to the pore size of the AAO template employed. To investigate the effect of solvent concentration on Y$_2$O$_3$:Eu$^{3+}$ and Gd$_2$O$_3$:Eu$^{3+}$ nanostructures, SEM micrographs were obtained at different solvent concentration (using hexamethylenetramine (HMT) as solvent along with water). The results are discussed and presented in Fig 7, 8(c1 and c2) and Table – I. The sample is composed of a large number of nearly uniform flower-like nanostructures to the surface of the AAO template. They are arranged uniformly in a large area. The average size of the as-obtained nanostructure is about 4-5 μm. A closer inspection reveals that the flower is made up of many thin petals, the thickness of which is ~ 30 nm. Fig. 6c2 and 8c2 show the cross-sectional view of SEM image of the Y$_2$O$_3$:Eu$^{3+}$ and Gd$_2$O$_3$:Eu$^{3+}$ nanorod arrays of length around hundred nanometers for the flower-like structures. Every petal is curled and thin, with a smooth surface and a large surface area. We can see a layer of flowers on the surface of the template. Because of these nanocrystalline sheets like small petals, the flower-like structure on the alumina template surface formed by these nanocrystalline sheets may be called nanoflowers. The nanoflower growth is clearly seen and the cross-section reveals that the nanopores are perfectly filled for concentration of 2 mM. Fig. 6(a2, b2, c2) and Fig. 7(a2, b2, c2), show a slightly discrete, unattached and dislocation free nanotube/rod structure in the direction vertical to the AAO template, respectively, which was different from the shared tube/rod wall between the tubes/rods of the AAO template. The nanotube/rod wall was also constituted by many deposited particles with an average particle size of 20 nm. It can be seen that the product obtained by the hydrothermal reaction with the AAO template had three structural configurations: (i) many fine nanoparticles packed to form tubes/rods, (ii) many parallel (iii) slightly discrete and completely dislocation free tubes/rods constituted nanorod-like arrays vertical to the AAO template, respectively. The formation of 1D structure depends greatly on the reaction kinetics. Such 3D structures with high surface areas can be used relevantly as catalysts, molecular sieves and biosensors (Zhang, 2007).
Synthesis and morphology control of Eu3+ doped M\textsubscript{2}O\textsubscript{2}S \([\text{M}=\text{Y, Gd}]\) nanostructures

<table>
<thead>
<tr>
<th>Experimental Conditions*</th>
<th>Resulting morphologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>(pH~6, 150°C, 20h)</td>
<td>Nanotubes</td>
</tr>
<tr>
<td>(pH~7-8, 200°C, 20h)</td>
<td>Nanorods</td>
</tr>
<tr>
<td>(pH~8-9, 120°C, 12h)</td>
<td>Nanoflowers</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Experimental Conditions*</th>
<th>Resulting morphologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>(pH~6, 150°C, 20h)</td>
<td>Nanotubes</td>
</tr>
<tr>
<td>(pH~7-8, 200°C, 20h)</td>
<td>Nanorods</td>
</tr>
<tr>
<td>(pH~8-9, 120°C, 12h)</td>
<td>Nanoflowers</td>
</tr>
</tbody>
</table>

Table 1. Optimized growth conditions of Y\textsubscript{2}O\textsubscript{2}S:Eu3+ and Gd\textsubscript{2}O\textsubscript{2}S:Eu3+ (Template – assisted Method) nanostructures

*The as-obtained Y\textsubscript{2}O\textsubscript{2}S:Eu3+ and Gd\textsubscript{2}O\textsubscript{2}S:Eu3+ grown on AAO template was subsequently annealed at 300 °C for 1 hr under inert (A\textsubscript{2} or N\textsubscript{2}) / CS\textsubscript{2} / Sulphur atmosphere to yield the final product.

3.1 Possible formation mechanism

Highly oriented single-crystalline Y\textsubscript{2}O\textsubscript{2}S:Eu3+ and Gd\textsubscript{2}O\textsubscript{2}S:Eu3+ nanotubes, nanorods and nanoflowers were synthesized using a template-assisted (AAO and Au coated AAO templates) hydrothermal technique. While Y/Gd \((\text{CH}_3\text{COO})_3\cdot4\text{H}_2\text{O} : \text{Eu(}\text{CH}_3\text{COO})_3\cdot4\text{H}_2\text{O as precursors act as sources for Y/Gd} : \text{Eu ions, during the reaction process, the NaOH not only plays a role as a solvent for lowering the reaction temperature but also acts as a reactant and it is used for achieving basic environment through hydrolysis. Here, Na}_2\text{S is acting as a sulfurizing agent. Controlling the pH and reaction time is a key factor in achieving the morphological control. The porous structure of alumina with positive charged walls attracts the ions having negative charge from the solution leading to a preferential deposition at the walls that further grow towards the core. Supersaturation in the growth region is favorable to an anisotropic growth. The shape of a crystal is determined by the relative specific surface energy of each facet of the crystal. Therefore, the initial deposition of nanocrystals is critical for the formation of aligned nanotubes and nanorods. It is inferred that the AAO template may plays an important role in controlling the pH of the reaction mixture and/or local concentration, which leads to an inhomogeneous concentration distribution and may affect the shape development. Immersing the alumina template in the solution containing surfactant (HMT), the solution impregnated through pores to form nanorods immediately. However, the nanorods were not restricted in the pores anymore and extends to the surface of the alumina template, due to forces of adhesion. This in turn may lead to spreading nanorods out of the pore diameter, leading to the possible formation of nanosheets. The nanosheets so formed over the template surfaces comes in intact with the extended nanorods and try to form a stable structure. This situation may lead to the formation of flowery nanostructures. The schematic of the mechanism for nanotube, nanorod and nanoflower generations are shown in Fig. 8.

