
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Parallel and Distributed Immersive Real-Time Simulation of Large-Scale Networks 221

Parallel and Distributed Immersive Real-Time Simulation of Large-Scale 
Networks

Jason Liu

X 
 

Parallel and Distributed Immersive  
Real-Time Simulation of  

Large-Scale Networks 
 

Jason Liu 
Florida International University  

United States 
 
1. Introduction 

Network researchers need to embrace the challenge of designing the next-generation high-
performance networking and software infrastructures that address the growing demand of 
distributed applications. These applications, particularly those potential "game changers" or 
"killer apps", such as voice-over-IP (VoIP) and peer-to-peer (P2P) applications surfaced in 
recent years, will significantly influence the way people conduct business and go about their 
daily lives. These distributed applications also include platforms that facilitate large-scale 
scientific experimentation through remote control and visualization. Many large-scale science 
applications—such as those in the field of astronomy, astrophysics, climate and environmental 
science, material science, particle physics, and social science—depend on the availability of 
high-performance facilities and advanced experimental instruments. Extreme networking 
capabilities together with effective high-end middleware infrastructures are of great 
importance to interconnecting these applications, computing resources and experimental 
facilities. "When all you have is a hammer, everything looks like a nail." The success of 
advancing critical technologies, to a large extent, depends on the available tools that can help 
effectively prototype, test, and analyze new designs and new ideas. Traditionally, network 
research has relied on a variety of tools. Physical network testbeds, such as WAIL (Barford and 
Landweber, 2003) and PlanetLab (Peterson et al., 2002), provide physical network connectivity; 
these testbeds are designed specifically for studying network protocols and services under real 
network conditions. However, the network condition of these testbeds is by and large 
constrained by the physical setup of the system and therefore inflexible for network 
researchers to explore a wide spectrum of the design space. 
To allow more flexibility, some of these testbeds, such as EmuLab (White et al., 2002) and 
VINI (Bavier et al., 2006), also offer emulation capabilities by modulating network traffic ac-
cording to configuration and traffic condition of the target network. Physical and emulation 
testbeds currently are the mainstream for experimental networking research, primarily due 
to their capability of achieving desirable realism and accuracy. These testbeds, however, are 
costly to build. Due to limited resources available, conducting prolonged large-scale experi-
ments on these platforms is difficult. Another solution is to use analytical models. Although 
analytical models are capable of bringing us important insight to the system design, dealing 
with a system as complex as the global network requires significantly simplified 
assumptions to be made to keep the models tractable. These simplified assumptions often 
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exclude implementation details, which are often crucial to the validity of the system design. 
Simulation and emulation play an important role in network design and evaluation. While 
both refer to the technique of mimicking network operations in software, one major 
distinction is that simulation is purely virtual, whereas emulation focuses on interactions 
with real applications. A network simulation consists of software implementation of 
network protocols and various network entities, such as routers and links. Network 
operations (e.g., packet forwarding) are merely logical operations. As a result, the 
simulation time advancement bears no direct relationship to the wall-clock time. Emulation, 
on the other hand, focuses on interactions with real applications, such as distributed 
network services and distributed database systems. These real applications generate traffic; 
an emulator provides traffic shaping functions by adding appropriate packet delays and 
sometimes dropping packets. Emulation delivers more realism as it interacts with the 
physical entities. Comparatively, simulation is effective at capturing high-level design 
issues, answering what-if questions, and therefore can help us understand complex system 
behaviors, such as multi-scale interactions, self-organizing characteristics, and emergent 
phenomena. Unfortunately, simulation fairs poorly in many aspects, including notably the 
absence of operational realism. Further, simulation model development is both labor-
intensive and error-prone; reproducing realistic network topology, representative traffic, 
and diverse operational conditions in simulation is known to be a substantial undertaking 
(Floyd and Paxson, 2001). 
Real-time simulation combines the advantages of both simulation and emulation: it can run 
simulation and simultaneously interact with the physical world. Real-time network simu-
lation, sometimes called immersive network simulation, can be defined as the technique of 
simulating computer networks and communication systems in real time so that the 
simulated network can interact with real implementations of network protocols, network 
services, and distributed applications. The word "immersive" suggests that the virtual 
network behavior should not be distinguishable from a physical network for conducting 
network traffic. That is, simulation should capture important characteristics of the target 
network and support seamless interactions with the real applications. Real-time network 
simulation is based on simulation, and therefore is fast in execution and flexible at 
answering what-if questions. It allows high-level mathematical models (such as stochastic 
network traffic models) to be incorporated into the system with relative ease. The system 
interacts with real applications and real network traffic. Not only does it allow us to study 
the impact of real application traffic on the virtual network, but also supports studying the 
behavior of real applications under diverse simulated network conditions. 
The challenge is to keep it in real time. Since real applications operate in real time, real-time 
network simulation must meet real-time requirements. Especially, the performance of a 
large-scale network simulation must be able to keep up with the wall-clock time and allow 
real-time interactions with potentially a lot of real applications. A real-time simulator must 
also be able to characterize the behavior of a network, potentially with millions of network 
entities and with realistic traffic load at commensurate scale—all in real time. To speed up 
simulation, on the one hand, we need to apply parallel and distributed discrete-event 
simulation techniques to harness the computing resources of parallel computers so as to 
physically increase the event-processing power; on the other hand, we need to resort to 
multi-resolution modeling techniques using models at high-level of abstraction to reduce 
the computational demand. We also need to create a scalable emulation infrastructure, 

through which real applications can interact with the simulated network and sustain high-
level emulation traffic intensity. In this chapter, we review the techniques that allow real-
time simulation to model large-scale networks and interact with many real applications 
under the real-time constraint. We discuss advanced modeling and simulation techniques 
supporting real-time execution. We describe the emulation infrastructure and machine 
virtualization techniques supporting the network immersion of a large number of real 
applications. Through case studies, we show the potentials of real-time simulation in 
various areas of network science. 

 
2. Background 

2.1 Existing Network Testbeds 
We classify available network testbeds into physical, emulation, and simulation testbeds. We 
can further divide physical testbeds into production testbeds and research testbeds (Anderson 
et al., 2005). Production testbeds, such as CAIRN and Internet2, support network experiments 
directly on the network itself and thus with live traffic; however, they are very restrictive 
allowing only certain types of experiments that do not disrupt normal network operations. 
Comparatively, research testbeds, such as WAIL and PlanetLab, provide far better flexibility. 
WAIL (Barford and Landweber, 2003) is a research testbed consisting of a large set of 
commercial networking components (including router, switches, and end hosts) connected to 
form an experimental network capable of representing typical end-to-end configurations 
found on the Internet. PlanetLab (Peterson et al., 2002) is a well-known research facility 
consisting of machines distributed across the Internet and shared by researchers conducting 
experiments. Most research testbeds, however, can only provide an iconic view of the Internet 
at large. Also, the underlying facility is typically overloaded due to heavy use, which 
potentially affects their availability as well as accuracy (Spring et al., 2006). 
Many research testbeds are based on emulation. Network emulation adds packet delays and 
possibly drops packets when conducting traffic between real applications. Examples of 
emulation testbeds include Ahn et al. (1995); Carson and Santay (2003); Herrscher and 
Rothermel (2002); Zheng and Ni (2003) and Huang et al. (1999). The traffic modulation 
function can be implemented at the sender or receiver side, or both. For example, in 
dummynet (Rizzo, 1997), each virtual network link is represented as a queue with specific 
bandwidth and delay constraints; packets are intercepted at the protocol stack of the sender 
and pushed through a finite queue to simulate the time it takes to forward the packet. 
Emulation testbeds can be built on a variety of computing infrastructures. For example, 
ModelNet (Vahdat et al., 2002) extends dummynet, where a large number of network 
applications can run unmodified on a set of edge nodes and communicate via a virtual 
network emulated on parallel computers at the core. EmuLab (White et al., 2002) is an 
experimentation facility consisting of a compute cluster integrated and coordinated to 
present a diverse virtual network environment. DETER (Benzel et al., 2006) extends EmuLab 
to support research and development of cyber security applications. Some of the emulation 
testbeds are built for distributed environments, such as X-Bone (Touch, 2000), VIOLIN 
(Jiang and Xu, 2004), VNET (Sundararaj and Dinda, 2004), and VINI (Bavier et al., 2006). 
Other emulation testbeds may require special programmable devices. For example, the 
Open Network Laboratory (DeHart et al., 2006) uses embedded processors and configures 
them to represent realistic network settings for experimentation and observation. ORBIT 
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exclude implementation details, which are often crucial to the validity of the system design. 
Simulation and emulation play an important role in network design and evaluation. While 
both refer to the technique of mimicking network operations in software, one major 
distinction is that simulation is purely virtual, whereas emulation focuses on interactions 
with real applications. A network simulation consists of software implementation of 
network protocols and various network entities, such as routers and links. Network 
operations (e.g., packet forwarding) are merely logical operations. As a result, the 
simulation time advancement bears no direct relationship to the wall-clock time. Emulation, 
on the other hand, focuses on interactions with real applications, such as distributed 
network services and distributed database systems. These real applications generate traffic; 
an emulator provides traffic shaping functions by adding appropriate packet delays and 
sometimes dropping packets. Emulation delivers more realism as it interacts with the 
physical entities. Comparatively, simulation is effective at capturing high-level design 
issues, answering what-if questions, and therefore can help us understand complex system 
behaviors, such as multi-scale interactions, self-organizing characteristics, and emergent 
phenomena. Unfortunately, simulation fairs poorly in many aspects, including notably the 
absence of operational realism. Further, simulation model development is both labor-
intensive and error-prone; reproducing realistic network topology, representative traffic, 
and diverse operational conditions in simulation is known to be a substantial undertaking 
(Floyd and Paxson, 2001). 
Real-time simulation combines the advantages of both simulation and emulation: it can run 
simulation and simultaneously interact with the physical world. Real-time network simu-
lation, sometimes called immersive network simulation, can be defined as the technique of 
simulating computer networks and communication systems in real time so that the 
simulated network can interact with real implementations of network protocols, network 
services, and distributed applications. The word "immersive" suggests that the virtual 
network behavior should not be distinguishable from a physical network for conducting 
network traffic. That is, simulation should capture important characteristics of the target 
network and support seamless interactions with the real applications. Real-time network 
simulation is based on simulation, and therefore is fast in execution and flexible at 
answering what-if questions. It allows high-level mathematical models (such as stochastic 
network traffic models) to be incorporated into the system with relative ease. The system 
interacts with real applications and real network traffic. Not only does it allow us to study 
the impact of real application traffic on the virtual network, but also supports studying the 
behavior of real applications under diverse simulated network conditions. 
The challenge is to keep it in real time. Since real applications operate in real time, real-time 
network simulation must meet real-time requirements. Especially, the performance of a 
large-scale network simulation must be able to keep up with the wall-clock time and allow 
real-time interactions with potentially a lot of real applications. A real-time simulator must 
also be able to characterize the behavior of a network, potentially with millions of network 
entities and with realistic traffic load at commensurate scale—all in real time. To speed up 
simulation, on the one hand, we need to apply parallel and distributed discrete-event 
simulation techniques to harness the computing resources of parallel computers so as to 
physically increase the event-processing power; on the other hand, we need to resort to 
multi-resolution modeling techniques using models at high-level of abstraction to reduce 
the computational demand. We also need to create a scalable emulation infrastructure, 

