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1. Introduction

Many applications require fast and accurate localization and tracking of non-cooperative emit-
ters. In many cases, it is advantageous not to conceal the observation process by using active
sensors, but to work covertly with passive sensors. The estimation of the emitter state is
based on various types of passive measurements by exploiting signals emitted by the targets.
In other applications there is no choice but to exploit received signals only. Typical examples
include search and rescue type operations.
Some passive measurements can be taken by single sensors: e.g. bearing measurements
(AOA: Angle of Arrival) and frequency measurements (FOA: Frequency of Arrival). The
emitter state can be estimated based on a set of measurements of a single passive observer.
This problem is called the Target Motion Analysis (TMA) problem which means the process
of estimating the state of a radiating target from noisy incomplete measurements collected by
one or more passive observer(s). The TMA problem includes localization of stationary as well
as tracking of moving emitters. The TMA problem based on a combination of AOA and FOA
measurements is considered by Becker in (Becker, 2001). Becker investigates and discusses
the TMA problem with many characteristic features such as observability conditions, combi-
nation of various types of measurements, etc., (Becker, 1999; 2005) .
Alternatively, measurements can be obtained from a network of several spatially dislocated
sensors. Here, a minimum of two sensors is often needed. Measurements of Time Difference
of Arrival (TDOA) and Frequency Difference of Arrival (FDOA) belong to this group.
TDOA measurements are obtained in the following way: several distributed, time-synchronized
sensors measure the Time of Arrival (TOA) of signals transmitted from the emitter. The dif-
ference between two TOA measurements of the same signal gives one TDOA measurement.
Alternatively, TDOA measurements can be obtained by correlating signals received by the
sensors. A time standard can be used for time synchronization.
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In the absence of noise and interference, a single TDOA measurement localizes the emitter on
a hyperboloid with the two sensors as foci. By taking additional independent TDOA mea-
surements from at least four sensors, the three-dimensional emitter location is estimated from
the intersections of three or more hyperboloids. If sensors and emitter lie in the same plane,
one TDOA measurement defines a hyperbola describing possible emitter locations. There-
fore, the localization using TDOA measurements is called hyperbolic positioning. The sign
of the measurement defines the branch of the hyperbola on which the emitter is located. The
two-dimensional emitter location is found at the intersection of two or more hyperbolae from
at least three sensors. This intersection point can be calculated by analytical solution, see
e.g. (K. C. Ho, 2008; So et al., 2008). Alternatively, a pair of two sensors moving along arbi-
trary but known trajectories can be used for localizing an emitter using TDOA measurements.
In this case, the emitter location can be estimated by filtering and tracking methods based
on further measurements over time. This chapter is focused on the localization of unknown,
non-cooperative emitters using TDOA measurements from a sensor pair. Some results have
already been published in (Kaune, 2009).
The localization and tracking a non-cooperative emitter can be improved by combining dif-
ferent kinds of passive measurements, particularly in the case of a moving emitter.
One possibility is based on bearing measurements. A pair of one azimuth and one TDOA
measurement is processed at each time step. The additional AOA measurement can solve the
ambiguities appearing in processing TDOA measurements only. Another possibility consid-
ers two sensors measuring the FDOA between two frequencies of arrival (Mušicki et al., 2010;
Mušicki & Koch, 2008). These measurements can be taken by the same sensors as the TDOA
measurements. The TDOA/FDOA measurement pairs can be obtained by using the Complex
Ambiguity function (CAF). The combination of TDOA and FDOA measurements improves
the estimation performance strongly.

This chapter gives an overview of the topic of passive emitter tracking. Section 2 describes the
situation of a single passive observer. Important steps of solving the passive emitter tracking
problems are presented. When assessing an estimation task, it is important to know the best
estimation accuracy that can be obtained with the measurements. The Cramér Rao Lower
Bound (CRLB) provides a lower bound on the estimation accuracy for any unbiased estimator
and reveals characteristic features of the estimation problem.
Powerful estimation algorithms must be applied to obtain useful estimates of the emitter state.
For passive emitter tracking, measurements and states are not linearly related. Therefore, only
nonlinear estimation methods are appropriate. Passive emitter tracking is a complex prob-
lem. Depending on the types of measurements, various estimation methods can be applied
showing different localization performance in various scenarios. The goal of this chapter is to
provide a review of the state of the art. The discussion is not restricted to one chosen method
but presents an overview of different methods. The algorithms are not shown in detail; there-
fore, a look at the references is necessary to implement them. In the appendix, a toolbox
of methods makes several estimation methods available which are applied in this chapter.
Firstly, the maximum likelihood estimator (MLE) as a direct search method, which evaluates
at each estimate the complete measurement dataset. Secondly, Kalman filter based solutions
which recursively update the emitter state estimates. The tracking problem is nonlinear; thus
the Extended Kalman Filter (EKF) provides an analytic approximation, while the Unscented
Kalman Filter (UKF) deterministically selects a small number of points and transforms these
points nonlinearly. Thirdly, Gaussian Mixture (GM) filters will be discussed, which approxi-
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mate the posterior density by a GM (a weighted sum of Gaussian density functions). Addi-
tionally, some basics on the CRLB and the Normalized Estimation Error Squared (NEES) are
presented.
In sections 3, 4, 5 passive emitter tracking using TDOA, a combination of TDOA and AOA
and a combination of TDOA and FDOA is investigated, respectively. Finally, conclusions are
drawn.

2. Review of TMA techniques

Passive emitter tracking using a single passive observer is part of the TMA problem which ad-
dresses the process of estimating the state of an emitter from noisy, incomplete measurements
collected by a passive observer (Becker, 1999; 2001; 2005, and references cited therein). Typical
applications can be found in passive sonar, infrared (IR), or passive radar tracking systems.

2.1 Solution of the TMA problem

The TMA problem is solved in three consecutive steps:

• The first step is the calculation and analysis of the CRLB. It is a lower bound for the
achievable estimation accuracy and reveals characteristic features of the TMA problem
under consideration.

• The main step is the development of an algorithm that effectively estimates the target
state from the noisy measurements collected by the observer.

• A final third step is necessary in the TMA solution process. It increases the estimation
accuracy by observer motions.

These three steps can be applied to passive emitter tracking in sensor networks as well, while
the third step is not as important as in the single observer case.
In the following, the solution of the TMA problem is analyzed in detail:
In evaluating an estimation problem, it is important to know the optimal estimation accu-
racy achievable from the measurements. It is well known that the CRLB provides a lower
bound on the achievable estimation accuracy; for explicit formulas see A.1. The investigation
of the CRLB provides insight into the parametric dependencies of the TMA problem under
consideration. It reveals characteristic features of the localization and tracking process. For
the two-dimensional TMA problem based on AOA and FOA measurements, it has been dis-
cussed in detail, (Becker, 1992). It proved that the orientation of the error ellipses of bearings
and frequency measurements significantly differ. One bearing measurement provides a strip
of infinite length in the position space and two frequency measurements give a strip of in-
finite length in the position space, too. The error ellipses of the bearing and the frequency
measurements are rotated with respect to each other. Therefore, there is a gain in accuracy by
combining angle and frequency measurements in the TMA situation.
The main step of the TMA problem is the development of an algorithm that effectively esti-
mates the emitter state from noisy measurements collected by the observer. These algorithms
require the modeling of the emitter dynamics and the measurement process. The system or
dynamics model describes the evolution of the emitter state with time. Let ek ∈ R

ne be the
emitter state at time tk, where ne is the dimension of the state vector, involving position and
velocity. Using the evolution function f , the emitter state can be modeled from the previous
time step tk−1 by adding white Gaussian noise; we obtain the dynamic model:

ek = f (ek−1) + vk, vk ∼ N (0, Q), (1)
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where vk ∼ N (0, Q) means that vk is zero-mean normal distributed with covariance Q. The
measurement model relates the noisy measurements zk ∈ R

nz to the state, where nz is the
dimension of the measurement vector. The measurement function h(e) is a function of the
emitter state, nonlinear or linear, and reflects the relations between the emitter state and the
measurements. Thus, the measurement process is modeled by adding white Gaussian noise
uk:

zk = h(ek) + uk, uk ∼ N (0, R), (2)

where R is the covariance of the measurement noise.
An estimation algorithm must be found to solve the emitter tracking problem. Based on all
available measurements Zk = {z1, z2, . . . , zk} up to time tk we seek to estimate the emit-
ter state ek. Therefore, it is required to compute the posterior probability density function
p(ek|Zk). A short review of available estimation algorithms is given in A.3 and include:

• As a direct method, maximum likelihood estimation (MLE) evaluates at each time step
the complete measurement dataset. In many cases, a numerical iterative search algo-
rithm is needed to implement MLE.

• Recursive Kalman-type filter algorithms can be used as well. They are Bayesian estima-
tors and construct the posterior density using the Bayes rule. Since the measurement
equation in passive emitter tracking is often nonlinear, nonlinear versions of it must be
used: the Extended Kalman filter (EKF) provides an analytic approximation, while the
Unscented Kalman filter (UKF) deterministically selects a small number of points and
transforms these points according to the nonlinearity.

• Gaussian Mixture (GM) filters approximate the required densities by Gaussian Mix-
tures, weighted sums of Gaussians. The approximation can be made as accurate as de-
sirable by adapting the number of mixture components appropriately, see (Ristic et al.,
2004).

In passive tracking, the emitter may not be observable from available measurements in some
situations. If the observer is moving directly in direction of the stationary emitter, for example,
the emitter is not observable from bearing measurements only. In the literature, necessary and
sufficient observability criteria using angle measurements and using a combination of angle
and frequency measurements have been derived (Becker, 1993; 1996). In general, ambiguities
can be resolved by suitable observer maneuvers, which depend on the type of measurements
and the emitter model as well. A measurement set consisting of different measurement types
often results in less restrictive observability conditions.
In an application, the user should always strive to get the maximum of attainable estima-
tion accuracy. Estimation accuracy can firstly be influenced by the choice of the estimation
algorithm and, secondly, by the choice of the emitter-observer geometry over time, via ob-
server motion. The estimation accuracy highly depends on the emitter-observer geometry.
The emitter-observer geometry may be changed by observer maneuvers. Thus, the final step
in solving the TMA problem is to find an optimal observer maneuver creating a geometry that
maximizes the estimation accuracy. In the literature, several criteria have been used, one of
them is maximizing the determinant of the Fisher Information Matrix (FIM) J.

2.2 TMA based on bearing and frequency measurements

The standard TMA method is based on bearing measurements taken at different points along
the sensor trajectory, see Figure 1. It has been the topic of much research in the literature.
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Already a single bearing measurement provides information on the emitter position. In ad-
dition, or instead of bearing measurements, measurements of the Doppler-shifted frequency
can be taken, (Becker, 1992). Frequency measurements depend on the emitter-sensor-motion,
more precisely on the radial component of the relative velocity vector. Frequency drift and
frequency hopping have an impact on the quality of frequency measurements and have to be
taken into account. The location methods based on bearing or frequency measurements differ
significantly. The substantial differences between both methods lead to a significant integra-
tion gain when the combined set of bearing and frequency measurements is processed.
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Fig. 1. TMA problem based on azimuth measurements (dashed lines)

3. Exploitation of TDOA measurements

The problem of passive emitter tracking can be considered in a network of senors as well.
Various types of measurements can be obtained only with a network of sensors. TDOA mea-
surements belong to this group. Several displaced, time-synchronized sensors measure the
TOA of a signal transmitted from the emitter. The difference between two TOA measure-
ments gives one TDOA measurement. In this chapter a network of two sensors building a
sensor pair is regarded. They take measurements from an unknown emitter over time.

3.1 Problem statement

For a demonstration of the special features, the three-dimensional localization problem is not
more enlightening than the two-dimensional one. Therefore, for easy understanding and pre-
senting, the further text is restricted to the special case, where the trajectories of the sensors
and the emitter lie in a plane.
Let ek be the emitter state at time tk:

ek = (xT
k , ẋ

T
k )

T , (3)
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where xk = (xk, yk)
T ∈ R

2 denotes the position and ẋk = (ẋk, ẏk)
T ∈ R

2 the velocity. Two
sensors with the state vectors

s
(i)
k =

(
x
(i)
k

T
, ẋ

(i)T

k

)T

, i = 1, 2, (4)

observe the emitter and receive the emitted signal. The sensors have a navigation system to
know their own position and speed. Therefore their state vectors are known at every time.
To simplify, the emitter is assumed to be stationary, i.e. ẋk = 0, while the sensors move along
their trajectories with a constant speed.
The speed of propagation is the speed of light c, the TOA measurement can be expressed by:

t0 +
1

c
||xk − x

(i)
k ||,

where || · || denotes the vector norm. t0 is the emission time of the signal and ||r
(i)
k || =

||xk − x
(i)
k || is the range between emitter and sensor i, i = 1, 2, at time tk, where r

(i)
k denotes

the emitter position relative to sensor i.
The TOA measurement consists of the unknown time of emission t0 and the time the signal
needs for propagating the relative vector between the emitter and sensor i. Calculating the
difference between the TOA measurements eliminates the unknown time t0 and yields the
TDOA measurement at time tk:

ht
k =

1

c

(
||xk − x

(1)
k || − ||xk − x

(2)
k ||

)
.

