
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Advanced Techniques of Industrial Robot Programming 79

Advanced Techniques of Industrial Robot Programming

Frank Shaopeng Cheng

x

Advanced Techniques
of Industrial Robot Programming

Frank Shaopeng Cheng

Central Michigan University
United States

1. Introduction

Industrial robots are reprogrammable, multifunctional manipulators designed to move
parts, materials, and devices through computer controlled motions. A robot application
program is a set of instructions that cause the robot system to move the robot’s end-of-arm-
tooling (or end-effector) to robot points for performing the desired robot tasks. Creating
accurate robot points for an industrial robot application is an important programming task.
It requires a robot programmer to have the knowledge of the robot’s reference frames,
positions, software operations, and the actual programming language. In the conventional
“lead-through” method, the robot programmer uses the robot teach pendant to position the
robot joints and end-effector via the actual workpiece and record the satisfied robot pose as
a robot point. Although the programmer’s visual observations can make the taught robot
points accurate, the required teaching task has to be conducted with the real robot online
and the taught points can be inaccurate if the positions of the robot’s end-effector and
workpiece are slightly changed in the robot operations. Other approaches have been utilized
to reduce or eliminate these limitations associated with the online robot programming. This
includes generating or recovering robot points through user-defined robot frames, external
measuring systems, and robot simulation software (Cheng, 2003; Connolly, 2006;
Pulkkinen1 et al., 2008; Zhang et al., 2006).
Position variations of the robot’s end-effector and workpiece in the robot operations are
usually the reason for inaccuracy of the robot points in a robot application program. To
avoid re-teaching all the robot points, the robot programmer needs to identify these position
variations and modify the robot points accordingly. The commonly applied techniques
include setting up the robot frames and measuring their positional offsets through the robot
system, an external robot calibration system (Cheng, 2007), or an integrated robot vision
system (Cheng, 2009; Connolly, 2007). However, the applications of these measuring and
programming techniques require the robot programmer to conduct the integrated design
tasks that involve setting up the functions and collecting the measurements in the
measuring systems. Misunderstanding these concepts or overlooking these steps in the
design technique will cause the task of modifying the robot points to be ineffective.
Robot production downtime is another concern with online robot programming. Today’s
robot simulation software provides the robot programmer with the functions of creating

4

www.intechopen.com

Advances in Robot Manipulators80

virtual robot points and programming virtual robot motions in an interactive and virtual 3D
design environment (Cheng, 2003; Connolly, 2006). By the time a robot simulation design is
completed, the simulation robot program is able to move the virtual robot and end-effector
to all desired virtual robot points for performing the specified operations to the virtual
workpiece without collisions in the simulated workcell. However, because of the inevitable
dimensional differences of the components between the real robot workcell and the
simulated robot workcell, the virtual robot points created in the simulated workcell must be
adjusted relative to the actual position of the components in the real robot workcell before
they can be downloaded to the real robot system. This task involves the techniques of
calibrating the position coordinates of the simulation Device models with respect to the
user-defined real robot points.
In this chapter, advanced techniques used in creating industrial robot points are discussed
with the applications of the FANUC robot system, Delmia IGRIP robot simulation software,
and Dynalog DynaCal robot calibration system. In Section 2, the operation and
programming of an industrial robot system are described. This includes the concepts of
robot’s frames, positions, kinematics, motion segments, and motion instructions. The
procedures for teaching robot frames and robot points online with the real robot system are
introduced. Programming techniques for maintaining the accuracy of the exiting robot
points are also discussed. Section 3 introduces the setup and integration of a two
dimensional (2D) vision system for performing vision-guided robot operations. This
includes establishing integrated measuring functions in both robot and vision systems and
modifying existing robot points through vision measurements for vision-identified
workpieces. Section 4 discusses the robot simulation and offline programming techniques.
This includes the concepts and procedures related to creating virtual robot points and
enhancing their accuracy for a real robot system. Section 5 explores the techniques for
transferring industrial robot points between two identical robot systems and the methods
for enhancing the accuracy of the transferred robot points through robot system calibration.
A summary is then presented in Section 6.

2. Creating Robot Points Online with Robot

The static positions of an industrial robot are represented by Cartesian reference frames and
frame transformations. Among them, the robot base frame R(x, y, z) is a fixed one and the
robot’s default tool-center-point frame Def_TCP (n, o, a), located at the robot’s wrist
faceplate, is a moving one. The position of frame Def_TCP relative to frame R is defined as
the robot point R

TCP_Def]n[P and is mathematically determined by the 4  4 homogeneous

transformation matrix in Eq. (1)





















1000
paon
paon
paon

T]n[P
zzzz

yyyy

xxxx

TCP_Def
RR

TCP_Def

, (1)

where the coordinates of vector p = (px, py, pz) represent the location of frame Def_TCP and
the coordinates of three unit directional vectors n, o, and a represent the orientation of frame

Def_TCP. The inverse of RTDef_TCP or R
TCP_Def]n[P denoted as (RTDef_TCP)-1 or (R

TCP_Def]n[P)-1

represents the position of frame R to frame Def_TCP, which is equal to frame transformation
Def_TCPTR. Generally, the definition of a frame transformation matrix or its inverse described
above can be applied for measuring the relative position between any two frames in the
robot system (Niku, 2001). The orientation coordinates of frame Def_TCP in Eq. (1) can be
determined by Eq. (2)








































xyxyy

xzxyzxzxyzyz

xzxyzxzxyzyz

xyz

zzz

yyy

xxx

coscossincossin
sincoscossinsincoscossinsinsincossin
sinsincossincoscossinsinsincoscoscos

),x(Rot),y(Rot),z(Rot
aon
aon
aon

, (2)

where transformations Rot(x, θx), Rot(y, θy), and Rot(z, θz) are pure rotations of frame
Def_TCP about the x-, y-, and z-axes of frame R with the angles of θx (yaw), θy (pitch), and θz
(roll), respectively. Thus, a robot point R

TCP_Def]n[P can also be represented by Cartesian

coordinates in Eq. (3)

)r,p,w,z,y,x(]n[P R

TCP_Def  . (3)

It is obvious that the robot’s joint movements are to change the position of frame Def_TCP.
For an n-joint robot, the geometric motion relationship between the Cartesian coordinates of
a robot point R

TCP_Def]n[P in frame R (i.e. the robot world space) and the proper

displacements of its joint variables q = (q1, q2, ..qn) in robot joint frames (i.e. the robot joint
space) is mathematically modeled as the robot’s kinematics equations in Eq. (4)







































1000
)r,q(f)r,q(f)r,q(f)r,q(f
)r,q(f)r,q(f)r,q(f)r,q(f
)r,q(f)r,q(f)r,q(f)r,q(f

1000
paon
paon
paon

34333231

24232221

14131211

zzzz

yyyy

xxxx

, (4)

where fij(q, r) (for i = 1, 2, 3 and j = 1, 2, 3, 4) is a function of joint variables q and joint
parametersr.
Specifically, the robot forward kinematics equations will enable the robot system to determine
where a R

TCP_Def]n[P will be if the displacements of all joint variables q=(q1, q2, ..qn) are known.

The robot inverse kinematics equations will enable the robot system to calculate what
displacement of each joint variable qk (for k = 1 ,..., n) must be if a R

TCP_Def]n[P is specified. If the

inverse kinematics solutions for a given R
TCP_Def]n[P are infinite, the robot system defines the point

as a robot “singularity” and cannot move frame Def_TCP to it.

www.intechopen.com

Advanced Techniques of Industrial Robot Programming 81

virtual robot points and programming virtual robot motions in an interactive and virtual 3D
design environment (Cheng, 2003; Connolly, 2006). By the time a robot simulation design is
completed, the simulation robot program is able to move the virtual robot and end-effector
to all desired virtual robot points for performing the specified operations to the virtual
workpiece without collisions in the simulated workcell. However, because of the inevitable
dimensional differences of the components between the real robot workcell and the
simulated robot workcell, the virtual robot points created in the simulated workcell must be
adjusted relative to the actual position of the components in the real robot workcell before
they can be downloaded to the real robot system. This task involves the techniques of
calibrating the position coordinates of the simulation Device models with respect to the
user-defined real robot points.
In this chapter, advanced techniques used in creating industrial robot points are discussed
with the applications of the FANUC robot system, Delmia IGRIP robot simulation software,
and Dynalog DynaCal robot calibration system. In Section 2, the operation and
programming of an industrial robot system are described. This includes the concepts of
robot’s frames, positions, kinematics, motion segments, and motion instructions. The
procedures for teaching robot frames and robot points online with the real robot system are
introduced. Programming techniques for maintaining the accuracy of the exiting robot
points are also discussed. Section 3 introduces the setup and integration of a two
dimensional (2D) vision system for performing vision-guided robot operations. This
includes establishing integrated measuring functions in both robot and vision systems and
modifying existing robot points through vision measurements for vision-identified
workpieces. Section 4 discusses the robot simulation and offline programming techniques.
This includes the concepts and procedures related to creating virtual robot points and
enhancing their accuracy for a real robot system. Section 5 explores the techniques for
transferring industrial robot points between two identical robot systems and the methods
for enhancing the accuracy of the transferred robot points through robot system calibration.
A summary is then presented in Section 6.

2. Creating Robot Points Online with Robot

The static positions of an industrial robot are represented by Cartesian reference frames and
frame transformations. Among them, the robot base frame R(x, y, z) is a fixed one and the
robot’s default tool-center-point frame Def_TCP (n, o, a), located at the robot’s wrist
faceplate, is a moving one. The position of frame Def_TCP relative to frame R is defined as
the robot point R

TCP_Def]n[P and is mathematically determined by the 4  4 homogeneous

transformation matrix in Eq. (1)





















1000
paon
paon
paon

T]n[P
zzzz

yyyy

xxxx

TCP_Def
RR

TCP_Def

, (1)

where the coordinates of vector p = (px, py, pz) represent the location of frame Def_TCP and
the coordinates of three unit directional vectors n, o, and a represent the orientation of frame

Def_TCP. The inverse of RTDef_TCP or R
TCP_Def]n[P denoted as (RTDef_TCP)-1 or (R

TCP_Def]n[P)-1

represents the position of frame R to frame Def_TCP, which is equal to frame transformation
Def_TCPTR. Generally, the definition of a frame transformation matrix or its inverse described
above can be applied for measuring the relative position between any two frames in the
robot system (Niku, 2001). The orientation coordinates of frame Def_TCP in Eq. (1) can be
determined by Eq. (2)








































xyxyy

xzxyzxzxyzyz

xzxyzxzxyzyz

xyz

zzz

yyy

xxx

coscossincossin
sincoscossinsincoscossinsinsincossin
sinsincossincoscossinsinsincoscoscos

),x(Rot),y(Rot),z(Rot
aon
aon
aon

, (2)

where transformations Rot(x, θx), Rot(y, θy), and Rot(z, θz) are pure rotations of frame
Def_TCP about the x-, y-, and z-axes of frame R with the angles of θx (yaw), θy (pitch), and θz
(roll), respectively. Thus, a robot point R

TCP_Def]n[P can also be represented by Cartesian

coordinates in Eq. (3)

)r,p,w,z,y,x(]n[P R

TCP_Def  . (3)

It is obvious that the robot’s joint movements are to change the position of frame Def_TCP.
For an n-joint robot, the geometric motion relationship between the Cartesian coordinates of
a robot point R

TCP_Def]n[P in frame R (i.e. the robot world space) and the proper

displacements of its joint variables q = (q1, q2, ..qn) in robot joint frames (i.e. the robot joint
space) is mathematically modeled as the robot’s kinematics equations in Eq. (4)







































1000
)r,q(f)r,q(f)r,q(f)r,q(f
)r,q(f)r,q(f)r,q(f)r,q(f
)r,q(f)r,q(f)r,q(f)r,q(f

1000
paon
paon
paon

34333231

24232221

14131211

zzzz

yyyy

xxxx

, (4)

where fij(q, r) (for i = 1, 2, 3 and j = 1, 2, 3, 4) is a function of joint variables q and joint
parametersr.
Specifically, the robot forward kinematics equations will enable the robot system to determine
where a R

TCP_Def]n[P will be if the displacements of all joint variables q=(q1, q2, ..qn) are known.