In summary, this novel template-free and template-based approach has been developed for growing high yield and highly oriented single crystal Y\textsubscript{2}O\textsubscript{2}S:Eu3+ and Gd\textsubscript{2}O\textsubscript{2}S:Eu3+ nanostructures using hydrothermal growth. The pH, growth temperature, reaction time and
surfactant are mainly determining the shape of the nanostructures. The morphological studies were performed through SEM and TEM for the optimized conditions, which reveals excellent features and are reported. The morphological studies (SEM and TEM) revealed that the nanostructures (0D, 1D, 2D and 3D), with various structures like nanocrystals, nanosheets, nanobelts, nanotubes, nanorods, nanowires and highly oriented nanoarrays (tubes, rods, flowers) successfully synthesized. The $\text{Y}_2\text{O}_2\text{S} : \text{Eu}^{3+}$ and $\text{Gd}_2\text{O}_2\text{S} : \text{Eu}^{3+}$ nanostructures was further examined by HRTEM, electron diffraction and FFT images are seen to be single-crystalline in nature. Also, the SEM studies of the nanorods over AAO tempalte (template – assisted method) reveal that they are uniformly distributed throughout the surface exhibiting the superiority of the structures. The studies agree to a great extent with the structural studies results. This technique is found to be highly reproducible and can be extended to large area and large scale fabrication systems. Large-area, non-collapsed and highly-oriented $\text{Y}_2\text{O}_2\text{S} : \text{Eu}^{3+}$ and $\text{Gd}_2\text{O}_2\text{S} : \text{Eu}^{3+}$ nanostructures are expected as ideal functional components for opto-electronic and nanoscale devices of the next generation.

Fig. 6. The SEM images of $\text{Y}_2\text{O}_2\text{S} : \text{Eu}^{3+}$ nanostructures (template – assisted method): (a1, a2) Nanotubes, (b1, b2) Nanorods and (c1, c2) Nanoflowers. The SEM micrographs show the cross-sectional views of the samples (a2, b2, c2) corresponding to (a1, b1, c1).

Fig. 7. The SEM images of $\text{Gd}_2\text{O}_2\text{S} : \text{Eu}^{3+}$ nanostructures (template – assisted method): (a1, a2) Nanotubes, (b1, b2) Nanorods and (c1, c2) Nanoflowers. The SEM micrographs show the cross-sectional views of the samples (a2, b2, c2) corresponding to (a1, b1, c1).
Surfactant are mainly determining the shape of the nanostructures. The morphological studies were performed through SEM and TEM for the optimized conditions, which reveals excellent features and are reported. The morphological studies (SEM and TEM) revealed that the nanostructures (0D, 1D, 2D and 3D), with various structures like nanocrystals, nanosheets, nanobelts, nanotubes, nanorods, nanowires and highly oriented nanoarrays (tubes, rods, flowers) successfully synthesized. The Y$_2$O$_2$S:Eu$^{3+}$ and Gd$_2$O$_2$S:Eu$^{3+}$ nanostructures was further examined by HRTEM, electron diffraction and FFT images are seen to be single-crystalline in nature. Also, the SEM studies of the nanorods over AAO template (template – assisted method) reveal that they are uniformly distributed throughout the surface exhibiting the superiority of the structures. The studies agree to a great extent with the structural studies results. This technique is found to be highly reproducible and can be extended to large area and large scale fabrication systems. Large-area, non-collapsed and highly-oriented Y$_2$O$_2$S:Eu$^{3+}$ and Gd$_2$O$_2$S:Eu$^{3+}$ nanostructures are expected as ideal functional components for opto-electronic and nanoscale devices of the next generation.

Fig. 6. The SEM images of Y$_2$O$_2$S:Eu$^{3+}$ nanostructures (template – assisted method): (a1, a2) Nanotubes, (b1, b2) Nanorods and (c1, c2) Nanoflowers. The SEM micrographs show the cross-sectional views of the samples (a2, b2, c2) corresponding to (a1, b1, c1).

Fig. 7. The SEM images of Gd$_2$O$_2$S:Eu$^{3+}$ nanostructures (template – assisted method): (a1, a2) Nanotubes, (b1, b2) Nanorods and (c1, c2) Nanoflowers. The SEM micrographs show the cross-sectional views of the samples (a2, b2, c2) corresponding to (a1, b1, c1).
Fig. 8. Schematic illustration of the growth of nanotube, nanorod and nanoflower structures by a template-assisted hydrothermal technique.

4. References

This book contains a number of latest research developments on nanocrystals. It is a promising new research area that has received a lot of attention in recent years. Here you will find interesting reports on cutting-edge science and technology related to synthesis, morphology control, self-assembly and application of nanocrystals. I hope that the book will lead to systematization of nanocrystal science, creation of new nanocrystal research field and further promotion of nanocrystal technology for the bright future of our children.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:
