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1. Introduction 

Turbines, pumps, compressors, blowers and all rotating machinery in general, is commonly 
used in process industry, including machining tools, power generation, as well as aircraft 
and marine propulsion among the most important industrial applications. Mass imbalance 
is commonly responsible for rotating machinery vibration. When the principal axis of inertia 
of the rotor is not coincident with its geometric axis imbalance occurs. Nevertheless there 
are some more causes for rotating machinery vibration such as operation near resonant 
frequencies, critical speeds and so on. Higher speeds cause much greater centrifugal 
imbalance forces, and the current trend of rotating equipment toward higher power density 
clearly leads to higher operational speeds. For instance, speeds approaching 35,000 rpm are 
common in machining applications. Therefore, vibration control is essential in improving 
machining surface finish; achieving longer bearing, spindle, and tool life in high-speed 
machining; and reducing the number of unscheduled shutdowns. A great cost savings for 
high-speed turbines, compressors, and other turbomachinery used in petrochemical and 
power generation industries can be realized using vibration control technology. 
Passive and active vibration control (AVC) techniques of rotating machinery are being used. 
It is well established that the vibration of rotating machinery can be reduced by introducing 
passive or active devices into the system. Although an active control system is usually more 
complicated than a passive vibration control scheme, an AVC technique has many 
advantages over a passive vibration control technique. 
In (Fuller et al., 1996) it is shown that AVC is more effective than passive vibration control in 
general. Furthermore, the passive vibration control is of limited use if several vibration 
modes are excited. Finally, because the active actuation device can be adjusted according to 
the vibration characteristic during the operation, the active vibration technique is much 
more flexible than passive vibration control. 
There are two major categories in AVC techniques for rotating machinery:  

• Direct active vibration control (DAVC) techniques in which directly apply a lateral 
control force to the rotor. 

• Active balancing techniques which adjust the mass distribution of a mass redistribution 
actuator. Active balancing isn’t under the scope of this chapter.  

The control variable in DAVC techniques is a lateral force generated by a force actuator 
based on a magnetic bearing. The advantage of DAVC techniques is that the input control 
force to the system can be changed according to vibration characteristics. 

Source: Vibration Control, Book edited by: Dr. Mickaël Lallart,  
 ISBN 978-953-307-117-6, pp. 380, September 2010, Sciyo, Croatia, downloaded from SCIYO.COM
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By applying a fast changing lateral force to the rotating machinery, the total vibration, 
including the synchronous vibration, the transient free vibration, and other nonsynchronous 
vibration modes of the rotating machinery, can be attenuated or suppressed. The limitation 
of most force actuators is the maximum force they can provide. In high rotating speed, the 
imbalance-induced force could reach a very high level. As most force actuators cannot 
provide sufficient force to compensate for this imbalance-induced force, active balancing 
methods are well justified. Although active balancing methods can eliminate imbalance-
induced synchronous vibration, they cannot suppress transient vibration and other 
nonsynchronous vibration. 
In this chapter DAVC techniques are introduced. Since the mathematical model is the 
foundation of any AVC technique, a description of dynamic modelling techniques applied 
on rotating machinery is included. 

1.1 Dynamic modeling of a planar rotor 
The simplest rotor model the planar one. Only the motion in the plane, which is 
perpendicular to the rotating shaft, is considered. The geometric setup of the planar rotor 
model is shown in figure 1. 
 

 

Fig. 1. Planar rotor 

In this model, the imbalance-induced vibration is described by the particle motion of the 
geometric center of the disk. P is the geometric center of the disk, and G is the mass center of 
the disk. The motion is represented by the vector r. According to (Childs, 1993) the 
governing equation of motion is  
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where m, c, and k are the mass, the viscous damping coefficient, and the shaft-stiffness 
coefficient, respectively. [aX , aZ] is the vector from P to G, expressed in the stationary 
coordinate system. φ, is the rotating angle of the rotor. For a constant rotating speed, φ is 
zero. The planar rotor can be used to study the basic phenomena in rotor dynamics such as 
critical speed, the effect of damping as well as its associated phenomena. 
The planar rotor model is a special case of the model given by (Jeffcott, H. H., 1919), (J.M 
Vance, 1987). In the Jeffcott model, the rotor was modelled as a rigid disk supported by a 

X

P

Zφ

re

φ
G P

X

Z

www.intechopen.com



The Foundation of Electromagnets Based Active Vibration Control   

 

35 

massless elastic shaft that was mounted on fixed rigid bearings. This model is also 
equivalent to a rigid shaft supported by elastic bearings. The major improvement over the 
simple planar rotor model is that the motion of the rotor is depicted by rigid body motion 
instead of by particle motion. Although this model is a single rigid body model, it ca be 
shown the basic phenomena in the motion of the rotor, including the forward and backward 
whirling under imbalance force, critical speeds and the gyroscopic effect. 
 

 

Fig. 2. Rigid Rotor Model 

Due to the fact that the natural frequency is a function of the rotating speed, it can also be 
predicted by this model. The geometric setup of this model is shown in figure 2. 
In this setup, bearings are modelled as isotropic linear spring and damper. The imbalance is 

modelled as concentrated mass on the rigid shaft. Two coordinate systems are used: the 

body-fixed coordinate oxyz and the inertial coordinate OXYZ. The body-fixed y-axis is the 

rotating axis of the shaft, and x and z axes are defined by the other two principal inertia axes 

of the rotor. The origin of xyz is selected as the geometric centre of the shaft. The XYZ 

coordinate system is the stationary coordinate which is coincident with the xyz coordinate 

system under body rest condition. The transverse motion of the rotor is described by the 

position of the geometric centre [RX RZ] and by the orientation of the rigid shaft with 

respect to the X and Z axes [φ, ψ]. A simplified state space governing equation is shown in 

(2) (Zhou & Shi, 2000): 
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where L is the length of the shaft; Ip and It are the polar and the diametric moments of 
inertia of the shaft, respectively; mu, ux, uy, uz are the mass and the position of the 
imbalance in body-fixed coordinate. Exciting forces are defined as: 

 2 2
1 2cos( ) sin( ), sin( ) cos( )f fφ φ φ φ φ φ= ⋅ = ⋅$$ $ $$ $  (3) 

The model given by (2) can be used on most of the shafts provided that the rigidity of the 
shaft is high compared to the supporting bearing. For analysis, simulation and control 
objectives the proposed model is considered sufficiently accurate 
When flexible rotor models are applied, more complicated rotor system models must be 
developed. Such models allows for the elastic deformation of the rotor when in rotation. 
Consequently, it is more accurate than the rigid rotor model. A complicated rotor system is 
divided into several kinds of basic elements: rigid disk, bearing, flexible shaft segments, 
couplings, squeeze-film dampers, and other needed accessories. The equations of motion for 
each of these components can be developed using the appropriate force-displacement and 
force-velocity relations and the momentum principles as well as other equivalent dynamic 
relations. From the above review on rotor dynamics, it is concluded that many powerful 
tools for the linear system and frequency response are available. However, most of these 
techniques are targeted at the rotor design analysis. 
It has been mentioned that for an efficient AVC system synthesis, a suitable analytical model 
must be used which is simple in comparison to the overall system equations, while still 
providing the essential dynamic characteristics. 
(Maslen & Bielk, 1992) presented a stability model for flexible rotors with magnetic bearings. 
Besides the flexible rotor model itself, their model included the dynamics of the magnetic 
bearing and the sensor-actuator noncollocation. This model can be used for stability analysis 
and active vibration synthesis.  
Most recently, an analytical imbalance response of the Jeffcott rotor with constant 
acceleration was developed by (Zhou & Shi, 2001). They concluded that a satisfactory 
solution quantitatively shows that the motion consists of three parts: 

• the transient vibration at damped natural frequency,  

• the synchronous vibration with the frequency of instantaneous rotating speed, 

• and a suddenly occurring vibration at damped natural frequency.  
Such mentioned technique provides physical insight into the imbalance-induced vibration 
of the rotor during acceleration. For this reason it can be used for the synthesis of AVC 
schemes. 
For the synthesis of DAVC techniques, most it is common to use simplified low-order finite 
element models of the rotor system. Although the techniques developed can be extended to 
a high-order system theoretically, the computational load and consequently the signal-to-
noise ratio will have to be higher. The DAVC techniques can be difficult to implement for 
the high-order system. Therefore, it is conveniently to use a reduced order models to 
approximate the high-order system models. Applied model reduction techniques have a 
specific impact on the performance of the DAVC schemes that must be considered if 
expected performance cannot be achieved. 

1.2 DAVC for rotating machinery 

AVC for rotating machinery is considered a special case of AVC for a flexible structure. The 
general topic regarding AVC was discussed by (Inman and Simonis, 1987) and (Meirovitch, 
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1990). The difference between rotating machinery and other flexible structures is that the 
dynamics of the rotor changes with the rotating speed of the shaft. Best control performance 
could be achieved if control gains vary with rotating speed. Also, because the shaft is a 
moving part, a noncontact actuator is used to apply the control force to the rotating shaft. 
There are many types of actuators for direct AVC, including electromagnetic, hydraulic and 
piezoelectric as the most important ones. The active magnetic bearing (AMB) is an 
established industrial technology with a rapidly growing number of applications. A good 
example of the application of magnetic bearings in the machine tool industry can be found 
in (Bleuler et al., 1994). 
AMB can be used to apply a synchronous force to the shaft to control the imbalance 
response, either to cancel the force transmitted to the base or to compensate for the vibration 
displacement of the shaft. In (Knospe et al., 1996; Knospe et al., 1995; Knospe, Tamer, & 
Fittro, 1997; Knospe, Tamer, & Fedigan, 1997) presented an adaptive open-loop control 
method for the imbalance displacement vibration control using AMBs. A synchronous force 
that consists of sinusoids that are tied to the shaft angular position via a key phasor signal 
was generated and applied to the rotor through the magnetic supporting bearings. The 
magnitude and phase of these sinusoids were periodically adjusted so as to minimize the 
rotor unbalance response. The magnetic bearings were used to emulate the imbalance-
induced force to offset the force induced by the system imbalance. 
Therefore, Knospe and colleagues’ methods are called “active balancing” methods rather 
than “DAVC” methods. Other researchers such as (Herzog et al., 1996) and (Lum et al., 
1996) published their work on the imbalance transmitted force controlled by magnetic 
bearings. 
The basic idea is to use a notch filter to blind the control system of the supporting magnetic 
bearing to the imbalance induced response. Therefore, no synchronous forces can be 
generated by the magnetic bearings. The rotor will then rotate about its own principal 
inertia axis provided that the gap between the shaft and the bearing is large enough. (Fan et 
al., 1992) presented a vibration control scheme for an asymmetrical rigid rotor using 
magnetic bearings. 
Other researchers working in DAVC for rotating machinery adopted a state space 
representation of a rotor system. The control inputs are lateral forces. (Balas, 1978) pointed 
out that for a feedback control system for flexible systems, the control and observation spill-
over due to the residual (uncontrolled) modes could lead to potential instabilities. 
In (Stanway & Burrows, 1981), the dynamic model of the flexible rotor was written in the 
state space format and the controllability and observability of the model were studied. 
Stanway and Burrows concluded that the lateral motion of the rotor can, under certain 
conditions, be stabilized by the application of a single control input to a stationary 
component. (Ulsoy, 1984) studied the characteristics of rotating or translating elastic system 
vibration problems that are significant for the design of active controllers. The basic 
conclusions of his research were that a controller gain matrix that is a function of the 
rotating speed is required to maintain a desired closed-loop eigenstructure and that a 
residue model spill-over should be handled carefully by the active controller to avoid 
instability. 
(Firoozian & Stanway, 1988) adopted a full-state observer technique to design a feedback 
AVC system. 
The stability of the closed-loop system was also studied. To build an AVC system for 
flexible structures, the sensor/actuator deployment is an interesting topic. The issue of 
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actuator/sensor placement for control of flexible structures is an active research area. This 
problem is often formulated as a constraint optimization problem. The constraints of this 
optimization problem are the limited available locations for the actuators and sensors. The 
objective function of this optimization problem is closely related to the control algorithm 
used for the flexible structure. 
The main possible optimal cost functions for sensor and actuator placement are for system 
identification, state estimation (which is represented by the observability) and indirect 
control performance (which is represented by the controllability), and direct control 
performance (e.g., the transient response, stability).  

1.3 Discussion about DAVC 

Since rotating machinery is widely used in industry, the AVC of the rotating machinery is 
an important engineering problem for both industry and academia. In this introductory 
section, a review of the direct vibration control for rotating machinery was conducted. 
The major problem faced by the AVC scheme is the use of a limited number of actuators to 
control an infinite number of vibration modes. To design an active control scheme, a 
reduced-order model should be used and the effect of the spill-over of higher vibration 
modes assessed. Although the available techniques developed for dynamic analysis and 
active real-time vibration control can be extended to high-order systems theoretically, the 
computational load will be heavier and the signal-to-noise ratio of the vibration 
measurement will have to be higher. Hence, the available techniques could be difficult to 
implement in high-order systems. Consequently, it is necessary to use a model reduced 
system to approximate the high-order system. 
In most of AVC methods, the imbalance estimation is coupled with the control strategy. So 
far, there are no systematic methods available to show the relationship between the 
estimation and the control strategy. A control action is preferable if it can obtain small 
imbalance-induced vibration and excite the system to obtain the good imbalance estimation 
at the same time. 
Thus, coupling effects should be investigated by considering the estimation algorithm, the 
system dynamics, and the control performance. This research can also lay a scientific 
foundation for the design of an efficient and reliable generic adaptive control system. 
It is clear that the active balancing can improve product quality and improve the fatigue life 
of the machine and cutting tools and, hence, reduce the system cost. However, the 
installation and maintenance of an active vibration system for rotating machinery will 
increase the system cost. How to assess the AVC system from a cost-effective point of view 
and on a higher process level is not well studied in the literature. More that two decades of 
experience demonstrates that this is an interesting and important problem in the AVC of 
rotating machinery. 

2. AVC with magnetic actuators 

2.1 Introduction 

Unbalance response is a common vibration problem associated with rotating machinery. 
During several years, researchers have demonstrated that this vibration could be greatly 
alleviated for machines using active magnetic bearings through active magnetic control. 
Many of the control strategies employed fall into a class which the authors have termed 
adaptive open loop control. 
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Active magnetic bearings provide a number of advantages over conventional bearings for a 
variety of practical industrial applications. These include elimination of the lubrication 
system, friction free operation, decreased power consumption, operation at temperature 
extremes, and vibration control. 
Recently there has been a great deal of interest in digital control of magnetic bearing 
systems. Digital control offers several major benefits for magnetic bearing supported rotors: 

• quick tuning of a magnetic bearing system during installation 

• implementation of some simple but powerful control strategies, such as gain scheduling 

• application of fault tolerant controller architectures 

• built-in monitoring and diagnostic capabilities 
As the results shown along a couple of years indicate, digital control provides capabilities 

for adaptive control which can be used to greatly alleviate the unbalance vibration of 

rotating machinery. This is often the worst vibration problem encountered during operation. 

The source of this vibration is the discrepancy between the geometric axis of the rotor and 

its inertial axis. When the rotor is spinning, this imbalance results in a centrifugal force 

which causes synchronous vibration throughout the machine. This problem is managed on 

conventional machinery through mechanical balancing by means of the addition or removal 

of a small amount of mass from the shaft to reduce the residual imbalance. Rotor balancing 

in the field, unfortunately, is usually time consuming and costly. The down-time incurred 

can also be very expensive in terms of lost production. Also for some machines where the 

imbalance changes often during operation, such as centrifuges, mechanical balancing will 

have a limited benefit. 

Magnetic bearings, being active devices, offer the capability to establish new and beneficial 

relationships between rotor and casing vibration and applied bearing force. 

This capability has been employed by a considerable number of researchers investigating 

the control of unbalance response. One method to achieve unbalance response attenuation is 

through design of the feedback compensation. This has been achieved via the addition of 

filters to stabilizing controllers (Habermann & M. Brunet, 1994), (Larsonneur & R. Herzog, 

1994) or through the addition of pseudo-states in observer based controllers (T. Higuchi, T. 

Mizuno, & M. Tsukamoto, 1990), (F. Matsumura, M. Fujita, & K. Okawa, 1990). Other 

researchers (C.R. Burrows & M.N. Sahinkaya, 1983), (C.R. Burrows, M.N. Sahinkaya, & S. 

Clements, 1989), (T. Higuchi et al., 1990), (R. Larsonneur, 1988), (Larsonneur & R. Herzog, 

1994), (B. Shafai et al., 1994), (C.R. Knospe et al., 1993), have employed methods which the 

authors refer to as adaptive open loop control. These methods, as pointed out by (R. 

Larsonneur, 1988), (Larsonneur & R. Herzog, 1994) and Shafai et al., 1994), have the 

advantage that they may be added to feedback controllers that have been designed for 

optimum transient response without altering system stability or performance. These 

methods were first employed on a magnetic bearing supported rotor by (C.R. Burrows & 

M.N. Sahinkaya, 1983) who solved a least-squares-balancing problem for the proper forces 

to apply using an off-line theoretical model. They later extended this work to obtain an 

estimate of an influence coefficient matrix through trial forces and the use of a recursive 

control law (C.R. Burrows, M.N. Sahinkaya, & S. Clements, 1989). (Higuchi et al., 1990) 

applied an adaptive open loop method (periodic learning control) employing an estimate of 

the inverse transfer function in a recursive procedure. This method can only be applied on 

systems with square influence coefficient matrices (number of actuators equals number of 
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vibration sensors). Following references (C.R. Burrows, M.N. Sahinkaya, & S. Clements, 

1989), (Higuchi et. al., 1990) are very similar to the convergent control algorithm presented 

by Knospe et al., 1993) which uses a look-up table of influence coefficients obtained through 

off-line testing. Shafai et al., 1994) apply a distinct method of adapting the open loop forces 

to cancel a synchronous signal. In such a method, only one Fourier coefficient of the open 

loop signal is changed per adaptation cycle in such a mode as to decrease the residual error. 

This method, originally developed for SISO systems, was extended to square MIMO 

systems. Stability and performance robustness of this method (convergence to optimal open 

loop control) is ensured. This is in contrast to most of the model-based methods where 

stability and performance robustness is being studied now. The transient performance of the 

adaptive open loop algorithms to changes in imbalance or rotor speed has to be considered 

because of its practical importance 

2.2 The test environment 

This section presents the test environment for active vibration control of rotating machinery. 

The principal idea is to control bending vibrations of a flexible rotor, supported by AMBs 

based on two sets of non-contacting electromagnetic actuators located at both shaft ends as 

shown in figure 3. 

The test environment is composed of the following parts; a rotor test rig, two sets of 

magnetic actuators assembled to operate as both electromagnetic actuators and AMBs, and a 

programmable control unit (C.R. Fuller, S.J. Elliot, & P.A. Nelson, 1996), (C.R. Knospe, et al., 

1997), (S.J. Elliot, 2001) to be applied on vibration attenuation or vibration suppression by 

means of feedback control applied to decrease the dynamic response of the rotor assumed as 

active magnetic dynamic damping. The main studies to be carried out on the described test 

rig deals with the dynamic response in the range of velocities of interest, especially near the 

resonant frequency region which can be reduced with a conventional velocity-feedback 

controller, or alternatively feedback filtering based control (K. Tammi (a), 2003), (K. Tammi 

(b), 2003). 

The feedback force is derived from the displacement measurements, obtained from the eddy 

current transducers approximately collocated with the actuators as shown in figure 3 and 4. 

The use of a velocity feedback controller decreases the response of the rotor significantly. 

The active control brings the possibility to run the rotor across the critical speed. A 

feedforward system, based on an adaptive finite-impulse-response filter (K. Tammi (b), 

2003), may also be designed to compensate disturbances caused by the mass imbalance if a 

reliable model of imbalance is available. 

As shown in figure 4, every degree of freedom to be controlled requires a feedback control 

loop. The control system applies the force commands to attenuate shaft vibration while 

keeping the shaft into the radial position centre. The implementation of a shaft end vibration 

and position control scheme is shown in figure 5. It consists in an Agilent Technologies 

based hardware programmed under Matlab-Simulink V.9(a). 