The robot inverse kinematics equations will enable the robot system to calculate what
displacement of each joint variable qk (for k = 1 ,..., n) must be if a R

TCP_Def]n[P is specified. If the

inverse kinematics solutions for a given R
TCP_Def]n[P are infinite, the robot system defines the point

as a robot “singularity” and cannot move frame Def_TCP to it.

www.intechopen.com

Advances in Robot Manipulators82

In robot programming, the robot programmer creates a robot point R
TCP_Def]n[P by first declaring

it in a robot program and then defining its coordinates in the robot system. The conventional
method is through recording a particular robot pose with the robot teach pendent (Rehg, 2003).
Under the teaching mode, the robot programmer jogs the robot’s joints for poisoning the robot’s
end-effector relative to the workpiece. As joint k moves, the serial pulse coder of the joint
measures the joint displacement qk relative to the “zero” position of the joint frame. The robot
system substitutes all measured values of q = (q1, q2, ..qn) into the robot forward kinematics
equations to determine the corresponding Cartesian coordinates of frame Def_TCP in Eq. (1) and
Eq. (3). After the robot programmer records a R

TCP_Def]n[P with the teach pendant, its Cartesian

coordinates and the corresponding joint values are saved in the robot system. The robot
programmer may use the “Representation” softkey on the teach pendant to automatically
convert and display the joint values and Cartesian coordinates of a taught robot point

R
TCP_Def]n[P . It is important to notice that Cartesian coordinates in Eq. (3) is the standard

representation of a R
TCP_Def]n[P in the industrial robot system, and its joint representation always

uniquely defines the position of frame Def_TCP (i.e. the robot pose) in frame R.
In robot programming, the robot programmer defines a motion segment of frame Def_TCP by
using two taught robot points in a robot motion instruction. During the execution of a motion
instruction, the robot system utilizes the trajectory planning method called “linear segment with
parabolic blends” to control the joint motion and implement the actual trajectory of frame
Def_TCP through one of the two user-specified motion types. The “joint” motion type allows the
robot system to start and end the motion of all robot joints at the same time resulting in an
unpredictable, but repeatable trajectory for frame Def_TCP. The “Cartesian” motion type allows
the robot system to move frame Def_TCP along a user-specified Cartesian path such as a straight
line or a circular arc in frame R during the motion segment, which is implemented in three steps.
First, the robot system interpolates a number of intermediate points along the specified Cartesian
path in the motion segment. Then, the proper joint values for each interpolated robot point are
calculated by the robot inverse kinematics equations. Finally, the “joint” motion type is applied
to move the robot joints between two consecutive interpolated robot points.
Different robot languages provide the robot systems with motion instructions in different format.
The motion instruction of FANUC Teach Pendant Programming (TPP) language (Fanuc, 2007)
allows the robot programmer to define a motion segment in one statement that includes the
robot point P[n], motion type, speed, motion termination type, and associated motion options.
Table 1 shows two motion instructions used in a FANUC TP program.

FANUC TPP Instruction Description
1. J P[1] 50% FINE

Moves the TCP frame to robot point P[1]
with “Joint” motion type (J) and at 50% of
the default joint maximum speed, and stops
exactly at P[1] with a “Fine” motion
termination.

2. L P[2] 100 mm/sec FINE

Utilizes “Linear” motion type (L) to move
TCP frame along a straight line from P[1] to
P[2] with a TCP speed of 100 mm/sec and a
“Fine” motion termination type.

Table 1. Motion instructions of FANUC TPP language

2.1 Design of Robot User Tool Frame
In the industrial robot system, the robot programmer can define a robot user tool frame
UT[k](x, y, z) relative to frame Def_TCP for representing the actual tool-tip point of the
robot’s end-effector. Usually, the UT[k] origin represents the tool-tip point and the z-axis
represents the tool axis. A UT[k] plays an important role in robot programming as it not
only defines the actual tool-tip point but also addresses its variations. Thus, every end-
effector used in a robot application must be defined as a UT[k] and saved in robot system
variable UTOOL[k]. Practically, the robot programmer may directly define and select a
UT[k] within a robot program or from the robot teach pendant. Table 2 shows the UT[k]
frame selection instructions of FANUC TPP language. When the coordinates of a UT[k] is
set to zero, it represents frame Def_TCP. The robot system uses the current active UT[k] to
record a robot point R

]k[UT]n[P as shown in Eq. (5) and cannot move the robot to any robot

point R
]g[UT]m[P that is taught with a UT[g] different from UT[k] (i.e. g ≠ k).

]k[UT
RR

]k[UT T]n[P  (5)

It is obvious that a robot point R

TCP_Def]n[P in Eq. (1) or Eq. (3) can be taught with different

UT[k], thus, represented in different Cartesian coordinates in the robot system as shown in
Eq. (6)

]k[UT
TCP_DefR

TCP_Def
R

]k[UT T]n[P]n[P  . (6)

FANUC TPP Instruction Description

1. UTOOL_NUM=1

Set UT[1] frame to be the current active
UT.

Table 2. UT[k] frame selection instructions of FANUC TPP language

To define a UT[k] for an actual tool-tip point PT-Ref whose coordinates (x, y, z, w, p, r) in
frame Def_TCP is unknown, the robot programmer must follow the UT Frame Setup
procedure provided by the robot system and teach six robot points R

TCP_Def]n[P

(for n = 1, 2, … 6) with respect to PT-Ref and a reference point PS-Ref on a tool reachable
surface. The “three-point” method as shown in Eq. (7) and Eq. (8) utilizes the first three
taught robot points in the UT Frame Setup procedure to determine the UT[k] origin.
Suppose that the coordinates of vector Def_TCPp= [pn, po, pa]T represent point PT-Ref in frame
Def_TCP. Then, it can be determined in Eq. (7)

 p)T(p R1
1

TCP_Def   , (7)

where the coordinates of vector Rp= [px, py, pz]T represents point PT-Ref in frame R and T1
represents the first taught robot point R

TCP_Def]1[P when point PT-Ref touches point PS-Ref. The

coordinates of vector Rp= [px, py, pz]T also represents point PS-Ref in frame R and can be
solved by the three linear equations in Eq. (8)

www.intechopen.com

Advanced Techniques of Industrial Robot Programming 83

In robot programming, the robot programmer creates a robot point R
TCP_Def]n[P by first declaring

it in a robot program and then defining its coordinates in the robot system. The conventional
method is through recording a particular robot pose with the robot teach pendent (Rehg, 2003).
Under the teaching mode, the robot programmer jogs the robot’s joints for poisoning the robot’s
end-effector relative to the workpiece. As joint k moves, the serial pulse coder of the joint
measures the joint displacement qk relative to the “zero” position of the joint frame. The robot
system substitutes all measured values of q = (q1, q2, ..qn) into the robot forward kinematics
equations to determine the corresponding Cartesian coordinates of frame Def_TCP in Eq. (1) and
Eq. (3). After the robot programmer records a R

TCP_Def]n[P with the teach pendant, its Cartesian

coordinates and the corresponding joint values are saved in the robot system. The robot
programmer may use the “Representation” softkey on the teach pendant to automatically
convert and display the joint values and Cartesian coordinates of a taught robot point

R
TCP_Def]n[P . It is important to notice that Cartesian coordinates in Eq. (3) is the standard

representation of a R
TCP_Def]n[P in the industrial robot system, and its joint representation always

uniquely defines the position of frame Def_TCP (i.e. the robot pose) in frame R.
In robot programming, the robot programmer defines a motion segment of frame Def_TCP by
using two taught robot points in a robot motion instruction. During the execution of a motion
instruction, the robot system utilizes the trajectory planning method called “linear segment with
parabolic blends” to control the joint motion and implement the actual trajectory of frame
Def_TCP through one of the two user-specified motion types. The “joint” motion type allows the
robot system to start and end the motion of all robot joints at the same time resulting in an
unpredictable, but repeatable trajectory for frame Def_TCP. The “Cartesian” motion type allows
the robot system to move frame Def_TCP along a user-specified Cartesian path such as a straight
line or a circular arc in frame R during the motion segment, which is implemented in three steps.
First, the robot system interpolates a number of intermediate points along the specified Cartesian
path in the motion segment. Then, the proper joint values for each interpolated robot point are
calculated by the robot inverse kinematics equations. Finally, the “joint” motion type is applied
to move the robot joints between two consecutive interpolated robot points.
Different robot languages provide the robot systems with motion instructions in different format.
The motion instruction of FANUC Teach Pendant Programming (TPP) language (Fanuc, 2007)
allows the robot programmer to define a motion segment in one statement that includes the
robot point P[n], motion type, speed, motion termination type, and associated motion options.
Table 1 shows two motion instructions used in a FANUC TP program.

FANUC TPP Instruction Description
1. J P[1] 50% FINE

Moves the TCP frame to robot point P[1]
with “Joint” motion type (J) and at 50% of
the default joint maximum speed, and stops
exactly at P[1] with a “Fine” motion
termination.

2. L P[2] 100 mm/sec FINE

Utilizes “Linear” motion type (L) to move
TCP frame along a straight line from P[1] to
P[2] with a TCP speed of 100 mm/sec and a
“Fine” motion termination type.

Table 1. Motion instructions of FANUC TPP language

2.1 Design of Robot User Tool Frame
In the industrial robot system, the robot programmer can define a robot user tool frame
UT[k](x, y, z) relative to frame Def_TCP for representing the actual tool-tip point of the
robot’s end-effector. Usually, the UT[k] origin represents the tool-tip point and the z-axis
represents the tool axis. A UT[k] plays an important role in robot programming as it not
only defines the actual tool-tip point but also addresses its variations. Thus, every end-
effector used in a robot application must be defined as a UT[k] and saved in robot system
variable UTOOL[k]. Practically, the robot programmer may directly define and select a
UT[k] within a robot program or from the robot teach pendant. Table 2 shows the UT[k]
frame selection instructions of FANUC TPP language. When the coordinates of a UT[k] is
set to zero, it represents frame Def_TCP. The robot system uses the current active UT[k] to
record a robot point R

]k[UT]n[P as shown in Eq. (5) and cannot move the robot to any robot

point R
]g[UT]m[P that is taught with a UT[g] different from UT[k] (i.e. g ≠ k).

]k[UT
RR

]k[UT T]n[P  (5)

It is obvious that a robot point R

TCP_Def]n[P in Eq. (1) or Eq. (3) can be taught with different

UT[k], thus, represented in different Cartesian coordinates in the robot system as shown in
Eq. (6)

]k[UT
TCP_DefR

TCP_Def
R

]k[UT T]n[P]n[P  . (6)

FANUC TPP Instruction Description

1. UTOOL_NUM=1

Set UT[1] frame to be the current active
UT.

Table 2. UT[k] frame selection instructions of FANUC TPP language

To define a UT[k] for an actual tool-tip point PT-Ref whose coordinates (x, y, z, w, p, r) in
frame Def_TCP is unknown, the robot programmer must follow the UT Frame Setup
procedure provided by the robot system and teach six robot points R

TCP_Def]n[P

(for n = 1, 2, … 6) with respect to PT-Ref and a reference point PS-Ref on a tool reachable
surface. The “three-point” method as shown in Eq. (7) and Eq. (8) utilizes the first three
taught robot points in the UT Frame Setup procedure to determine the UT[k] origin.
Suppose that the coordinates of vector Def_TCPp= [pn, po, pa]T represent point PT-Ref in frame
Def_TCP. Then, it can be determined in Eq. (7)

 p)T(p R1
1

TCP_Def   , (7)

where the coordinates of vector Rp= [px, py, pz]T represents point PT-Ref in frame R and T1
represents the first taught robot point R

TCP_Def]1[P when point PT-Ref touches point PS-Ref. The

coordinates of vector Rp= [px, py, pz]T also represents point PS-Ref in frame R and can be
solved by the three linear equations in Eq. (8)

www.intechopen.com

Advances in Robot Manipulators84

 0p)TTI(R1
32   , (8)

where transformations T2 and T3 represent the other two taught robot points R

TCP_Def]2[P and
R

TCP_Def]3[P in the UT Frame Setup procedure respectively when point PT-Ref is at point PS-Ref.

To ensure the UT[k] accuracy, these three robot points must be taught with point PT-Ref
touching point PS-Ref from three different approach statuses. Practically, R

TCP_Def]2[P (or
R

TCP_Def]3[P) can be taught by first rotating frame Def_TCP about its x-axis (or y-axis) for at

least 90 degrees (or 60 degrees) when the tool is at R
TCP_Def]1[P , and then moving point PT-Ref

back to point PS-Ref. A UT[k] taught with the “three-point” method has the same orientation
of frame Def_TCP.

Surface
Reference Point

Tool-tip
Reference Point

Fig. 1. The three-point method in teaching a UT[k]

If the UT[k] orientation needs to be defined differently from frame Def_TCP, the robot
programmer must use the “six-point” method and teach additional three robot points
required in UT Frame Setup procedure. These three points define the orient origin point, the
positive x-direction, and the positive z-direction of the UT[k], respectively. The method of
using such three non-collinear robot points for determining the orientation of a robot frame
is to be discussed in section 2.2.
Due to the tool change or damage in robot operations the actual tool-tip point of a robot’s
end-effector can be varied from its taught UT[k], which causes the inaccuracy of existing
robot points relative to the workpiece. To aviod re-teaching all robot points, the robot
programmer needs to teach a new UT[k]’ for the changed tool-tip point and shift all existing
robot points through offset Def_TCPTDef_TCP’ as shown in Fig. 2. Assume that transformation
Def_TCPTUT[k] represents the position of the original tool-tip point and remains unchanged
when frame UT[k] changes into new UT[k]’ as shown in Eq. (9)

]'k[UT

'TCP_Def
]k[UT

TCP_Def TT  , (9)

where frame Def_TCP‘ represents the position of frame Def_TCP after frame UT[k] moves

to UT[k]’. In this case, the pre-taught robot point R
]k[UT]n[P can be shifted into the

corresponding robot point R
]'k[UT]n[P through Eq. (10)

]'k[UT

'TCP_Def
'TCP_Def

TCP_Def
]'k[UT

TCP_Def TTT  . (10)

The industrial robot system usually implements Eq. (9) and Eq. (10) as both a system utility
function and a program instruction. As a system utility function, the offset Def_TCPTDef_TCP’
changes the position of frame Def_TCP in the robot system so that the robot programmer is
able to change the current UT[k] of a taught P[n] into a different UT[k]’ while remaining the
same Cartesian coordinates of P[n] in frame R. As a program instruction, Def_TCPTDef_TCP’
shifts the pre-taught robot point R

]k[UT]n[P into the corresponding point R
]'k[UT]'n[P without

changing the position of frame Def_TCP. Table 3 shows the UT[k] offset instruction of
FANUC TPP language for Eq. (10).

]'k[UT
'TCP_Def T

'TCP_Def
TCP_Def T

]k[UT
TCP_Def T

]'k[UT
TCP_Def T

Fig. 2. Shifting a robot point through the offset of frame Def_TCP

TP Instructions Description
1. Tool_Offset Conditions PR[x], UTOOL[k],

Offset value Def_TCPTDef_TCP’ is
stored in a user-specified position
register PR[x].

2. J P[n] 100% Fine Tool_Offset

The “Offset” option in motion
instruction shifts the existing
robot point R

]k[UT]n[P into

corresponding point R
]'k[UT]'n[P .

Table 3. UT[k] offset instruction of FANUC TPP language

2.2 Design of Robot User Frame
In the industrial robot system, the robot programmer is able to establish a robot user frame
UF[i](x, y, z) relative to frame R and save it in robot system variable UFRAME[i]. A defined
UF[i] can be selected within a robot program or from the robot teach pendant. The robot
system uses the current active UF[i] to record robot point]i[UF

]k[UT]n[P as shown in Eq. (11) and

www.intechopen.com

Advanced Techniques of Industrial Robot Programming 85

 0p)TTI(R1
32   , (8)

where transformations T2 and T3 represent the other two taught robot points R

TCP_Def]2[P and
R

TCP_Def]3[P in the UT Frame Setup procedure respectively when point PT-Ref is at point PS-Ref.

To ensure the UT[k] accuracy, these three robot points must be taught with point PT-Ref
touching point PS-Ref from three different approach statuses. Practically, R

TCP_Def]2[P (or
R

TCP_Def]3[P) can be taught by first rotating frame Def_TCP about its x-axis (or y-axis) for at

least 90 degrees (or 60 degrees) when the tool is at R
TCP_Def]1[P , and then moving point PT-Ref

back to point PS-Ref. A UT[k] taught with the “three-point” method has the same orientation
of frame Def_TCP.

Surface
Reference Point

Tool-tip
Reference Point

Fig. 1. The three-point method in teaching a UT[k]

If the UT[k] orientation needs to be defined differently from frame Def_TCP, the robot
programmer must use the “six-point” method and teach additional three robot points
required in UT Frame Setup procedure. These three points define the orient origin point, the
positive x-direction, and the positive z-direction of the UT[k], respectively. The method of
using such three non-collinear robot points for determining the orientation of a robot frame
is to be discussed in section 2.2.
Due to the tool change or damage in robot operations the actual tool-tip point of a robot’s
end-effector can be varied from its taught UT[k], which causes the inaccuracy of existing
robot points relative to the workpiece. To aviod re-teaching all robot points, the robot
programmer needs to teach a new UT[k]’ for the changed tool-tip point and shift all existing
robot points through offset Def_TCPTDef_TCP’ as shown in Fig. 2. Assume that transformation
Def_TCPTUT[k] represents the position of the original tool-tip point and remains unchanged
when frame UT[k] changes into new UT[k]’ as shown in Eq. (9)

]'k[UT

'TCP_Def
]k[UT

TCP_Def TT  , (9)

where frame Def_TCP‘ represents the position of frame Def_TCP after frame UT[k] moves

to UT[k]’. In this case, the pre-taught robot point R
]k[UT]n[P can be shifted into the

corresponding robot point R
]'k[UT]n[P through Eq. (10)

]'k[UT

'TCP_Def
'TCP_Def

TCP_Def
]'k[UT

TCP_Def TTT  . (10)

The industrial robot system usually implements Eq. (9) and Eq. (10) as both a system utility
function and a program instruction. As a system utility function, the offset Def_TCPTDef_TCP’
changes the position of frame Def_TCP in the robot system so that the robot programmer is
able to change the current UT[k] of a taught P[n] into a different UT[k]’ while remaining the
same Cartesian coordinates of P[n] in frame R. As a program instruction, Def_TCPTDef_TCP’
shifts the pre-taught robot point R

]k[UT]n[P into the corresponding point R
]'k[UT]'n[P without

changing the position of frame Def_TCP. Table 3 shows the UT[k] offset instruction of
FANUC TPP language for Eq. (10).

]'k[UT
'TCP_Def T

'TCP_Def
TCP_Def T

]k[UT
TCP_Def T

]'k[UT
TCP_Def T

Fig. 2. Shifting a robot point through the offset of frame Def_TCP

TP Instructions Description
1. Tool_Offset Conditions PR[x], UTOOL[k],

Offset value Def_TCPTDef_TCP’ is
stored in a user-specified position
register PR[x].

2. J P[n] 100% Fine Tool_Offset

The “Offset” option in motion
instruction shifts the existing
robot point R

]k[UT]n[P into

corresponding point R
]'k[UT]'n[P .

Table 3. UT[k] offset instruction of FANUC TPP language

2.2 Design of Robot User Frame
In the industrial robot system, the robot programmer is able to establish a robot user frame
UF[i](x, y, z) relative to frame R and save it in robot system variable UFRAME[i]. A defined
UF[i] can be selected within a robot program or from the robot teach pendant. The robot
system uses the current active UF[i] to record robot point]i[UF

]k[UT]n[P as shown in Eq. (11) and

www.intechopen.com

Advances in Robot Manipulators86

cannot move the robot to any robot point]j[UF
]k[UT]m[P that is taught with a UF[j] different

from UF[i] (i.e. j ≠ i).

]k[UT

]i[UF]i[UF
]k[UT T]n[P  . (11)

It is obvious that a robot point R

TCP_Def]n[P in Eq. (1) or Eq. (3) can be taught with different

UT [k] and UF[i], thus, represented in different Cartesian coordinates in the robot system as
shown in Eq. (12)

]k[UT

TCP_DefR
TCP_Def

1
]i[UF

R]i[UF
]k[UT T]n[P)T(]n[P   . (12)

However, the joint representation of a R

TCP_Def]n[P uniquely defines the robot pose.

The robot programmer can directly define a UF[i] with a known robot position measured in
frame R. Table 4 shows the UF[i] setup instructions of FANUC TPP language.

FANUC TPP Instructions Description
1. UFRAME[i]=PR[x]

Assign the value of a robot position
register PR[x] to UF[i]

2. UFRAME[i]=LPOS

Assign the current coordinates of frame
Def_TCP to UF[i]

3. UFRAME_NUM= i Set UF[i] to be active in the robot system
Table 4. UF[i] setup instructions of FANUC TPP language

However, to define a UF[i] at a position whose coordinates (x, y, z, w, p, r) in frame R is
unknown, the robot programmer needs to follow the UF Setup procedure provided by the
robot system and teach four specially defined points R

]k[UT]n[P (for n = 1, 2, … 4) where

UT[k] represents the tool-tip point of a pointer. In this method as shown in Fig. 3, the
location coordinates (x, y, z) of P[4] (i.e. the system-origin point) defines the actual UF[i]
origin. The robot system defines the x-, y- and z-axes of frame UF[i] through three mutually
perpendicular unit vectors a, b, and c as shown in Eq. (13)



 bac , (13)

where the coordinates of vectors a and b are determined by the location coordinates (x, y, z)
of robot points P[1] (i.e. the positive x-direction point), P[2] (i.e. the positive y-direction
point), and P[3] (i.e. the system orient-origin point) in R frame as shown in Fig. 3.
With a taught UF[i], the robot programmer is able to teach a group of robot points relative to
it and shift the taught points through its offset value. Fig. 4 shows the method for shifting a
taught robot point]i[UF

]k[UT]n[P with the offset of UF[i].

Fig. 3. The four-point method in teaching a UF[i]

]'k[UT
]'i[UF T

]'i[UF
]i[UF T

]k[UT
]i[UF T

]'k[UT
]i[UF T

Fig. 4. Shifting a robot point through the offset of UF[i]

Assume that transformation UF[i]TUT[k] represents a taught robot point P[n] and remains
unchanged when P[n] shifts to P[n]’ as shown in Eq. (14)

]'k[UT
]'i[UF

]k[UT
]i[UF TT 

 or (14)
]'i[UF

]'k[UT
]i[UF
]k[UT]'n[P]n[P  ,

where frame UF[i]‘ represents the position of frame UF[i] after P[n] becomes P[n]’. Also,
assume that transformation UF[i]TUF[i]’ represents the position change of UF[i]’ relative to
UF[i], thus, transformation UF[i]TUT[k] (or robot point]i[UF

]k[UT]n[P) can be converted (or shifted)

to UF[i]TUT[k]’ (or]i[UF
]'k[UT]'n[P) as shown in Eq. (15)

]'k[UT

]'i[UF
]'i[UF

]i[UF
]'k[UT

]i[UF TTT 

 or (15)
]i[UF

]k[UT]'i[UF
]i[UF]i[UF

]'k[UT]n[PT]'n[P  .

www.intechopen.com

Advanced Techniques of Industrial Robot Programming 87

cannot move the robot to any robot point]j[UF
]k[UT]m[P that is taught with a UF[j] different

from UF[i] (i.e. j ≠ i).

]k[UT

]i[UF]i[UF
]k[UT T]n[P  . (11)

It is obvious that a robot point R

TCP_Def]n[P in Eq. (1) or Eq. (3) can be taught with different

UT [k] and UF[i], thus, represented in different Cartesian coordinates in the robot system as
shown in Eq. (12)

]k[UT

TCP_DefR
TCP_Def

1
]i[UF

R]i[UF
]k[UT T]n[P)T(]n[P   . (12)

However, the joint representation of a R

TCP_Def]n[P uniquely defines the robot pose.

The robot programmer can directly define a UF[i] with a known robot position measured in
frame R. Table 4 shows the UF[i] setup instructions of FANUC TPP language.

FANUC TPP Instructions Description
1. UFRAME[i]=PR[x]

Assign the value of a robot position
register PR[x] to UF[i]

2. UFRAME[i]=LPOS

Assign the current coordinates of frame
Def_TCP to UF[i]

3. UFRAME_NUM= i Set UF[i] to be active in the robot system
Table 4. UF[i] setup instructions of FANUC TPP language

However, to define a UF[i] at a position whose coordinates (x, y, z, w, p, r) in frame R is
unknown, the robot programmer needs to follow the UF Setup procedure provided by the
robot system and teach four specially defined points R

]k[UT]n[P (for n = 1, 2, … 4) where

UT[k] represents the tool-tip point of a pointer. In this method as shown in Fig. 3, the
location coordinates (x, y, z) of P[4] (i.e. the system-origin point) defines the actual UF[i]
origin. The robot system defines the x-, y- and z-axes of frame UF[i] through three mutually
perpendicular unit vectors a, b, and c as shown in Eq. (13)



 bac , (13)

where the coordinates of vectors a and b are determined by the location coordinates (x, y, z)
of robot points P[1] (i.e. the positive x-direction point), P[2] (i.e. the positive y-direction
point), and P[3] (i.e. the system orient-origin point) in R frame as shown in Fig. 3.
With a taught UF[i], the robot programmer is able to teach a group of robot points relative to
it and shift the taught points through its offset value. Fig. 4 shows the method for shifting a
taught robot point]i[UF

]k[UT]n[P with the offset of UF[i].

Fig. 3. The four-point method in teaching a UF[i]

]'k[UT
]'i[UF T

]'i[UF
]i[UF T

]k[UT
]i[UF T

]'k[UT
]i[UF T

Fig. 4. Shifting a robot point through the offset of UF[i]

Assume that transformation UF[i]TUT[k] represents a taught robot point P[n] and remains
unchanged when P[n] shifts to P[n]’ as shown in Eq. (14)

]'k[UT
]'i[UF

]k[UT
]i[UF TT 

 or (14)
]'i[UF

]'k[UT
]i[UF
]k[UT]'n[P]n[P  ,

where frame UF[i]‘ represents the position of frame UF[i] after P[n] becomes P[n]’. Also,
assume that transformation UF[i]TUF[i]’ represents the position change of UF[i]’ relative to
UF[i], thus, transformation UF[i]TUT[k] (or robot point]i[UF

]k[UT]n[P) can be converted (or shifted)

to UF[i]TUT[k]’ (or]i[UF
]'k[UT]'n[P) as shown in Eq. (15)

]'k[UT

]'i[UF
]'i[UF

]i[UF
]'k[UT

]i[UF TTT 

 or (15)
]i[UF

]k[UT]'i[UF
]i[UF]i[UF

]'k[UT]n[PT]'n[P  .

www.intechopen.com

Advances in Robot Manipulators88

Usually, the industrial robot system implements Eq. (14) and Eq. (15) as both a system utility
function and a program instruction. As a system utility function, offset UF[i]TUF[i]’ changes the
current UF[i] of a taught robot point P[n] into a different UF[i]’ without changing its
Cartesian coordinates in frame R. As a program instruction, UF[i]TUF[i]’ shifts a taught robot
point]i[UF

]k[UT]n[P into the corresponding point]i[UF
]'k[UT]'n[P without changing its original UF[i].

Table 5 shows the UF[i] offset instruction of FANUC TPP language for Eq. (15).

FANUC TPP Instructions Description
3. Offset Conditions PR[x], UFRAME(i),

Offset value UF[i]TUF[i]’ is stored in a user-
specified position register PR[x].

4. J P[n] 100% Fine Offset

The “Offset” option in motion
instruction shifts the existing robot point

]i[UF
]k[UT]n[P into corresponding point
]i[UF
]'k[UT]'n[P .

Table 5. UF[i] offset instruction of FANUC TPP language

A robot point]i[UF

]k[UT]n[P can also be shifted by the offset value stored in a robot position

register PR[x]. In the industrial robot system, a PR[x] functions to hold the robot position
data such as a robot point P[n], the current value of frame Def_TCP (LPOS), or the value of a
user-defined robot frame. Different robot languages provide different instructions for
manipulating PR[x]. When a PR[x] is taught in a motion instruction, its Cartesian
coordinates are defined relative to the current active UT[k] and UF[i] in the robot system.
Unlike a taught robot point]i[UF

]k[UT]n[P whose UT[k] and UF[i] cannot be changed in a robot

program, the UT[k] and UF[i] of a taught PR[x] are always the current active ones in the
robot program. This feature allows the robot programmer to use the Cartesian coordinates
of a PR[x] as the offset of the current active UF[i] (i.e. UF[i]TUF[i]’) in the robot program for
shifting the robot points as discussed above.

3. Creating Robot Points through Robot Vision System

Within the robot workspace the position of an object frame Obj[n] can be measured relative
to a robot UF[i] through sensing systems such as a machine vision system. Methods for
integrating vision systems into industrial robot systems have been developed for many
years (Connolly, 2008; Nguyen, 2000). The utilized technology includes image processing,
system calibration, and reference frame transformations (Golnabi & Asadpour, 2007; Motta
et al., 2001). To use the vision measurement in the robot system, the robot programmer must
establish a vision frame Vis[i](x, y, z) in the vision system and a robot UF[i]cal(x, y, z) in the
robot system, and make the two frames exactly coincident. Under this condition, a vision
measurement represents a robot point as shown in Eq. (16)

cal]i[UF
]k[UT]n[Obj

cal]i[UF
]n[Obj

]i[Vis]n[PTT  . (16)

3.1 Vision System Setup
A two-dimensional (2D) robot vision system is able to use the 2D view image taken from a
single camera to identify a user-specified object and measure its position coordinates (x, y,
roll) for the robot system. The process of vision camera calibration establishes the vision
frame Vis[i] (x, y) and the position value (x, y) of a pixel in frame Vis[i]. The robot
programmer starts the vision calibration by adjusting both the position and focus of the
camera for a completely view of a special grid sheet as shown in Figure 5a. The final camera
position for the grid view is the “camera-calibration position” P[n]cal. During the vision
calibration, the vision software uses the images of the large circles to define the x- and y-
axes of frame Vis[i] and the small circles to define the pixel value. The process also
establishes the camera view plane that is parallel to the grid sheet as shown in Figure 5b.
The functions of a geometric locator provided by the vision system allow the robot
programmer to define the user-specified searching window, object pattern, and reference
frame Obj of the object pattern. After the vision calibration, the vision system is able to
identify an object that matches the trained object pattern appeared on the camera view
picture and measure position coordinates (x, y, roll) of the object at position Obj[n] as
transformation Vis[i]TObj[n].