The measurement in the range domain is obtained by multiplication with the speed of the
light c:

hr
k = ||xk − x

(1)
k || − ||xk − x

(2)
k ||.

The measurement equation is a function of the unknown emitter position xk, the emitter speed
is not important. Furthermore, the positions of the sensors which are changing over time are
parameters of the measurement equation, the sensor speed is irrelevant. The two-dimensional
vector of position xk of the emitter is to be estimated. The emitter is stationary, its position is
independent of the time and it holds for all time step tk:

xk = x0.

A typical TDOA situation is illustrated in Figure 2. The two sensors move at the edge of the
observation area in an easterly direction indicated by the arrows. They observe a stationary
emitter. A single accurate, i.e. noise-free, TDOA measurement defines a hyperbola as possible
emitter location. In Figure 2, the red curve shows the branch of the hyperbolae on which the
emitter must be placed.
The combination of two measurements of the stationary emitter taken over time leads to an
ambiguity of the emitter position. The two detection results are the true position of the emitter
and the position mirrored along the connecting line between the sensors. This ambiguity can
be resolved in various ways, e.g. by a maneuver of the sensors, the addition of a third sensor,
or an additional bearing measurement. Alternatively, sensors which are sensitive only in the
hemisphere can be used, and thus able to observe only this half-space. Here the sensors are
positioned at the edge of the observation area, e.g. on a coast for the observation of a ground
emitter or on the edge of a hostile territory.
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Fig. 2. TDOA scenario

The measurement process is modeled by adding white Gaussian noise to the measurement
function. We get the measurement equation in the range domain at time tk:

z
r
k
= h

r
k
+ u

r
k
, u

r
k
∼ N (0, σ

2
r ) (5)

where σr denotes the standard deviation of the measurement error in the range domain. The
measurement noise ur

k
is i.i.d., the measurement error is independent from time to time, i.e.

mutually independent, and identically distributed.

3.2 Quantitative analysis

Two different emitter tracking scenarios are considered to compare the performance of four
different estimation algorithms which solve the nonlinear emitter localization problem, the
results have already been published in (Kaune, 2009). The results presented here are based
on 100 measurements averaged over 1000 independent Monte Carlo simulations with a mea-
surement interval of two seconds. The measurement standard deviation in the range domain
σr is assumed to be 200 m. This corresponds to a measurement standard deviation in the time
domain σt of about 0.67 µs.
In the first scenario, sensors, separated by a distance of 20 km, fly one after the other in east
direction at a constant speed of 100 m/s. The second scenario analyzes a parallel flight of the
sensors. Sensors at (1, 1) km and (16, 1) km fly side by side in parallel at a constant speed of
100 m/s in north direction.
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3.2.1 CRLB investigation

The CRLB for the TDOA scenario at time tk with the measurements zi and the time-dependent
measurement functions h(xi), i = 1, . . . , k, can be computed as:

Jk =
1

σ2
r

k

∑
i=1

(
∂h(xi)

∂xk

)T
∂h(xi)

∂xk

, (6)

with entries of the Jacobian at time ti:

∂h(xi)
∂xi

=
xi − x

(1)
i

||r
(1)
i ||

−
xi − x

(2)
i

||r
(2)
i ||

and
∂h(xi)

∂yi
=

yi − y
(1)
i

||r
(1)
i ||

−
yi − y

(2)
i

||r
(2)
i ||

. (7)

This shows that the CRLB depends only on the relative position of the sensors and the emitter,
the measurement accuracy and the number of measurements.
The FIM J1 at time t1 will usually be singular since we cannot estimate the full position vector
x from a single TDOA measurement without additional assumptions, see (Van Trees, 1968).
In the present case these assumptions concern the area in which the emitter is supposed to be.
These assumptions about the prior distribution on x are added to the FIM at time t1.
For visualization, the estimation accuracy is given as the square root of the trace of the 2 × 2
CRLB matrix.
Figure 3 shows a plot of the CRLB in the plane for the two investigated scenarios without
taking into account of prior information. The initial sensor positions are marked with green
triangles, and the red circle designates the position of the emitter. For a grid of possible emitter
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→
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→

Fig. 3. CRLB in the plane, values cut off at 500 m: (a) scenario 1 (b) scenario 2, colorbar in m.

positions in the plane the Fisher information J100 after 100 measurements is computed by

Equation (6). The associated CRLB J−1
100 is calculated and the square root of the trace is shown.

Values larger than 500 m have been cut off for better visualization. The color bar shows the
localization accuracy in m. The localization accuracy can be read from the figure for any
emitter location in the plane.
In the first scenario, the emitter lies exactly in the area of optimal approach to the target.
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In the second scenario, it is near the region of divergence which indicates poor localization
performance.

3.2.2 Results

For comparison of the estimation methods, the Root Mean Square Error (RMSE), the squared
distance of the estimate to the true target location xk is used in Monte Carlo simulations. They

are averaged over N, the number of Monte Carlo runs. Let x̂
(i)
k

be the estimate of the ith run
at time tk. Than, the RMSE at time tk is computed as:

RMSEk =

√√√√ 1

N

N

∑
i=1

(xk − x̂
(i)
k

)T(xk − x̂
(i)
k

). (8)

Four estimation algorithms which solve the nonlinear emitter localization problem are inves-
tigated and compared.

• The Maximum Likelihood Estimate (MLE) is that value of xk which maximizes the
likelihood function (30). Since there is no closed-form ML solution for xk, a numerical
iterative search algorithm is needed to find the minimum of the quadratic form, see
equation (42). In our case, the simplex method due to Nelder and Mead is used. It is
initialized with a central point from the observation area in scenario 1, in the second
scenario the initialization point is chosen at a distance of up to about 5 km from the
true target position. Being a batch algorithm, the MLE evaluates, at each update, the
complete measurement dataset. It attains the CRLB when properly initialized. One
disadvantage of the ML estimator is the higher computational effort in comparison to
the Kalman filters, as can be seen in Table 1. Table 1 shows the computational efforts of
the different estimation algorithms for a Monte Carlo simulation with 1000 runs for the
first scenario. One advantage of the MLE is the superior performance in comparison to
the Kalman filters.