Every shaft end should be equipped with a control system comprising at least the parts 

shown in figure 6. It consists in two independent closed loop controllers to attenuate or 

suppress the shaft vibration in the normal plane of the shaft. The other shaft end should be 

equipped with a similar system. 
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Fig. 3. The rotor-actuator system in two planes which must be controlled by two control 
loops because of the two degrees of freedom. 
 

 

Fig. 4. Basic control loop.  
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Fig. 5. Control loops implementation for a shaft end, using Matlab_Simulink: (a), with 
independent control algorithms. (b), with coupled control algorithms. 

2.3 Control loop hardware 
Control loops accessories such as data acquisition and final control elements or actuation 
devices are implemented with specifically designed hardware based components. 

2.3.1 Data acquisition system 
Radial displacement is sensed by means of a data acquisition system which is based on a set 
of Eddy current probes. Axial displacement is measured under the same technology. Eddy 
Current Probe (ECP) systems are integral components, which typically consists of a non-
contacting probe, an extension cable and a driver. An ECP typically senses mechanical 
movement and converts this movement (displacement) into a usable electrical signal. As 
shown in figure 7, the signal can be sent to a monitor system for condition monitoring, 
analysis and/or alarm protection as well as control applications. 

2.3.2 Final control elements 
The final control elements composed by the magnetic field coils demand a large amount of 
current, which must be supplied by means of a Voltage Controlled Current Source (VCCS). 
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Fig. 6. Control structure for a shaft end. 
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The figure 8 shows the current amplifiers structure for a set of two opposite coils, capable 
for perform control forces in a single degree of freedom. The controller output provides a 
voltage based signal. Voltage to current conversion is performed by means of a VCCS. The 
VCCS can be useful for applications such as active loads for use in torque or force control 
servomotors. Force control is simplified since force is a direct function of current in an 
inductive load, such the applied coils. Figure 8 illustrates the basic circuit of a VCCS for a 
floating load. The load is actually in the feedback path. R1 and R2 are current sense resistors 
that develops a voltage proportional to load current. 
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Fig. 8. The current amplifiers structure for two opposite coils 

2.4 Force current model for electromagnet based actuaytors 

A magnetic attraction based magnetic bearing comprises a set of radially positioned 

electromagnets positioned in opposing pairs around a permanent magnetic bearing journal. 

For instance, for a magnetic bearing with four electromagnets there is one opposing pair for 

each perpendicular axis. Each electromagnet consists of a laminated core and one or more coil 

windings. The force produced by a single two pole electromagnet can be shown to be given by 

the following equation where I is the total current in the magnet coils, z is the gap distance, μ0 

is the permeability of free space, A is the pole face area, and N is the number of coil turns: 

 
2 2

0
24

AN I
F

z

μ
=  (4) 

The force in (9) is repulsive and increases as the gap decreases. This repulsive force 
produces a stable system for an open loop magnetic bearing configuration. The net force, Fn 
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produced by an opposing pair of identical two-pole electromagnets on a single axis is the 
sum of the forces produced by each electromagnet; taking account of the sign convention, 
the net repulsive force equation is given as follows: 

 
2 2 2

0 2 1
2 2

2 14
n

AN I I
F

z z

μ ⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎣ ⎦
 (5) 

Ii is the current in magnet j, and zi is the gap distance for magnet j. 
A dynamical mathematical model for the HMB is shown in figure 9, where disturbances and 
external forces can be established as follows: 
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where 
z2  X0 -x air gap 2 (m); 
z1 X0+x air gap 1 (m); 
m rotor mass (kg); 
x rotor displacement (m); 
X0 nominal air gap (m); the gap at centered rest position 

μ0 permeability of free space (H/m); 
A total pole-face area of each electromagnet (m); 
N number of turns on each electromagnet coil; 
I1, I2 opposing electromagnets coil currents (A); 
FD  some unknown force acting on the rotor (N); 
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Fig. 9. Electromagnet based actuator structure 

Previously, the equations were given for the static force produced by a magnetic bearing 
along a single axis. That force is affected dynamically by the rate limit at which current 
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changes in the coils, called the current slew rate limit, which is dependent on the voltage 
limit, of the power supply and the coil inductance, L. 
The general nonlinear electromechanical model of the one degree-of-freedom (DOF) 
actuator system, for a number of electromagnet coils, can be subdivided into the mechanical 
subsystem dynamics, the magnetic force equation, and the electrical subsystem dynamics. 
The mechanical subsystem is governed by 