3.2 Integration of Vision “Eye” and Robot “Hand”
To establish a robot user frame UF[i]cal and make it coincident with frame Vis[i], the robot
programmer must follow the robot UF Setup procedure and teach four points from the same
grid sheet this is at the same position in the vision calibration. The four points are the system
origin point, the X and Y direction points, and the orient origin point of the grid sheet as
shown in Fig. 5a.
In a “fixed-camera” vision application, the camera must be mounted at the camera-
calibration position P[n]cal that is fixed with respect to the robot R frame. Because frame
Vis[i] is coincident with frame UF[i]cal when the camera is at P[n]cal, the vision measurement
VisTObj[n]=(x, y, roll) to a vision-identified object at position Obj[n] actually represents the
same coordinates of the object in UF[i]cal as shown in Eq. (16). With additional values of z,
pitch, and yaw that can be either specified by the robot programmer or measured by a laser
sensor in a 3D vision system, Vis[i]TObj[n] can be used as a robot point CaliUF

kUTnP][
][][in the robot

program. However, after reaching to vision-defined point CaliUF
kUTnP][

][][,the robot system cannot

perform the robot motions with the robot points that are taught via the same vision-
identified object located at a different position Obj[m] (i.e. m ≠ n).

www.intechopen.com

Advanced Techniques of Industrial Robot Programming 89

Usually, the industrial robot system implements Eq. (14) and Eq. (15) as both a system utility
function and a program instruction. As a system utility function, offset UF[i]TUF[i]’ changes the
current UF[i] of a taught robot point P[n] into a different UF[i]’ without changing its
Cartesian coordinates in frame R. As a program instruction, UF[i]TUF[i]’ shifts a taught robot
point]i[UF

]k[UT]n[P into the corresponding point]i[UF
]'k[UT]'n[P without changing its original UF[i].

Table 5 shows the UF[i] offset instruction of FANUC TPP language for Eq. (15).

FANUC TPP Instructions Description
3. Offset Conditions PR[x], UFRAME(i),

Offset value UF[i]TUF[i]’ is stored in a user-
specified position register PR[x].

4. J P[n] 100% Fine Offset

The “Offset” option in motion
instruction shifts the existing robot point

]i[UF
]k[UT]n[P into corresponding point
]i[UF
]'k[UT]'n[P .

Table 5. UF[i] offset instruction of FANUC TPP language

A robot point]i[UF

]k[UT]n[P can also be shifted by the offset value stored in a robot position

register PR[x]. In the industrial robot system, a PR[x] functions to hold the robot position
data such as a robot point P[n], the current value of frame Def_TCP (LPOS), or the value of a
user-defined robot frame. Different robot languages provide different instructions for
manipulating PR[x]. When a PR[x] is taught in a motion instruction, its Cartesian
coordinates are defined relative to the current active UT[k] and UF[i] in the robot system.
Unlike a taught robot point]i[UF

]k[UT]n[P whose UT[k] and UF[i] cannot be changed in a robot

program, the UT[k] and UF[i] of a taught PR[x] are always the current active ones in the
robot program. This feature allows the robot programmer to use the Cartesian coordinates
of a PR[x] as the offset of the current active UF[i] (i.e. UF[i]TUF[i]’) in the robot program for
shifting the robot points as discussed above.

3. Creating Robot Points through Robot Vision System

Within the robot workspace the position of an object frame Obj[n] can be measured relative
to a robot UF[i] through sensing systems such as a machine vision system. Methods for
integrating vision systems into industrial robot systems have been developed for many
years (Connolly, 2008; Nguyen, 2000). The utilized technology includes image processing,
system calibration, and reference frame transformations (Golnabi & Asadpour, 2007; Motta
et al., 2001). To use the vision measurement in the robot system, the robot programmer must
establish a vision frame Vis[i](x, y, z) in the vision system and a robot UF[i]cal(x, y, z) in the
robot system, and make the two frames exactly coincident. Under this condition, a vision
measurement represents a robot point as shown in Eq. (16)

cal]i[UF
]k[UT]n[Obj

cal]i[UF
]n[Obj

]i[Vis]n[PTT  . (16)

3.1 Vision System Setup
A two-dimensional (2D) robot vision system is able to use the 2D view image taken from a
single camera to identify a user-specified object and measure its position coordinates (x, y,
roll) for the robot system. The process of vision camera calibration establishes the vision
frame Vis[i] (x, y) and the position value (x, y) of a pixel in frame Vis[i]. The robot
programmer starts the vision calibration by adjusting both the position and focus of the
camera for a completely view of a special grid sheet as shown in Figure 5a. The final camera
position for the grid view is the “camera-calibration position” P[n]cal. During the vision
calibration, the vision software uses the images of the large circles to define the x- and y-
axes of frame Vis[i] and the small circles to define the pixel value. The process also
establishes the camera view plane that is parallel to the grid sheet as shown in Figure 5b.
The functions of a geometric locator provided by the vision system allow the robot
programmer to define the user-specified searching window, object pattern, and reference
frame Obj of the object pattern. After the vision calibration, the vision system is able to
identify an object that matches the trained object pattern appeared on the camera view
picture and measure position coordinates (x, y, roll) of the object at position Obj[n] as
transformation Vis[i]TObj[n].

3.2 Integration of Vision “Eye” and Robot “Hand”
To establish a robot user frame UF[i]cal and make it coincident with frame Vis[i], the robot
programmer must follow the robot UF Setup procedure and teach four points from the same
grid sheet this is at the same position in the vision calibration. The four points are the system
origin point, the X and Y direction points, and the orient origin point of the grid sheet as
shown in Fig. 5a.
In a “fixed-camera” vision application, the camera must be mounted at the camera-
calibration position P[n]cal that is fixed with respect to the robot R frame. Because frame
Vis[i] is coincident with frame UF[i]cal when the camera is at P[n]cal, the vision measurement
VisTObj[n]=(x, y, roll) to a vision-identified object at position Obj[n] actually represents the
same coordinates of the object in UF[i]cal as shown in Eq. (16). With additional values of z,
pitch, and yaw that can be either specified by the robot programmer or measured by a laser
sensor in a 3D vision system, Vis[i]TObj[n] can be used as a robot point CaliUF

kUTnP][
][][in the robot

program. However, after reaching to vision-defined point CaliUF
kUTnP][

][][,the robot system cannot

perform the robot motions with the robot points that are taught via the same vision-
identified object located at a different position Obj[m] (i.e. m ≠ n).

www.intechopen.com

Advances in Robot Manipulators90

(a) Camera calibration grid sheet

 (b) Vision measurement

Fig. 5. Vision system setup

To reuse all pre-taught robot points in the robot program for the vision-identified object at a
different position, the robot programmer must set up the vision system so that it can

determine the position offset of frame UF[i]cal (i.e. UF[i]calTUF[i]’cal) with two vision
measurements VisTObj[n] and VisTObj[m] as shown in Fig. 6 and Eq. (17)

1
]n[Obj

]i[Vis
]m[Obj

]i[Vis
cal]'i[UF

cal]i[UF)T(TT  ,

 and (17)

]m[Obj
cal]'i[UF

]m[OBJ
]'i[Vis

]n[Obj
]i[Vis

]n[Obj
cal]i[UF TTTT  ,

where frames Vis[i]’ and UF[i]‘cal represent the positions of frames Vis[i] and UF[i]cal after
object position Obj[n] changes to Obj[m]. Usually, the vision system obtains Vis[i]TObj[n]
during the vision setup and acquires Vis[i]TObj[m] when the camera takes the actual view
picture for the object.

]m[Obj
]'i[Vis T

]'i[UF
]i[UF T

]n[Obj
]i[Vis T

]m[Obj
]i[Vis T

Fig. 6. Determining the offset of frame UF[i]cal through two vision measurements

In a “mobile-camera” vision application, the camera can be attached to the robot’s wrist
faceplate and moved by the robot on the camera view plane. In this case, frames UF[i]cal and
Vis[i] are not coincident each other when camera view position P[m]vie is not at P[n]cal. Thus,
vision measurement Vis[i]TObj[m] obtained at P[m]vie cannot be used for determining
UF[i]calTUF[i]’cal in Eq. (17) directly. However, it is noticed that frame Vis[i] is fixed in frame
Def_TCP and its position coordinates can be determined in Eq. (18) as shown in Fig. 7

cal]i[UF

R1
TCP_Def

R
]i[Vis

TCP_Def T)T(T   , (18)

where transformations RTUF[i]cal and RTDef_TCP are uploaded from the robot system when the
robot-mounted camera is at P[n]cal during the vision setup. With vision-determined
Def_TCPTVis[i], vision measurement Vis[i]TObj[m] can be transformed into UF[i]TObj[m] for the robot
system in Eq. (19) if frame Def_TCP is used as frame UF[i]cal (i.e. UF[i]cal = Def_TCP) in the
robot program as shown in Fig. 7.

]m[Obj
]i[Vis

]i[Vis
TCP_Def

]m[Obj
TCP_Def

]m[Obj
cal]i[UF TTTT  . (19)

By substituting Eq. (19) into Eq. (17), frame offset UF[i]calTUF[i]’cal can be determined in Eq. (20)

www.intechopen.com

Advanced Techniques of Industrial Robot Programming 91

(a) Camera calibration grid sheet

 (b) Vision measurement

Fig. 5. Vision system setup

To reuse all pre-taught robot points in the robot program for the vision-identified object at a
different position, the robot programmer must set up the vision system so that it can

determine the position offset of frame UF[i]cal (i.e. UF[i]calTUF[i]’cal) with two vision
measurements VisTObj[n] and VisTObj[m] as shown in Fig. 6 and Eq. (17)

1
]n[Obj

]i[Vis
]m[Obj

]i[Vis
cal]'i[UF

cal]i[UF)T(TT  ,

 and (17)

]m[Obj
cal]'i[UF

]m[OBJ
]'i[Vis

]n[Obj
]i[Vis

]n[Obj
cal]i[UF TTTT  ,

where frames Vis[i]’ and UF[i]‘cal represent the positions of frames Vis[i] and UF[i]cal after
object position Obj[n] changes to Obj[m]. Usually, the vision system obtains Vis[i]TObj[n]
during the vision setup and acquires Vis[i]TObj[m] when the camera takes the actual view
picture for the object.

]m[Obj
]'i[Vis T

]'i[UF
]i[UF T

]n[Obj
]i[Vis T

]m[Obj
]i[Vis T

Fig. 6. Determining the offset of frame UF[i]cal through two vision measurements

In a “mobile-camera” vision application, the camera can be attached to the robot’s wrist
faceplate and moved by the robot on the camera view plane. In this case, frames UF[i]cal and
Vis[i] are not coincident each other when camera view position P[m]vie is not at P[n]cal. Thus,
vision measurement Vis[i]TObj[m] obtained at P[m]vie cannot be used for determining
UF[i]calTUF[i]’cal in Eq. (17) directly. However, it is noticed that frame Vis[i] is fixed in frame
Def_TCP and its position coordinates can be determined in Eq. (18) as shown in Fig. 7

cal]i[UF

R1
TCP_Def

R
]i[Vis

TCP_Def T)T(T   , (18)

where transformations RTUF[i]cal and RTDef_TCP are uploaded from the robot system when the
robot-mounted camera is at P[n]cal during the vision setup. With vision-determined
Def_TCPTVis[i], vision measurement Vis[i]TObj[m] can be transformed into UF[i]TObj[m] for the robot
system in Eq. (19) if frame Def_TCP is used as frame UF[i]cal (i.e. UF[i]cal = Def_TCP) in the
robot program as shown in Fig. 7.