• The Extended Kalman filter (EKF) approximates the nonlinear measurement equation
by its first-order Taylor series expansion:

Ĥk =
(xk − x

(1)
k

)T

||xk − x
(1)
k

||
−

(xk − x
(2)
k

)T

||xk − x
(2)
k

||
. (9)

Then, the Kalman filter equations are applied. The EKF is highly sensitive to the ini-
tialization and works only if the initial value is near the true target position. The EKF
may not reach the CRLB even in the case of a good initialization. Initial values are cho-
sen from a parametric approach similar to the approach described in (Mušicki & Koch,
2008): the first measurement is used for initialization. It defines a hyperbola as possi-
ble emitter locations from which several points are taken. These points initialize a ML
estimate which evaluates a sequence of first measurements. The best result is the initial
value of the EKF and the UKF. The computational efforts shown in Table 1 include this
phase of initialization.

• The Unscented Kalman filter (UKF) (see (Julier & Uhlmann, 2004)) uses the Gaus-
sian representation of the posterior density via a set of deterministically chosen sample
points. These sample points are propagated through the Unscented Transform (UT).
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Since the nonlinearity is in the measurement equation, the UT is applied in the update
step. Then the KF equations are carried out.
The initialization is the same as in the EKF. Poor initialization values result in divergent
tracks like in the EKF case.

Time in sec

EKF UKF MLE GS

49 80 939 90

Table 1. Comparison of computational effort

• The static Gaussian Mixture (GM) filter overcomes the initialization difficulties of the
Kalman filter like EKF and UKF. It approximates the posterior density by a Gaussian
Mixture (GM)((Tam et al., 1999)), a weighted sum of Gaussian density functions. The
computational effort of finding a good initialization point is omitted here. The first
measurement is converted into a Gaussian sum. The algorithmic procedure for compu-
tation of weights wg, means xg and covariances Pg is the same as in (Mušicki & Koch,
2008). The mapping of the TDOA measurement into the Cartesian state space consists
of several steps:

– present the ±σr hyperbolae in the state space,

– choose the same number of points on each hyperbolae,

– inscribe an ellipse in the quadrangle of two points on the +σr and two points on
the −σr hyperbola,

– the center of the ellipse is the mean, the ellipse the covariance and the square root
of the determinant the weight of the Gaussian summand.

An EKF is started for each mean and covariance, the weights are updated with the
posterior probability. The final mean is computed as weighted sum of the individual
EKF means: x̄ = ∑

n
g=1 wgxg, where n is the number of Gaussian terms.

The performance of these four estimation algorithms is investigated in two different tracking
scenarios. In the first scenario, the emitter at (15, 15) km lies in a well-locatable region. MLE
shows good performance. The results of EKF and UKF are shown in Figure 4. They perform
well and the NEES, see appendix A.2, lies in the 95% interval [1.878, 2.126] for both filters, as
can be seen from Figure 4 (b). For this scenario the static GM filter shows no improvement
compared to a single EKF or UKF.
Scenario 2 analyzes a parallel flight of the sensors. The CRLB for the emitter position in (10, 7)
km indicates poor estimation accuracy. EKF and UKF have heavy initialization problems, both
have a high number of diverging tracks. Also the MLE suffers from difficulties of divergence.
The initialization with a GM results in 9 simultaneously updated EKFs. The sampling from the
GM approximation of the first measurement is presented in Figure 5 (a). The black solid lines
are the ±σr hyperbolae. The sampling points are displayed in blue. They give an intelligent
approximation of the first measurement. In Figure 5 (b) the RMSE of the GM filter and the
MLE are plotted in comparison to the CRLB. In this scenario the GM filter, the bank of 9
EKFs, shows good performance. After an initial phase, it nears asymptotically the CRLB.
The results of a single KF are unusable, they are higher than 105 m and for better visibility
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Fig. 4. (a) RMSE for EKF and UKF and (b) NEES for scenario 1

not presented. The MLE is initialized as described above and produces good results near the
CRLB. Its performance is better than the performance of the GM filter. The CRLB are shown
with initial assumptions.
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Fig. 5. (a) Sampling from the GM approximation and (b) RMSE for scenario 2

4. Combination of TDOA and AOA measurements

The combination of various types of measurements may lead to a gain in estimation accuracy.
Particularly in the case of a moving emitter, it is advantageous to fuse different kinds of mea-
surements. One possibility is that one sensor of the sensor pair is additionally able to take the
bearing measurements.

4.1 Problem statement

Let s
(1) be the location of the sensor, which takes the bearing measurements. The additional

azimuth measurement function at time tk is:
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Fig. 6. Combination of one TDOA and one azimuth measurement

hα

k = arctan





xk − x
(1)
k

yk − y
(1)
k



 (10)

Addition of white noise yields:

zα

k = hα

k + uα

k , uα

k ∼ N (0, σ
2
α
), (11)

where σα is the standard deviation of the AOA measurement.
Figure 6 shows the measurement situation after taking a pair of one azimuth and one TDOA
measurement. At each time step, two nonlinear measurements are taken, which must be pro-
cessed with nonlinear estimation algorithms.

4.2 Quantitative analysis

A moving emitter with one maneuver is considered to compare the performance of an esti-
mator using single azimuth measurements and an estimator using the fused measurement
set of azimuth and TDOA measurements. At the maneuvering time the emitter changes the
flight direction and its velocity. The observer which takes the azimuth measurements flies at
a constant speed of 50 m/s on a circular trajectory for observability reasons, see Figure 7. This
sensor takes every 2nd second azimuth measurements from the maneuvering emitter. TDOA
measurements are gained from the network of the moving sensor and a stationary observer
which lies in the observation space. TDOA measurements are also taken every 2nd second.
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Thus, at each time step a pair of one azimuth and one TDOA measurement can be processed.
The azimuth measurement standard deviation is assumed to be 1 degree and the TDOA mea-
surement standard deviation is assumed to be 200 m in the range domain.
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Fig. 7. Measurement situation

4.2.1 CRLB investigation

The CRLB of the combination of TDOA and AOA measurements is calculated over the fused
Fisher information of the single Fisher informations. The Fisher information at time tk is the
sum of the FIMs based on the TDOA and the AOA measurements:

Jk =
1

σ2
r

k

∑
i=1

(
∂hr(ei)

∂ek

)T
∂hr(ei)

∂ek
+

1

σ2
α

k

∑
i=1

(
∂hα(ei)

∂ek

)T
∂hα(ei)

∂ek
, (12)

with entries of the Jacobian of the AOA measurement equation:

∂hα(ei)

∂xi
=

yi − y
(1)
i

||r
(1)
i ||2

(13)

∂hα(ei)

∂yi
= −

xi − x
(1)
i

||r
(1)
i ||2

(14)

∂hα(ei)

∂ẋi
=

∂hα(ei)

∂ẏi
= 0. (15)

Therefore, the localization accuracy depends on the sensor-emitter geometry, the standard
deviation of the TDOA and the azimuth measurements and the number of measurements.
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4.2.2 Results
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Fig. 8. Comparison of AOA and a combination of AOA and TDOA

Three estimation algorithms are compared:

• MLE based on azimuth-only measurements: It works with knowledge of the emitter
dynamic: the state of the target is modeled using the dynamic with one maneuver and
of a constant velocity before and after the maneuvering time. The 7-dimensional emitter
state is to be estimated, including the maneuvering time and the two speed vectors of
the two segments of the emitter trajectory. The modeling of the emitter dynamic and the
algorithms for the MLE are implemented like in (Oispuu & Hörst, 2010), where piece-
wise curvilinearly moving targets are considered. The processing of the measurements
is done after taking the complete measurement dataset in retrospect. The 7-dimensional
emitter state can be computed for every time step or alternatively for a single reference
time step.