through which real applications can interact with the simulated network and sustain high-
level emulation traffic intensity. In this chapter, we review the techniques that allow real-
time simulation to model large-scale networks and interact with many real applications 
under the real-time constraint. We discuss advanced modeling and simulation techniques 
supporting real-time execution. We describe the emulation infrastructure and machine 
virtualization techniques supporting the network immersion of a large number of real 
applications. Through case studies, we show the potentials of real-time simulation in 
various areas of network science. 

 
2. Background 

2.1 Existing Network Testbeds 
We classify available network testbeds into physical, emulation, and simulation testbeds. We 
can further divide physical testbeds into production testbeds and research testbeds (Anderson 
et al., 2005). Production testbeds, such as CAIRN and Internet2, support network experiments 
directly on the network itself and thus with live traffic; however, they are very restrictive 
allowing only certain types of experiments that do not disrupt normal network operations. 
Comparatively, research testbeds, such as WAIL and PlanetLab, provide far better flexibility. 
WAIL (Barford and Landweber, 2003) is a research testbed consisting of a large set of 
commercial networking components (including router, switches, and end hosts) connected to 
form an experimental network capable of representing typical end-to-end configurations 
found on the Internet. PlanetLab (Peterson et al., 2002) is a well-known research facility 
consisting of machines distributed across the Internet and shared by researchers conducting 
experiments. Most research testbeds, however, can only provide an iconic view of the Internet 
at large. Also, the underlying facility is typically overloaded due to heavy use, which 
potentially affects their availability as well as accuracy (Spring et al., 2006). 
Many research testbeds are based on emulation. Network emulation adds packet delays and 
possibly drops packets when conducting traffic between real applications. Examples of 
emulation testbeds include Ahn et al. (1995); Carson and Santay (2003); Herrscher and 
Rothermel (2002); Zheng and Ni (2003) and Huang et al. (1999). The traffic modulation 
function can be implemented at the sender or receiver side, or both. For example, in 
dummynet (Rizzo, 1997), each virtual network link is represented as a queue with specific 
bandwidth and delay constraints; packets are intercepted at the protocol stack of the sender 
and pushed through a finite queue to simulate the time it takes to forward the packet. 
Emulation testbeds can be built on a variety of computing infrastructures. For example, 
ModelNet (Vahdat et al., 2002) extends dummynet, where a large number of network 
applications can run unmodified on a set of edge nodes and communicate via a virtual 
network emulated on parallel computers at the core. EmuLab (White et al., 2002) is an 
experimentation facility consisting of a compute cluster integrated and coordinated to 
present a diverse virtual network environment. DETER (Benzel et al., 2006) extends EmuLab 
to support research and development of cyber security applications. Some of the emulation 
testbeds are built for distributed environments, such as X-Bone (Touch, 2000), VIOLIN 
(Jiang and Xu, 2004), VNET (Sundararaj and Dinda, 2004), and VINI (Bavier et al., 2006). 
Other emulation testbeds may require special programmable devices. For example, the 
Open Network Laboratory (DeHart et al., 2006) uses embedded processors and configures 
them to represent realistic network settings for experimentation and observation. ORBIT 
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(Raychaudhuri et al., 2005) is an open large-scale wireless network emulation testbed that 
supports experimental studies using an array of real wireless devices. The CMU Wireless 
Emulator (Judd and Steenkiste, 2004) is a wireless network testbed based on a large Field-
Programmable Gate Array (FPGA) that can modify wireless signals sent by real wireless 
devices according to signal propagation models. A major distinction between simulation 