]m[Obj
]i[Vis

]i[Vis
TCP_Def

]m[Obj
TCP_Def

]m[Obj
cal]i[UF TTTT  . (19)

By substituting Eq. (19) into Eq. (17), frame offset UF[i]calTUF[i]’cal can be determined in Eq. (20)

www.intechopen.com

Advances in Robot Manipulators92

 1
]n[Obj

]i[Vis
]m[Obj

]i[Vis
]i[Vis

TCP_Def
cal]'i[UF

cal]i[UF)T(TTT 

 and (20)
]m[Obj

cal]'i[UF
]m[Obj

]'i[Vis
]n[Obj

]i[Vis
]n[Obj

cal]i[UF TTTT  ,

where frames Vis[i]’ and UF[i]‘cal represent positions of frames Vis[i] and UF[i]cal after object
position Obj[n] changes to Obj[m].

Fig. 7. Frame transformations in mobile-camera application

With vision-determined UF[i]calTUF[i]’cal in Eq. (17) (for fixed-camera) or Eq. (20) (for
mobilecamera), the robot programmer is able to apply Eq. (15) for shifting all pre-taught
robot points cal]i[UF

]k[UT]n[P into cal]i[UF
]k[UT]'n[P for the vision-identified object at position Obj[m] as

shown in Eq. (21)

 cal]'i[UF

]k[UTcal]'i[UF
cal]i[UFcal]i[UF

]k[UT]n[PT]'n[P 

 and (21)
 cal]i[UF

]k[UT
cal]'i[UF
]k[UT]n[P]'n[P  .

Table 6 shows the FANUC TP program used in a fixed-camera FANUC vision application.
The program calculates “vision offset” UF[i]calTUF[i]’cal in Eq. (17), sends it to user-specified
robot position register PR[x], and transforms robot point cal]i[UF

]k[UT]n[P in Eq. (21).

FANUC TP Program Description
1: R[1] = 0; Clear robot register R[1] which is

used as the indicator for vision
“Snap & Find” operation.

2: VisLOC Snap & Find ('2d Single', 2); Acquire VisTOBJ[m] from snapshot
view picture ‘2d single’, find vision-
measured offset UF[i]calTUF[i]’cal, and
send it to robot position register
PR[1].

3: WAIT R[1] <> 0;

Wait until the VisLOC vision
system sets R[1] to ‘1’ for a
successful vision “Snap & Find”
operation.

4: IF R[1] <> 1, JMP LBL[99] Jump out of the program if the
vision system cannot set R[1] as ‘1’.

5: OFFSET CONDITION PR[1], UFRAME[i]cal; Apply UF[i]calTUF[i]’cal as Offset
Condition.

6: J P[n] 50% FINE OFFSET;

Transforms robot point
cal]i[UF
]k[UT]n[P by UF[i]calTUF[i]’cal.

Table 6. FANUC TP program used in a fixed-camera FANUC vision application

4. Creating Robot Points through Robot Simulation System

With the today’s robot simulation technology a robot programmer may also utilize the robot
simulation software to program the motions and actions of a real robot offline in a virtual
and interactive 3D design environment. Among many robot simulation software packages,
the DELMIA Interactive Graphics Robot Instruction Program (IGRIP) provides the robot
programmers with the most comprehensive and generic simulation functions, industrial
robot models, CAD data translators, and robot program translators (Cheng, 2003; Connolly,
2006) .
In IGRIP, a simulation design starts with building the 3D device models (or Device) based
on the geometry, joints, kinematics of the corresponding real devices such as a robot and its
peripheral equipment. The base frame B[i](x, y, z) of a retrieved Device defines its position
in the simulation workcell (or Workcell). With all required Devices in the Workcell, the
robot programmer is able to create virtual robot points called tag points and program the
desired motions and actions of the robot Device and end-effector Device in robot simulation
language. Executing the Device simulation programs allows the robot programmer to verify
the performance of the robot Device in the Workcell. After the tag points are adjusted
relative to the position of the corresponding robot in the real robot workcell through
conducting the simulation calibration, the simulation robot program can be downloaded to
the real robot controller for execution. Comparing to the conventional online robot
programming, the true robot offline programming provides several advantages in terms of
the improved robot workcell performance and reduced robot downtime.

www.intechopen.com

Advanced Techniques of Industrial Robot Programming 93

 1
]n[Obj

]i[Vis
]m[Obj

]i[Vis
]i[Vis

TCP_Def
cal]'i[UF

cal]i[UF)T(TTT 

 and (20)
]m[Obj

cal]'i[UF
]m[Obj

]'i[Vis
]n[Obj

]i[Vis
]n[Obj

cal]i[UF TTTT  ,

where frames Vis[i]’ and UF[i]‘cal represent positions of frames Vis[i] and UF[i]cal after object
position Obj[n] changes to Obj[m].

Fig. 7. Frame transformations in mobile-camera application

With vision-determined UF[i]calTUF[i]’cal in Eq. (17) (for fixed-camera) or Eq. (20) (for
mobilecamera), the robot programmer is able to apply Eq. (15) for shifting all pre-taught
robot points cal]i[UF

]k[UT]n[P into cal]i[UF
]k[UT]'n[P for the vision-identified object at position Obj[m] as

shown in Eq. (21)

 cal]'i[UF

]k[UTcal]'i[UF
cal]i[UFcal]i[UF

]k[UT]n[PT]'n[P 

 and (21)
 cal]i[UF

]k[UT
cal]'i[UF
]k[UT]n[P]'n[P  .

Table 6 shows the FANUC TP program used in a fixed-camera FANUC vision application.
The program calculates “vision offset” UF[i]calTUF[i]’cal in Eq. (17), sends it to user-specified
robot position register PR[x], and transforms robot point cal]i[UF

]k[UT]n[P in Eq. (21).

FANUC TP Program Description
1: R[1] = 0; Clear robot register R[1] which is

used as the indicator for vision
“Snap & Find” operation.

2: VisLOC Snap & Find ('2d Single', 2); Acquire VisTOBJ[m] from snapshot
view picture ‘2d single’, find vision-
measured offset UF[i]calTUF[i]’cal, and
send it to robot position register
PR[1].

3: WAIT R[1] <> 0;

Wait until the VisLOC vision
system sets R[1] to ‘1’ for a
successful vision “Snap & Find”
operation.

4: IF R[1] <> 1, JMP LBL[99] Jump out of the program if the
vision system cannot set R[1] as ‘1’.

5: OFFSET CONDITION PR[1], UFRAME[i]cal; Apply UF[i]calTUF[i]’cal as Offset
Condition.

6: J P[n] 50% FINE OFFSET;

Transforms robot point
cal]i[UF
]k[UT]n[P by UF[i]calTUF[i]’cal.

Table 6. FANUC TP program used in a fixed-camera FANUC vision application

4. Creating Robot Points through Robot Simulation System

With the today’s robot simulation technology a robot programmer may also utilize the robot
simulation software to program the motions and actions of a real robot offline in a virtual
and interactive 3D design environment. Among many robot simulation software packages,
the DELMIA Interactive Graphics Robot Instruction Program (IGRIP) provides the robot
programmers with the most comprehensive and generic simulation functions, industrial
robot models, CAD data translators, and robot program translators (Cheng, 2003; Connolly,
2006) .
In IGRIP, a simulation design starts with building the 3D device models (or Device) based
on the geometry, joints, kinematics of the corresponding real devices such as a robot and its
peripheral equipment. The base frame B[i](x, y, z) of a retrieved Device defines its position
in the simulation workcell (or Workcell). With all required Devices in the Workcell, the
robot programmer is able to create virtual robot points called tag points and program the
desired motions and actions of the robot Device and end-effector Device in robot simulation
language. Executing the Device simulation programs allows the robot programmer to verify
the performance of the robot Device in the Workcell. After the tag points are adjusted
relative to the position of the corresponding robot in the real robot workcell through
conducting the simulation calibration, the simulation robot program can be downloaded to
the real robot controller for execution. Comparing to the conventional online robot
programming, the true robot offline programming provides several advantages in terms of
the improved robot workcell performance and reduced robot downtime.

www.intechopen.com

Advances in Robot Manipulators94

4.1 Creation of Virtual Robot Points
A tag point Tag[n] is created as a Cartesian frame and attached to the base frame B[i] of a
user-selected Device in the Workcell. Mathematically, the Tag[n] position is measured in
frame B[i] as frame transformation

]n[Tag
]i[B T and can be manipulated through functions of

Selection, Translation, Rotation, and Snap. During robot simulation, the motion instruction
in the robot simulation program is able to move frame Def_TCP (or UT[k]) of the robot
Device to coincide a Tag[n] only if it is within the robot’s workspace and not a robot’s
singularity. The procedures for creating and manipulating tag points in IGRIP are:
Step 1. Create a tag path and attach it to frame B[i] of a selected Device.
Step 2. Create tag points Tag[n] (for n = 1, 2, … m) one at a time in the created path.
Step 3. Manipulate a Tag[n] in the Workcell. Besides manipulation functions of selection,

translation, and/or rotation, the “snap” function allows the programmer to place a
Tag[n] to the vertex, edge, frame, curve, and surface of any Device in the Workcell.
Constraints and options can also be set up for a specific snap function. For example,
if the “center” option is chosen, a Tag[n] will be snapped on the “center” of the
geometric entities such as line, edge, polygon, etc. If a Tag[n] is required to snap on
“surface,” the parameter “approach axis” must be set up to determine which axis of
Tag[n] will be aligned with the surface normal vector.