• MLE based on the combination of azimuth and TDOA measurements. The algorithm
is the same algorithm as for the AOA only case. The TDOA measurements are basis of
the optimization, too.

• A filter which uses the combined measurement set of azimuth and TDOA measure-
ments: it transforms at each time step the measurement pair of azimuth and TDOA
measurement {zα, zt} into the Cartesian state space. At each time step, using the UT an
estimation of the emitter state in the Cartesian state space and an associated covariance
are obtained. Emitter tracking is started with the first measurement pair and performed
in parallel to gaining the measurements.
The UT consists of two steps:
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– Computation of the distance from sensor s
(1) to the emitter:

||r(1)|| =
||x(1) − x

(2)||2 − zt2

2

[

(

x(2) − x(1)
)T

(

sin(zα)
cos(zα)

)

− zt

] (16)

– Calculation of the emitter location:

x̂ = x
(1) + ||r(1)||

(

cos(zα)
sin(zα)

)

; (17)

The measurement pair and its associated measurement covariance R = diag[σ2
α

, σ
2
r ],

where diag[] means the diagonal matrix, is processed using the UT. I.e., several sigma
points in the two-dimensional measurement space are selected and transformed. We
obtain an estimation of the emitter state in the Cartesian state space and an associated
covariance. A linear Kalman filter is started with the position estimate and the asso-
ciated covariance. The update is performed in the Cartesian state space by transform-
ing the incoming measurement pair using the unscented transform. This filter uses as
model for the emitter dynamic the model for a inertially moving target. This model
does not describe correctly the emitter dynamic but addition of white Gaussian process
noise can correct the error of the model.

In Figure 8 the results based on 1000 Monte Carlo runs are presented. Figure 8 (a) shows the
comparison between the MLE only based on azimuth measurements and based on a combi-
nation of azimuth and TDOA measurements. The MLE delivers for each Monte Carlo run
one 7-dimensional estimate of the emitter state from which the resulting emitter trajectory is
computed. The RMS error to the true emitter trajectory is shown. Using the combined mea-
surement set, the performance is significant better than the AOA only results. Figure 8 (b)
visualizes the results of the linear KF using the UT. At each time step, an estimate of the emit-
ter state is computed. In spite of an insufficient dynamic model, the emitter state is estimated
quite fair in the beginning. But due to the incorrect dynamic model, the localization accuracy
in the end is about 120 m. The MLE based on the combined measurement set shows better
performance than the filter using the UT.

5. Combination of TDOA and FDOA measurements

A combination of TDOA and FDOA measurements increases the performance compared to
single TDOA measurements (see (Mušicki et al., 2010)). A minimum of two sensors is needed
to gain FDOA measurements at one time step. The omnidirectional antennas which measure
the TOA can measure the frequency of the received signal as well. Frequency measurements
depend on the relative motion between the emitter and the sensors. The radial component of
the relative speed vector determines the frequency shift which is necessary to obtain nonzero
FDOA values.

5.1 Problem statement

The FDOA measurement function depends not only on the emitter position but also on its
speed and course, for easy understanding the subscript k for the time step is omitted in this
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Fig. 9. Combination of TDOA and FDOA measurements in three different scenarios

section if it is clear from the context:

h f f =
f0

c

(

(ẋ(1) − ẋ)T r
(1)

||r(1)||
− (ẋ(2) − ẋ)T r

(2)

||r(2)||

)

, (18)

where f0 is carrier frequency of the signal. Multiplication with c
f0

yields the measurement

equation in the velocity domain:

h f = (ẋ(1) − ẋ)T r
(1)

||r(1)||
− (ẋ(2) − ẋ)T r

(2)

||r(2)||
. (19)

Under the assumption of uncorrelated measurement noise from time step to time step and
from the TDOA measurements, we obtain the FDOA measurement equation in the velocity
domain:

z f = h f + u f , u f ∼ N (0, σ
2
f ), (20)
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where σf is the standard deviation of the FDOA measurement. The associated TDOA/ FDOA
measurement pairs may be obtained by using the CAF ((Stein, 1981)). For each TDOA value
the associated FDOA value can be calculated. Nonlinear estimation algorithms are needed to
process the pair of TDOA and FDOA measurements and to estimate the emitter state.
Figure 9 shows the situation for different sensor headings after taking one pair of TDOA and
FDOA measurements. The green curve, i.e. the branch of hyperbola, indicates the ambiguity
after the TDOA measurement. The ambiguity after the FDOA measurement is plotted in ma-
genta. The intersection of both curves presents a gain in information for the emitter location.
This gain is very high if sensors move behind each other.

5.2 Quantitative analysis

In the following, a scenario with a moving emitter is investigated to compare the performance
of two filters which exploit a combination of TDOA and FDOA and one filter based on single
TDOA measurements. The presented filters are GM filters which approximate the required
densities by a weighted sum of Gaussian densities.