 
2

1

( )i i D
i

mx F F
=

= Φ −∑ ∑$$  (7) 

where m is the rotor mass, x represents the position of the rotor centre, Φi is the magnetic 
flux in the ith electromagnet, Fi denotes the force produced by the electromagnet, given by  
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The electrical subsystem is governed by the equations  

 , 1, 2i i i iN R I v iΦ + = =$  (9) 

where u is the input control voltage of the ith electromagnet, Ii is the current in the ith 
electromagnet which is related to the flux. 

 0
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2( ( 1) )
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i
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i

X x
I i

ANμ
+ − Φ

= =  (10) 

and X0 is the nominal air gap in a disturbance free steady state. 

2.5 Field-current models 

The measurement of the real time currents feeding the coils supposes a reliable method to 

attenuate or suppress AMB vibration. Not only in steady state operating conditions but in 

transient operation modes, the actual current is compared with nominal current specified by 

the master feedback controller output yielding the manipulated variable as the squared 

current feeding the coils. Such varying currents have its origin in the loads exerted on parts 

of the shaft, rotor, turbine or impeller. 

In the following analysis it is assumed that iron is infinitely more permeable than air. Also it 

is assumed that the bearing gap does not change its regular shape when the rotor moves 

back and forth. Furthermore, leakage and fringing are neglected. 

Assuming that the reluctance of the iron can be neglected, the magnetic flux is 

 
2

0

2
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z

μφ =  (11) 

and if u is the voltage applied across the coils having a resistance of R, then  

 
d

u Ri N
dt

φ
= +  (12) 
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Once assumed the previously cited restrictions, then follows that 

 ( , )
d dz di

z i
dt z dt i dt

φ φ φφ φ ∂ ∂
= → = +

∂ ∂
 (13) 

where dz/dt is the radial displacement velocity of the rotor. Applying partial differentiation 
on expression (13) with respect to d and i, yields 
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Substituting (13) and (14) in (12), and assuming the air gap z as (X0+x), the expression (10) 
yields for the voltage  
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μ μ
= − +  (16) 

Expression (15) is generally applicable any magnetodynamic circuit under radial 
displacement or translational and/or rotational degrees of freedom. Taking into account 
that the air gap for every coil set is defined by 

 2 0

1 0

z X x

z X x

= −
= +

 (17) 

yields the following two equations 
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Defining a constant parameter as 2
00.5k ANμ= , then follows that  
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 (19) 

As can be seen from (19), both expressions relating input voltages are functions of measured 
variables (real-time currents and air gap). 

3. The AVC under unbalance influences 

To initiate the discussion, it is appropriate to consider the traditional diagram of a Jeffcott 
rotor as shown in figure 10 (a).  
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At very lo speeds, unbalance forces are negligible. The shaft turns around de bearing 
centreline and all rotating elements are concentric. This condition is depicted in the detail (b) 
of figure 10. As rotor speed increases, the straight shaft will deflect into the predictable 
mode shape shown in figure11.  
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Fig. 10. The Jeffcott rotor diagram 
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Fig. 11. Shaft deflection mode under centrifugal forces 

The only driving force in the system is the centrifugal force due to the unbalance mass M. 

The maximum bending deflection of the shaft is identified by r and the mass eccentricity by 

e. Furthermore, the rotational speed is indicated by ω. By inspection of the figure 11 it can be 

seen that the shaft and disk are rotating at the operating speed ω. Simultaneously, the 

deflected shaft is whirling in the magnetic bearings at this speed. The mechanism driving 

this whirl is the centrifugal force generated by the eccentric mass on the disc. As rotor speed 

increases, the outward force increases in accordance with the normal centrifugal force Fc 

equation  

 2( )Fc M r e ω= ⋅ + ⋅  (20) 