4.2 Accuracy Enhancement of Virtual Robot Points
It is obvious that inevitable differences exist between the real robot wokcell and the
simulated robot Workcell because of the manufacturing tolerance and dimension variation
of the corresponding components. Therefore, it is not feasible to directly download tag point
Tag[n] to the actual robot controller for execution. Instead, the robot programmer must
apply the simulation calibration functions to adjust the tag points with respect to a number
of robot points uploaded from the real robot workcell. The two commonly used calibration
methods are calibrating frame UT[k] of a robot Device and calibrating frame B[i] of a Device
that attaches Tag[n]. The underlying principles of these methods are the same with the
design of robot UT and UF frames as introduced in section 2.1 and 2.2. For example, assume
that the UT[k]’ of the robot end-effector Device is not exactly the same with the UT[k] of the
actual robot end-effector prior to UT[k] calibration. To determine and use the actual UT[k]
in the simulation Workcell, the programmer needs to teach three non-collinear robot points
through UT Frame Setup procedure in the real robot system and upload them into the
simulation Workcell so that the simulation system is able to calculate the origin of UT[k]
with the “three-point” method as described in Eq. (5) and Eq. (6) in section 2.1. With the
calibrated UT[k] and the assumption that the robot Device is exactly the same as the real
robot, the UT[k] position relative to the R frame (RTUT[k]) of a robot Device in the simulation
Workcell is exactly the same as the corresponding one in the real robot workcell. Also, prior
to frame B[i] calibration, the Tag[n] position relative to frame R of a robot Device (RTTag[n])
may not be the same as the corresponding one in the real robot workcell. In this case, the
Device that attaches Tag[n] serves as a “fixture” Device. Thus, the programmer may define a
robot UF[i] frame by teaching (or create) three or six robot points (or tag points) on the
features of the real “fixture” device (or “fixture” Device) in the real workcell (or the
simulation Workcell). Coinciding the created UF tag points in the simulation Workcell with

the corresponding uploaded real robot points results in calibrating the position of frame B[i]
of the “fixture” Device and the Tag[n] attached to it.

5. Transferring Robot Points to Identical Robots

In industrial robot applications, there are often the cases in which the robot programmer
must be able to quickly and reliably change the existing robot points in the robot program so
that they can be accurate to the slight changes of components in the existing or identical
robot workcell. Different methods have been developed for measuring the dimensional
difference of the similar components in the robot workcell and using it to convert the robot
points in the existing robot programs. For example, as introduced in section 2.1 and 2.2, the
robot programmer can measure the positional variations of two similar tool-tip points and
workpieces in the real robot workcell through the offsets of UT[k] and UF[i], and
compensate the pre-taught robot points with either the robot system utility function or the
robot program instruction. However, if the dimensional difference exists between two
identical robots, an external calibration system must be used for identifying the robots’
difference so that the taught robot points P[n] for one robot system can be transferred to the
identical one. The process is called the robot calibration, which consists of four steps (Cheng,
2007; Motta et al, 2001). The first step is to teach specially defined robot points P[n]. The
second step is to “physically” measure the taught P[n] with an appropriate external
measurement device such as laser interferometry, stereo vision, or mechanical “string pull”
devices, etc. The third step is to calculate the relevant actual parameters of the robot frames
through a specific mathematical solution.
The Dynalog DynaCal system is a complete robot calibration system that is able to identify
the parameters of robot joint frames, UT[k], and UF[i] in two “identical” robot workcells,
and compensate the existing robot points so that they can be download to the identical robot
system for execution. Among its hardware components, the DynaCal measurement device
defines its own measurement frame through a precise base adaptor mounted at an
alignment point. It uses a high resolution, low inertia optical encoder to constantly measure
the extension of the cable that is connected to the tool-tip point of the robot’s end-effector
through a DynaCal TCP adaptor, and sends the encoder measurements to the Window-
based DynaCal software for the identification of the robot parameters.
Prior to the robot calibration, the robot programmer needs to conduct the calibration
experiment in which a developed robot calibration program moves the robot Def_TCP
frame to a set of taught robot calibration points. Depending on the required accuracy, at
least 30 calibration points are required. It is also important to select robot calibration points
that are able to move each robot joint as much as possible in order to “excite” its calibration
parameters. The dimensional difference of the robot joint parameters is then determined
through a specific mathematical solution such as the standard non-linear least squares
optimization. Theoretically, the existing robot kinematics model can be modified with the
identified robot parameters. However, due to the difficulties in directly modifying the
kinematic parameters of an actual robot controller, the external calibration system
compensates the corresponding joint values of all robot points in the existing robot program
by solving the robot’s inverse kinematics equations with the identified robot joint
parameters.

www.intechopen.com

Advanced Techniques of Industrial Robot Programming 95

4.1 Creation of Virtual Robot Points
A tag point Tag[n] is created as a Cartesian frame and attached to the base frame B[i] of a
user-selected Device in the Workcell. Mathematically, the Tag[n] position is measured in
frame B[i] as frame transformation

]n[Tag
]i[B T and can be manipulated through functions of

Selection, Translation, Rotation, and Snap. During robot simulation, the motion instruction
in the robot simulation program is able to move frame Def_TCP (or UT[k]) of the robot
Device to coincide a Tag[n] only if it is within the robot’s workspace and not a robot’s
singularity. The procedures for creating and manipulating tag points in IGRIP are:
Step 1. Create a tag path and attach it to frame B[i] of a selected Device.
Step 2. Create tag points Tag[n] (for n = 1, 2, … m) one at a time in the created path.
Step 3. Manipulate a Tag[n] in the Workcell. Besides manipulation functions of selection,

translation, and/or rotation, the “snap” function allows the programmer to place a
Tag[n] to the vertex, edge, frame, curve, and surface of any Device in the Workcell.
Constraints and options can also be set up for a specific snap function. For example,
if the “center” option is chosen, a Tag[n] will be snapped on the “center” of the
geometric entities such as line, edge, polygon, etc. If a Tag[n] is required to snap on
“surface,” the parameter “approach axis” must be set up to determine which axis of
Tag[n] will be aligned with the surface normal vector.

4.2 Accuracy Enhancement of Virtual Robot Points
It is obvious that inevitable differences exist between the real robot wokcell and the
simulated robot Workcell because of the manufacturing tolerance and dimension variation
of the corresponding components. Therefore, it is not feasible to directly download tag point
Tag[n] to the actual robot controller for execution. Instead, the robot programmer must
apply the simulation calibration functions to adjust the tag points with respect to a number
of robot points uploaded from the real robot workcell. The two commonly used calibration
methods are calibrating frame UT[k] of a robot Device and calibrating frame B[i] of a Device
that attaches Tag[n]. The underlying principles of these methods are the same with the
design of robot UT and UF frames as introduced in section 2.1 and 2.2. For example, assume
that the UT[k]’ of the robot end-effector Device is not exactly the same with the UT[k] of the
actual robot end-effector prior to UT[k] calibration. To determine and use the actual UT[k]
in the simulation Workcell, the programmer needs to teach three non-collinear robot points
through UT Frame Setup procedure in the real robot system and upload them into the
simulation Workcell so that the simulation system is able to calculate the origin of UT[k]
with the “three-point” method as described in Eq. (5) and Eq. (6) in section 2.1. With the
calibrated UT[k] and the assumption that the robot Device is exactly the same as the real
robot, the UT[k] position relative to the R frame (RTUT[k]) of a robot Device in the simulation
Workcell is exactly the same as the corresponding one in the real robot workcell. Also, prior
to frame B[i] calibration, the Tag[n] position relative to frame R of a robot Device (RTTag[n])
may not be the same as the corresponding one in the real robot workcell. In this case, the
Device that attaches Tag[n] serves as a “fixture” Device. Thus, the programmer may define a
robot UF[i] frame by teaching (or create) three or six robot points (or tag points) on the
features of the real “fixture” device (or “fixture” Device) in the real workcell (or the
simulation Workcell). Coinciding the created UF tag points in the simulation Workcell with

the corresponding uploaded real robot points results in calibrating the position of frame B[i]
of the “fixture” Device and the Tag[n] attached to it.

5. Transferring Robot Points to Identical Robots

In industrial robot applications, there are often the cases in which the robot programmer
must be able to quickly and reliably change the existing robot points in the robot program so
that they can be accurate to the slight changes of components in the existing or identical
robot workcell. Different methods have been developed for measuring the dimensional
difference of the similar components in the robot workcell and using it to convert the robot
points in the existing robot programs. For example, as introduced in section 2.1 and 2.2, the
robot programmer can measure the positional variations of two similar tool-tip points and
workpieces in the real robot workcell through the offsets of UT[k] and UF[i], and
compensate the pre-taught robot points with either the robot system utility function or the
robot program instruction. However, if the dimensional difference exists between two
identical robots, an external calibration system must be used for identifying the robots’
difference so that the taught robot points P[n] for one robot system can be transferred to the
identical one. The process is called the robot calibration, which consists of four steps (Cheng,
2007; Motta et al, 2001). The first step is to teach specially defined robot points P[n]. The
second step is to “physically” measure the taught P[n] with an appropriate external
measurement device such as laser interferometry, stereo vision, or mechanical “string pull”
devices, etc. The third step is to calculate the relevant actual parameters of the robot frames
through a specific mathematical solution.
The Dynalog DynaCal system is a complete robot calibration system that is able to identify
the parameters of robot joint frames, UT[k], and UF[i] in two “identical” robot workcells,
and compensate the existing robot points so that they can be download to the identical robot
system for execution. Among its hardware components, the DynaCal measurement device
defines its own measurement frame through a precise base adaptor mounted at an
alignment point. It uses a high resolution, low inertia optical encoder to constantly measure
the extension of the cable that is connected to the tool-tip point of the robot’s end-effector
through a DynaCal TCP adaptor, and sends the encoder measurements to the Window-
based DynaCal software for the identification of the robot parameters.
Prior to the robot calibration, the robot programmer needs to conduct the calibration
experiment in which a developed robot calibration program moves the robot Def_TCP
frame to a set of taught robot calibration points. Depending on the required accuracy, at
least 30 calibration points are required. It is also important to select robot calibration points
that are able to move each robot joint as much as possible in order to “excite” its calibration
parameters. The dimensional difference of the robot joint parameters is then determined
through a specific mathematical solution such as the standard non-linear least squares
optimization. Theoretically, the existing robot kinematics model can be modified with the
identified robot parameters. However, due to the difficulties in directly modifying the
kinematic parameters of an actual robot controller, the external calibration system
compensates the corresponding joint values of all robot points in the existing robot program
by solving the robot’s inverse kinematics equations with the identified robot joint
parameters.

www.intechopen.com

Advances in Robot Manipulators96

In DynaCal UT[k] calibration, the programmer needs to specify at least three non-collinear
measurement points on the robot end-effector and input their locations relative to the
desired tool-tip point in the DynaCal system during the DynaCal robot calibration.
However, when only the UT[k] origin needs to be calibrated, one measurement point on the
end-effector suffices and choosing the measurement point at the desired tool-tip point
further simplifies the process because its location relative to the desired tool-tip point is then
simply zero. In DynaCal UF[i] calibration, the programmer needs to mount the DynaCal
measurement device at three (or four) non-collinear alignment points on a fixture during the
DynaCal robot calibration. The position of each alignment point relative to the robot R
frame is measured through the DynaCal cable and the TCP adaptor at the calibrated UT[k].
The DynaCal software uses the measurements to determine the transformation between the
UF[i]Fix on the fixture and the robot R frame, denoted as RTUF[i]Fix. With the identified values
of frames UT[k] and UF[i]Fix in the original robot workcell and the values of UT[k]’ and
UF[i]’Fix in the “identical” robot workcell, offsets UF and UT can be determined and the
robot points P[n] used in the original robot cell can be converted into the corresponding
ones for the “identical” robot cell with the methods as introduced in sections 2.1 and 2.2.