5.2.1 CRLB investigation

The Fisher information at time tk is the sum of the Fisher information based on the TDOA and
the FDOA measurements:

Jk =
1

σ2
r

k

∑
i=1

(
∂hr(ei)

∂ek

)T
∂hr(ei)

∂ek
+

1
σ2

f

k

∑
i=1

(

∂h f (ei)

∂ek

)T
∂h f (ei)

∂ek
, (21)

with entries of the Jacobian of the FDOA measurement equation:

∂h f (e)

∂x
= D

(1)
x − D

(2)
x (22)

∂h f (e)

∂y
= D

(1)
y − D

(2)
y (23)

∂h f (e)

∂ẋ
=

x − x(2)

||r(2)||
−

x − x(1)

||r(1)||
(24)

∂h f (e)

∂ẏ
=

y − y(2)

||r(2)||
−

y − y(1)

||r(1)||
, (25)

with

D
(i)
x =

(ẋ(i) − ẋ)− 1
||r(i) ||2

[

(ẋ(i) − ẋ)Tr(i)
]

(x − x(i))

||r(i)||
, i = 1, 2 (26)

D
(i)
y =

(ẏ(i) − ẏ)− 1
||r(i) ||2

[

(ẋ(i) − ẋ)Tr(i)
]

(y − y(i))

||r(i)||
, i = 1, 2. (27)

The CRLB depends not only on the sensors-emitter geometry and the measurement standard
deviations but also on the velocity. A nonzero radial component of the relative velocity vector
is needed to obtain nonzero FDOA values.
The CRLB for one time scan, a pair of one TDOA and one FDOA measurement, is plotted
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in Figure 10. Assumed is a standard deviation of TDOA of 200 m (0.67µs) and a standard
deviation of FDOA of 4 m/s, this corresponds to a standard deviation in the frequency domain
of 40 Hz, assuming a carrier frequency of about 3 GHz. The color bar shows the values for
the localization accuracy in m. In these situations, the maximal gain in localization accuracy
is obtained when the sensors fly one after the other. The results for the parallel flight can be
improved if the distance of the sensors is increased.

km in east direction →→→

k
m

in
n
o
rt
h
d
ir
ec
ti
o
n
→→ →

(a) tail flight

km in east direction →→→

k
m

in
n
o
rt
h
d
ir
ec
ti
o
n

→→ →

(b) parallel flight

km in east direction →→→

k
m

in
n
o
rt
h
d
ir
ec
ti
o
n

→→ →

(c) flight head on

Fig. 10. CRLB for the combination of TDOA and FDOA for one time scan

5.2.2 Results

Both TDOA and FDOA measurement equations are nonlinear. Therefore nonlinear estimation
algorithms are needed to process the combined measurement set. The performance of three
different estimation algorithms is investigated in a scenario with a moving emitter.
The investigated scenario and the results are described in (Mušicki et al., 2010). The emitter is
assumed to move at a constant speed in x-direction of −10 m/s. Due to observability reasons,
sensors perform maneuvers, they move with a constant speed, but not velocity, of 100 m/s.
The results shown here are the product of a Monte Carlo simulation with 1000 runs with a
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sampling interval of two seconds. A total of 80 s is regarded, the maneuver is performed at
40 s. The maximum emitter speed constraint is set to Vmax = 15 m/s. Measurement standard
deviation σr for TDOA is assumed to be 100 m in the range domain, and the standard devia-
tion σf for FDOA is assumed to be 10 mm/s in the velocity domain.
The three investigated algorithms are:

• The GMM-ITS (Gaussian Mixture Measurement presentation-Integrated Track Split-
ting) filter using TDOA and FDOA measurements is a dynamic GM filter with inte-
grated track management, see (Mušicki et al., 2010) (TFDOA in Figure 11). In (Mušicki
et al., 2010) is demonstrated that the simultaneous processing of the measurement pair
is equivalent to processing first the TDOA measurement and than the FDOA measure-
ment. The filter is initialized with the GM approximation of the first TDOA measure-
ment. One cycle of the filter consists of several steps:

– prior GM approximation of the updated density in the state space computed using
previous measurements

– prediction in the state space for each component of the GM

– filtering with the incoming TDOA measurement:

(a) GM representation of the TDOA measurement,

(b) new components of the estimated state is obtained by updating each compo-
nent of the predicted state space by each component of the TDOA GM,

(c) control of the number of new estimated state components (pruning and merg-
ing)

– filtering with the incoming FDOA measurement: each component of the state pre-
sentation is filtered with an EKF: updated density

• The GMM-ITS filter using single TDOA is a dynamic GM filter using only TDOA mea-
surements. The processing is the same as in the GMM ITS filter, where the update
process is only done with the TDOA measurements (TDOA in Figure 11)

• The static GM filter (fixed number of components) based on the combination of TDOA
and FDOA measurements (static GM in Figure 11). The filter is initialized with the
presentation of the TDOA measurement as a GM. The update is performed as EKF for
the TDOA measurement as well as for the FDOA measurement, the filter based only on
TDOA measurements is presented in 3.2.2.

Figure 11 presents the RMSE of the three described filters in comparison to the CRLB. The
period after the sensor maneuvers, when the RMSE decreases, is zoomed in. In this scenario of
a moving emitter, the filter based only on TDOA measurements shows poor performance. The
combination of the various measurement types of TDOA and FDOA increases the estimation
accuracy significantly. The static GM filter shows good performance with estimation errors of
about 30 m. The dynamic GM filter is nearly on the CRLB in the final phase with estimation
errors of about 10 m. This shows the significant gain in estimation accuracy combing different
types of measurements.
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Fig. 11. (a) Scenario, (b) RMSE of the mobile emitter tracking (©[2010] IEEE)1

6. Conclusions

Passive emitter tracking in sensor networks is in general superior to emitter tracking using
single sensors. Even a pair of sensors improves the performance strongly. The techniques of
solving the underlying tracking problem are the same as in the single sensor case. The first
step should be the investigation of the CRLB to know the optimal achievable estimation ac-
curacy using the available measurement set. It reveals characteristic features of localization
and gives an insight into the parametric dependencies of the passive emitter tracking problem
under consideration. It shows that the estimation accuracy is often strongly dependent on the
geometry. Secondly, a powerful estimation algorithm is needed to solve the localization prob-
lem. In passive emitter tracking, states and measurements are not linearly related. Therefore,
only methods that appropriately deal with nonlinearities can be used. This chapter provides
a review of different nonlinear estimation methods. Depending on the type of measurement
and on different requirements in various scenarios, different estimation algorithms can be the
methods of choice. E.g., to obtain good results near the CRLB the MLE is an appropriate
method. Here, the computational effort is higher compared to alternatives such as Kalman
filters. Tracking from the first measurement is possible using the UT in the TDOA/AOA case
or using the GM filter or the GMM-ITS filter. They overcome the initialization difficulties of
single Kalman Filters. The UT transform the measurement into the Cartesian state space and
the GM filter and GMM-ITS filter approximate the first measurement by a Gaussian Mixture,
a weighted sum of Gaussian densities. The first measurement is transformed into the Carte-
sian space and converted into a Gaussian sum. The tracking with the GM filter and GMM-ITS
filter shows good performance and results near the CRLB.
For passive emitter tracking in sensor networks different measurement types can be gained
by exploiting the signal coming from the target. Some of them can be taken by single sensors:
e. g. bearing measurements. Others are only gained in the sensor network, a minimum of two
sensors is needed. The combination of different measurements leads to a significant gain in
estimation accuracy.
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A. Appendix: Toolbox of methods