With regard to expression (20), the total radius of the mass unbalance M is composed of the 

shaft bending r, and the eccentricity of the mass with respect to the shaft centreline e. Such 
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centrifugal forces will be compensated as much as possible by the active magnetic forces 

developed by the control algorithm. Since the shaft speed is squared in expression (20), the 

shaft rotational speed has a strong influence on the AVC algorithm. Nevertheless, such 

influence is attenuated due to the inertial effect of the rotor which causes the response 

magnitude to decrease as rotational speed increases. The developed test rig has been 

subjected to experimental validation where a feedback control action provided by a PID is 

implemented. Several controller gains have been applied so that the time response is 

achieved for variable rotational speeds. As shown in figure 11 a vibration control test is 

performed under variable rotational speed. The rotating speed is varying from zero at the 

start point  to 16 rad/sec. in about 50 seconds. At same time,  different  controller gains have 

been applied. As consequence, after three tests with different controller gains given as Kp= 

3, 5 and 7 respectively, three time responses are achieved and shown in figure 12. As 

depicted in figure 12, analytical or theoretical prediction of the optimum controller gain Kp, 

is not trivial. Instead, the selection of a controller gain Kp such that for a known rotating 

speed the response be acceptable, appears to be a satisfactory solution.  

Generally, for very low rotating speeds, a low gain value is better that a high one. As 

rotational speed increase the effect of varying the controller gain is decreasing. This means 

that for high frequency vibration the variation of the AVC algorithm gain is not effective at 

all. An interesting topic to be taken into account with regard to the vibration attenuation is  
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Fig. 12. Rotational speed (Rad/sec) as function of time 
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Fig. 13. Time response of the AVC as function of rotation speed. 

the vibration effect of the shaft on the shaft support rig. If the rotor mass insignificant with 
respect to the bedplate mass, then vibration attenuation may be considered effective. On the 
other hand, shaft vibration is transmitted to the bedplate, with dramatic consequences. 

4. Discussion and conclusions 

The basics of active vibration control have been introduced. The vibration damages or 

harmful effects of unbalance-induced vibration cause significant productivity and precision 

reductions in a variety of industrial processes. A direct consequence relay on the 

implementation of next generation technology such as high-speed machining that has been 

delayed and restricted because of unbalance issues. 

Standard off-line balancing techniques cannot address many of these unbalance problems 

because of the transient nature of both residual unbalance and machinery dynamics in 

operation. 

Active balancing techniques promise solution to many of these problems and lead to 

significant economic benefits through increased reliability of machinery and the enabling of 

emerging advanced technologies. 
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Previous state-of-the-art non-adaptive active balancing control methods required extensive a 

priori modelling of system dynamics. Existing adaptive control methods for active balancing 

were not able to take advantage of the most recent data fast enough to ensure good 

performance and stability in the event of time-varying or nonlinear dynamics. This means 

that it is necessary a great research effort on this field, which must be associated to efficient 

and sophisticated test rigs to accurately improve and verify results. 

A couple of basic and advanced control algorithms have been applied along the last three 

decades. The most simple is velocity feedback control. 

Vibrations around the critical can be efficiently damped by velocity feedback control. It 

provided a possibility to run the rotor at critical speed by virtue of increased damping. It 

also provided smoother phase characteristics, which made feedforward compensation 

easier. 

Control algorithms based on velocity feedback are one of the most simple examples for 

active vibration control in general. An important reason for this is the characteristically low 

damping of mechanical systems; a significant reduction in response can be achieved by a 

simple controller acting against vibration velocity. According to the literature review, the 

control method has also been applied to rotors. It has been shown experimentally that the 

reduction is significant in the resonance region for a rotor with low external damping. 

The resonance can also be shifted with the control system by implementing a control force 

proportional to the displacement of the rotor. A load-carrying function is thus applied. This 

was briefly tested and found to work in the test environment. However, this was out of 

focus, because very large forces would be required in heavy rotating machines. 

Velocity feedback control can also be successfully associated to feedforward control. 

Feedforward compensation converges at low frequencies, and outside the range of resonant 

frequencies, but diverges when the resonance frequencies are approached. 

As mentioned, advanced control techniques and algorithms are being applied in order to 

render efficient productivity under the increasing industrial demands. 

A variety of sophisticated control algorithms using the most efficient techniques to identify 

and estimate plant parameters, observer design, and advanced filtering is being applied, 

including predictive control and nonlinear Backstepping, optimal control and so on. 

Nevertheless the AVC continues being an active research area of interest. 
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