Fig. 8. Determining the offset of UF[i] in two identical robot workcells through robot
calibration system

The following frame transformation equations show the method for determining the robot
offset UF[i]’TUF[i] in two identical robot workcells through calibrated values of UF[i]Fix and

UF[i]’Fix as shown in Fig. 8. Given that the coincidence of UF[i]Fix and UF[i]’Fix represents a
commonly used calibration fixture in two “identical” robot workcells, the transformation
between two robot base frames R’ and R can be calculated in Eq. (22)

1

]i[UF
R

]'i[UF
'R

R
'R)T(TT

FixFix

 . (22)

It is also possible to make transformation R’TUF[i]’ equal to transformation RTUF[i] as shown in
Eq. (23)

]i[UF
R

]'i[UF
'R TT  , (23)

where frames UF[i] and UF[i]’ are used for recording robot points P[n] and P[n]’ in the two
“identical” robot workcells, respectively. With Eq. (22) and Eq. (23), robot offset UF[i]’TUF[i]
can be calculated in Eq. (24)

]i[UF
R

R
'R1

]'i[UF
'R

]i[UF
]'i[UF TT)T(T   . (24)

6. Conclusion

Creating accurate robot points is an important task in robot programming. This chapter
discussed the advanced techniques used in creating robot points for improving robot
operation flexibility and reducing robot production downtime. The theory of robotics shows
that an industrial robot system represents a robot point in both Cartesian coordinates and
proper joint values. The concepts and procedures of designing accurate robot user tool
frame UT[k] and robot user frame UF[i] are essential in teaching robot points. Depending on
the selected UT[k] and UF[i], the Cartesian coordinates of a robot point may be different, but
the joint values of a robot point always uniquely define the robot pose. Through teaching
robot frames UT[k] and UF[i] and measuring their offsets, the robot programmer is able to
shift the originally taught robot points for dealing with the position variations of the robot’s
end-effector and the workpiece. The similar method has also been successfully applied in
the robot vision system, the robot simulation, and the robot calibration system. In an
integrated robot vision system, the vision frame Vis[i] serves the role of frame UF[i]. The
vision measurements to the vision-identified object obtained in either fixed-camera or
mobile-camera applications are used for determining the offset of UF[i] for the robot system.
In robot simulation, the virtual robot points created in the simulation robot workcell must be
adjusted relative to the position of the robot in the real robot workcell. This task can be done
by attaching the created virtual robot points to the base frame B[i] of the simulation device
that serves the same role of UF[i]. With the uploaded real robot points, the virtual robot
points can be adjusted with respect to the determined true frame B[i]. In a robot calibration
system, the measuring device establishes frame UF[i] on a common fixture for the
workpiece, and the measurement of UF[i] in the identical robot workcell are used to
determine the offset of UF[i].

www.intechopen.com

Advanced Techniques of Industrial Robot Programming 97

In DynaCal UT[k] calibration, the programmer needs to specify at least three non-collinear
measurement points on the robot end-effector and input their locations relative to the
desired tool-tip point in the DynaCal system during the DynaCal robot calibration.
However, when only the UT[k] origin needs to be calibrated, one measurement point on the
end-effector suffices and choosing the measurement point at the desired tool-tip point
further simplifies the process because its location relative to the desired tool-tip point is then
simply zero. In DynaCal UF[i] calibration, the programmer needs to mount the DynaCal
measurement device at three (or four) non-collinear alignment points on a fixture during the
DynaCal robot calibration. The position of each alignment point relative to the robot R
frame is measured through the DynaCal cable and the TCP adaptor at the calibrated UT[k].
The DynaCal software uses the measurements to determine the transformation between the
UF[i]Fix on the fixture and the robot R frame, denoted as RTUF[i]Fix. With the identified values
of frames UT[k] and UF[i]Fix in the original robot workcell and the values of UT[k]’ and
UF[i]’Fix in the “identical” robot workcell, offsets UF and UT can be determined and the
robot points P[n] used in the original robot cell can be converted into the corresponding
ones for the “identical” robot cell with the methods as introduced in sections 2.1 and 2.2.

Fig. 8. Determining the offset of UF[i] in two identical robot workcells through robot
calibration system

The following frame transformation equations show the method for determining the robot
offset UF[i]’TUF[i] in two identical robot workcells through calibrated values of UF[i]Fix and

UF[i]’Fix as shown in Fig. 8. Given that the coincidence of UF[i]Fix and UF[i]’Fix represents a
commonly used calibration fixture in two “identical” robot workcells, the transformation
between two robot base frames R’ and R can be calculated in Eq. (22)

1

]i[UF
R

]'i[UF
'R

R
'R)T(TT

FixFix

 . (22)

It is also possible to make transformation R’TUF[i]’ equal to transformation RTUF[i] as shown in
Eq. (23)

]i[UF
R

]'i[UF
'R TT  , (23)

where frames UF[i] and UF[i]’ are used for recording robot points P[n] and P[n]’ in the two
“identical” robot workcells, respectively. With Eq. (22) and Eq. (23), robot offset UF[i]’TUF[i]
can be calculated in Eq. (24)

]i[UF
R

R
'R1

]'i[UF
'R

]i[UF
]'i[UF TT)T(T   . (24)

6. Conclusion

Creating accurate robot points is an important task in robot programming. This chapter
discussed the advanced techniques used in creating robot points for improving robot
operation flexibility and reducing robot production downtime. The theory of robotics shows
that an industrial robot system represents a robot point in both Cartesian coordinates and
proper joint values. The concepts and procedures of designing accurate robot user tool
frame UT[k] and robot user frame UF[i] are essential in teaching robot points. Depending on
the selected UT[k] and UF[i], the Cartesian coordinates of a robot point may be different, but
the joint values of a robot point always uniquely define the robot pose. Through teaching
robot frames UT[k] and UF[i] and measuring their offsets, the robot programmer is able to
shift the originally taught robot points for dealing with the position variations of the robot’s
end-effector and the workpiece. The similar method has also been successfully applied in
the robot vision system, the robot simulation, and the robot calibration system. In an
integrated robot vision system, the vision frame Vis[i] serves the role of frame UF[i]. The
vision measurements to the vision-identified object obtained in either fixed-camera or
mobile-camera applications are used for determining the offset of UF[i] for the robot system.
In robot simulation, the virtual robot points created in the simulation robot workcell must be
adjusted relative to the position of the robot in the real robot workcell. This task can be done
by attaching the created virtual robot points to the base frame B[i] of the simulation device
that serves the same role of UF[i]. With the uploaded real robot points, the virtual robot
points can be adjusted with respect to the determined true frame B[i]. In a robot calibration
system, the measuring device establishes frame UF[i] on a common fixture for the
workpiece, and the measurement of UF[i] in the identical robot workcell are used to
determine the offset of UF[i].

www.intechopen.com

Advances in Robot Manipulators98

7. References

Cheng, F. S. (2009). Programming Vision-Guided Industrial Robot Operations, Journal of
Engineering Technology, Vol. 26, No. 1, Spring 2009, pp. 10-15.

Cheng, F. S. (2007). The Method of Recovering TCP Positions in Industrial Robot Production
Programs, Proceedings of 2007 IEEE International Conference on Mechatronics and
Automation, August 2007, pp. 805-810.

Cheng, S. F. (2003). The Simulation Approach for Designing Robotic Workcells, Journal of
Engineering Technology, Vol. 20, No. 2, Fall 2003, pp. 42-48.

Connolly, C. (2008). Artificial Intelligence and Robotic Hand-Eye Coordination, Industrial
Robot:An International Journal, Vol. 35, No. 6, 2008, pp. 496-503.

Connolly, C. (2007). A New Integrated Robot Vision System from FANUC Robotics,
Industrial Robot: An International Journal, Vol. 34, No. 2, 2007, pp. 103-106.

Connolly, C. (2006). Delmia Robot Modeling Software Aids Nuclear and Other Industries,
Industrial Robot:An International Journal, Vol. 33, No. 4, 2008, pp. 259-264.

Fanuc Robotics (2007). Teaching Pendant Programming, R-30iA Mate LR HandlingTool
Software Documentation, Fanuc Robotics America, Inc.

Golnabi, H. & Asadpour, A. (2007). Design and application of industrial machine vision
systems, Robotics and Computer-Integrated Manufacturing, 23, pp. 630–637.

Motta, J.T.; de Carvalhob, G. C. & McMaster, R.S. (2001). Robot calibration using a 3D
vision-based measurement system with a single camera, Robotics and Computer
Integrated Manufacturing, 17, 2001, pp. 487–497

Nguyen, M. C. (2000), Vision-Based Intelligent Robots, In SPIE: Input/Output and Imaging
Technologies II, Vol. 4080, 2000, pp. 41-47.

Niku, S. B. (2001). Robot Kinematics, Introduction to Robotics: Analysis, Systems, Applications,
pp. 29-67, Prentice Hall. ISBN 0130613096, New Jersey, USA.

Pulkkinen1, T.; Heikkilä1, T.; Sallinen1, M.; Kivikunnas1, S. & Salmi, T. (2008). 2D CAD
based robot programming for processing metal profiles in short series, Proceedings
of Manufacturing, International Conference on Control, Automation and Systems 2008,
Oct. 14-17, 2008 in COEX, Seoul, Korea, pp. 157-160.

Rehg, J. A. (2003). Path Control, Introduction to Robotics in CIM Systems, 5th Ed. pp. 102-
108Prentice Hall, ISBN 0130602434, New Jersey, USA.

Zhang, H.; Chen, H. & Xi, N. (2006). Automated robot programming based on sensor fusion,
Industrial Robot: An International Journal, Vol. 33, No. 6, 2006, pp. 451-459.

www.intechopen.com

Advances in Robot Manipulators

Edited by Ernest Hall

ISBN 978-953-307-070-4

Hard cover, 678 pages

Publisher InTech

Published online 01, April, 2010

Published in print edition April, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The purpose of this volume is to encourage and inspire the continual invention of robot manipulators for

science and the good of humanity. The concepts of artificial intelligence combined with the engineering and

technology of feedback control, have great potential for new, useful and exciting machines. The concept of

eclecticism for the design, development, simulation and implementation of a real time controller for an

intelligent, vision guided robots is now being explored. The dream of an eclectic perceptual, creative controller

that can select its own tasks and perform autonomous operations with reliability and dependability is starting to

evolve. We have not yet reached this stage but a careful study of the contents will start one on the exciting

journey that could lead to many inventions and successful solutions.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Frank Shaopeng Cheng (2010). Advanced Techniques of Industrial Robot Programming, Advances in Robot

Manipulators, Ernest Hall (Ed.), ISBN: 978-953-307-070-4, InTech, Available from:

http://www.intechopen.com/books/advances-in-robot-manipulators/advanced-techniques-of-industrial-robot-

programming

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