A.1 Cramér Rao investigation

It is important to know the optimum achievable localization accuracy that can be attained
with the measurements. This optimum estimation accuracy is given by the Cramér Rao
lower bound (CRLB); it is a lower bound for an unbiased estimator and can be asymptotically
achieved by unbiased estimators (Bar-Shalom et al., 2001; Van Trees, 1968). The investigation
of the CRLB reveals characteristic features of the estimation problem under consideration. The
CRLB can be used as a benchmark to asses the performance of the investigated estimation
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methods. The CRLB is calculated from the inverse of the Fisher Information Matrix (FIM) J.
The CR inequality reads:

E

[

(êk − ek)(êk − ek)T
]

≥ J−1
k , (28)

Jk = E

[

∇ek
ln p(Zk|ek)(∇ek

ln p(Zk|ek))T
]

, (29)

where ê determines the estimate and E [·] determines the expectation value.
The Fisher information J uses the Likelihood function, the conditional probability p(Zk|ek),
for calculation:

p(Zk|ek) =

(

1
√

det(2πR)

)

exp

(

−
1
2

k

∑
i=1

(zi − h(ei))T
R
−1(zi − h(ei))

)

, (30)

where Zk = {z1, z2, . . . , zk} is the set of measurements up to time tk. Under the assumption
of non-correlation of the measurement noise from time to time the calculation of the CRLB
is performed for the reference time tk with the measurement set Zk = {z1, . . . , zk} and the
time dependent measurement functions {h(e1), . . . , h(ek)}. The computation results from the
inverse of the Fisher information Jk at reference time tk:

Jk =
k

∑
i=1

(

∂h(ei)
∂ek

)T

R
−1 ∂h(ei)

∂ek
, (31)

where
∂h(ei)

∂ek
=

∂h(ei)
∂ei

∂ei

∂ek
. (32)

For the stationary scenario the state vector e of the emitter is the same at each time step. That
means,

∂h(ei)
∂ei

=
∂h(ei)

∂ek
∀i. (33)

For the mobile emitter case, we obtain, using the dynamic equation of the inertially target
motion,

ek = Fk|k−1ek−1, (34)

where Fk|k−1 is the evolution matrix which relates the target state from time tk to time tk−1,
the FIM at reference time tk

Jk =
k

∑
i=1

F
−1 T
k|i

(

∂h(ei)
∂ei

)T

R
−1

(

∂h(ei)
∂ei

)

F
−1
k|i

. (35)

At time t1 the FIM J1 is usually singular and not invertible, because the state vector ek can-
not be estimated based on a single measurement without additional assumptions. Thus, we
incorporate additional assumptions. These assumptions may concern the area in which the
emitter is attended to be. This prior information about a prior distribution of e can be added
to the FIM at time t1 as artificial measurement:

J
pr
1 = J1 + Jpr, (36)

where Jpr is the prior Fisher information. Under the Gaussian assumption of e follows:

Jpr = P−1
pr , (37)
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where Ppr is the covariance of the prior distribution.
The prior information reduces the bound in the initial phase, but has little impact on later time
steps.

A.2 NEES

Consistency is necessary for filter functionality, thus the normalized estimation error squared,
the NEES is investigated, see (Bar-Shalom et al., 2001). A consistent estimator describes the
size of the estimation error by its associated covariance matrix adequately. Filter consistency
is necessary for the practical applicability of a filter.
The computation of the NEES requires the state estimate ek|k at time tk, its associated covari-
ance matrix Pk|k and the true state ek.
Let ẽk|k be the error of ek|k: ẽk|k := ek − ek|k. The NEES is defined by this term:

ǫk = ẽ
T
k|kP

−1
k|k

ẽk|k. (38)

thus, ǫk is the squared estimation error ẽk|k which is normalized with its associated covariance

P
−1
k|k

. Under the assumption that the estimation error is approximately Gaussian distributed

and the filter is consistent, ǫk is χ
2 distributed with ne degrees of freedom, where ne is the

dimension of e: ǫk ∼ χ
2
ne

. Then:
E [ǫk] = ne. (39)

The test will be based on the results of N Monte Carlo Simulations that provide N independent
samples ǫ

i
k, i = 1, . . . , N, of the random variable ǫk. The sample average of these N samples is

ǭk =
1

N

N

∑
i=1

ǫ
i
k. (40)

If the filter is consistent, Nǭk will have a χ
2 density with Nne degrees of freedom.

Hypothesis H0, that the state estimation errors are consistent with the filter calculated covari-
ances is accepted if ǭk ∈ [a1, a2], where the acceptance interval is determined such that:

P {ǭk ∈ [a1, a2] |H0} = 1 − α. (41)

In this chapter, we apply the 95% probability concentration region for ǭk, i.e. α is 0, 05.
In the TDOA scenario of a stationary emitter, the dimension ne of the emitter is 2, so the
number of degrees of freedom for the NEES is equal to 2. Basis of the test are the results of
N = 1000 Monte Carlo simulations, we get a total of 2000 degrees of freedom. The interval
[1.878, 2.126] is obtained for 2000 degrees of freedom with the values of the χ

2 table as two-
sided acceptance interval.

A.3 Estimation algorithms overview

Powerful estimation algortihms must be found that effectively estimates the emitter state from
the noisy measurements. Due to the fact that for passive emitter tracking, measurements and
states are not linearly related, only nonlinear methods can be applied. We concentrate on some
representatives of the number on nonlinear estimation methods with a focus on the Gaussian
Mixture filter which shows good performance in nonlinear measurement situations, (Mušicki
et al., 2010).
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A.3.1 MLE

The MLE is a direct search method and computes at each time step the optimal emitter state
based on the complete measurement dataset. It stores the complete measurement dataset and
belongs to the batch algorithms. The MLE provides that value of ek which maximizes the
Likelihood function, the conditional probability density function, (30). This means that the
MLE minimizes the quadratic form:

g(ek) =
k

∑
i=1

(zi − h(ei))T
R
−1(zi − h(ei)) (42)

with respect to ek. Since there is no closed-form MLE solution for ek in passive emitter track-
ing using TDOA, FDOA and AOA, a numerical iterative search algorithm is needed to find the
minimum of the quadratic form. Therefore, application of MLE suffers from the same prob-
lems as the numerical algorithms. The ML method attains asymptotically the CRLB when
properly initialized. One disadvantage of the MLE is the high computational effort in com-
parison to the Kalman filters.

A.3.2 EKF

The Extended Kalman filter (EKF) is a recursive Bayesian estimator which approximates the
nonlinearities by linearization. The Bayes theorem which expresses the posterior probability
density function of the state based on all available measurement information is used to obtain
an optimal estimate of the state:

p(ek|Zk) =
p(zk|ek)p(ek|Zk−1)

p(zk|Zk−1)
, (43)

with p(zk|Zk−1) =
∫

p(zk|ek)p(ek|Zk−1)dek.
The filter consists of two steps, prediction using the dynamic equation and update, using
the Bayes theorem to process the incoming measurement. Processing a combination of two
measurements is the same as filtering first with one measurement and then processing the
result with the other measurement, as shown in (Mušicki et al., 2010).
In passive target tracking using TDOA, angle and FDOA measurements, the nonlinearity is
in the measurement equations. Thus, the EKF approximates the measurement equations by
its first-order Taylor series expansions. Here, the TDOA and AOA measurement functions are
differentiated with respect to the position coordinates and the FDOA measurement function
is differentiated with respect to the position and velocity coordinates:

Ĥ
t
k =

(r
(1)
k )T

||r
(1)
k ||

−
(r

(2)
k )T

||r
(2)
k ||

(44)

Ĥ
α

k =

(
yk − y

(1)
k

x
(1)
k − xk

)T

||r
(1)
k ||2

(45)

Ĥ
f
k =




D
(1)
k − D

(2)
k

r
(2)
k

||r
(2)
k ||

−
r
(1)
k

||r
(1)
k ||




T

, (46)
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where

D
(i)
k =

(ẋ
(i)
k − ẋk) − 1

||r
(i)
k ||2

[

(ẋ
(i)
k − ẋk)T

r
(i)
k

]

r
(i)
k

||r
(i)
k ||

, i = 1, 2. (47)

Then the Kalman filter equations are applied. The EKF is highly sensitive to the initialization
and works satisfactorily only if the initial value is near the true target position.

A.3.3 UKF

The Unscented Kalman Filter (UKF) (see (Julier & Uhlmann, 2004)) deterministically selects
a small number of sigma points. These sigma points are propagated through a nonlinear
transformation. Since the nonlinearities in passive target tracking are in the measurement
equations, the Unscented Transform (UT) is applied in the update step. In the state space,
sample points and their weights are deterministically chosen. They represent mean and co-
variance of the density. The sample points are propagated through the UT. This produces the
sampling points in the measurement space. Furthermore a covariance and a cross covariance
is computed. Than the Filter Equations are passed.
Alternatively, the UT can be used to transform measurements in the state space. In this chap-
ter, measurements of the two-dimensional measurement space of TDOA and azimuth mea-
surements and their associated measurement covariances are converted into the Cartesian
state space. A position estimate and the associate position coavariance in the Cartesian state
space is obtained.
The UT algorithm is very simple and easy to apply, no complex Jacobians must be calculated.
The initialization is very important. A proper initialization is substantial for good results.

A.3.4 Gaussian Mixture Filter

The Gaussian Mixture (GM) Filter overcomes the initialization difficulties and divergence
problems of the Kalman filter like EKF and UKF. It is a recursive Bayesian estimator like the
Kalman filters which uses the Chapman-Kolmogoroff equation for the prediction step and
the Bayes equation for the estimation update. The key idea is to approximate the posterior
density p(ek|Zk) by a weighted sum of Gaussian density functions. Applying Bayes rule, the
posterior density can be expressed using the likelihood function p(zk|ek). Therefore, the main
step is to approximate the likelihood function by a GM:

p(zk|ek) ≈ pA(zk|ek) =
ck

∑
i=1

wi
kN

(
zi

k; ẑi
k|k, R

i
k|k

)
, (48)

where wi
k are the weights such that ∑

ck
i=1 wi

k = 1 and pA is the density of approximation which
must not be a probability density i. e. does not necessarily integrate to one.
The posterior density is:

p(ek|Zk) =
p(zk|ek)p(ek|Zk−1)∫

p(zk|ek)p(ek|Zk−1)dek
, (49)

from which one can see, that multiplying p(zk|ek) by any constant will not change the poste-
rior density.
The approximation of the likelihood is performed in the state space and can be made as accu-
rate as desirable through the choice of the number of mixture components. The problem is to
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formulate an algorithmic procedure for computation of weights, means and covariances. The
number of components can increase exponentially over time.
We describe two types of GM filters, a dynamic GM filter and a static GM filter.
Dynamic GM filter
The dynamic GM filter represents both the measurement likelihood p(zk|ek) and the state esti-
mate p(ek|Zk) in the form of Gaussian mixtures in the state space. The algorithm is initialized
by approximating the likelihood function after the first measurement in the state space. This
Gaussian Mixture yields a modelling of the state estimate too. New incoming TDOA mea-
surements are converted into a Gaussian mixture in the state space. Each component of the
state estimate is updated by each measurement component to produce one component of the
updated emitter state estimate pdf p(ek|Zk). This update process is linear and performed by
a standard Kalman filter. The number of emitter state estimate components increases expo-
nentially in time. Therefore, their number must be controlled by techniques of pruning and
merging.
For each time step the state estimate is obtained by the mean and the covariance:

êk =
Sk Mk

∑
g=1

ξ(g)êk|k(g) (50)

Pk|k =
Sk Mk

∑
g=1

ξ(g)
(

Pk|k + êk|k(g)êT
k|k(g)

)

− êk|k êT
k|k. (51)

The GM filter equations can be applied to all passive emitter tracking situations in this chap-
ter. The measurement likelihoods must be presented by their GM.
Static GM filter
The static GM filter represents the likelihood function p(z1|e1) after taking the first measure-
ment. The representation in the state space is used. Using the Bayesian equation this likeli-
hood can be used to present the posterior density p(e1|z1). The component of the Gaussian
Mixture are restricted to the number of the components of this Gaussian Sum representation.
For each new incoming measurement an EKF is performed to update the posterior density.
The algorithmic procedure for computation of weights wg, means eg and covariances Pg of
the GM is the same as in the dynamic case. The first measurement is converted into a Gaus-
sian sum. The computational effort of finding a good initialization point for a single KF is
omitted here. An EKF is started for each mean and covariance, the weights are updated with
the probabilities p(z|e). The filter output is the weighted sum of the individual estimates and
covariances:

êk =
n

∑
g=1

w(g)êk|k(g) (52)

Pk|k =
n

∑
g=1

w(g)
(

Pk|k + êk|k(g)êT
k|k(g)

)

− êk|k êT
k|k, (53)

where n is the number of Gaussian terms.
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