and emulation is that simulation contains only software modules representing network 
protocols and network entities, such as routers and links, and mimicking network 
transactions as pure logic operations to the state variables. Examples of network simulators 
include Barr et al. (2005); Tyan and Hou (2001) and Varga (2001). The ns-2 simulator 
(Breslau et al., 2000) is one of the most popular simulators with a rich collection of network 
algorithms and protocols for both wired and wireless networks. To scale up network 
simulation, a number of parallel and distributed simulators have also been developed, 
which include SSFNet (Cowie et al., 1999), GTNets (Riley, 2003), ROSSNet (Yaun et al., 
2003), and GloMoSim (Bajaj et al., 1999). Next, we describe parallel and distributed 
simulation as the enabling technique for real-time simulation. 

 
2.2 Parallel and Distributed Simulation 
Parallel and distributed simulation, also known as parallel simulation or parallel discrete-
event simulation (PDES), is concerned with executing a single discrete-event simulation 
program on parallel computers (Fujimoto, 1990). By exploiting the concurrency of a 
simulation model, parallel simulation can overcome the limitations of sequential simulation 
in both execution time and memory space. The critical issue of allowing a discrete-event 
simulation program to run in parallel is to maintain the causality constraint, which means 
that simulation events in the system must be processed in a non-decreasing timestamp 
order. This is because an event with a smaller timestamp has the potential to change the 
state of the system and affect events that happen later (with larger timestamps). Most 
parallel simulation adopts spatial decomposition: a model is divided into sub-models called 
logical processes (LPs), each of which maintains its own local simulation clock and can run 
on a different processor. For network simulation, a simulated network can be partitioned 
into smaller sub-networks, each handled by a different processor. 
The way how the causality constraint is enforced divides parallel simulation into 
conservative and optimistic approaches. The conservative approach strictly prohibits out-of-
order event execution: a processor must be blocked from processing the next event in its 
event queue until it is safe to do so. That is, it must ensure that no event will arrive from 
another processor with a timestamp earlier than the local simulation clock. In contrast, the 
optimistic approach allows events to be processed out of order. Once a causality error is 
detected—an event arrives at a logical process with a timestamp in the simulated past—the 
simulation will be rolled back to a state before the error occurs. In order for the simulation to 
retract and recover from an erroneous execution path, state saving and recovery 
mechanisms are typically provided. The seminal work for the conservative approach is the 
CMB algorithm, an asynchronous algorithm proposed independently by Chandy and Misra 
(1979), and Bryant (1977). The CMB algorithm provides several important observations that 
epitomize the fundamentals of conservative synchronization. One important concept is 
lookahead. To avoid deadlock, an LP must determine a lower bound on the timestamp of 
messages it will send to another LP. In essence, Lookahead is the amount of simulation time 
that an LP can predict into the simulated future. Extensive performance studies emphasize 

the importance of extrapolating lookahead from the model (Fujimoto, 1988,1989; Reed et al., 
1988). Nicol (1996) gave a classification of lookahead based on different levels of knowledge 
that can be extracted from the model. The use of different dimensions of lookahead 
underscores conservative synchronization protocols. Several models have been shown to 
exhibit good lookahead properties, such as first-come-first-serve stochastic queuing 
networks (Nicol, 1988) and continuous-time Markov chains (Nicol and Heidelberger, 1995). 
In addition, several synchronization protocols have been developed to exploit lookahead for 
general applications, such as the conditional event approach by Chandy 
and Sherman (1989), the YAWNS protocol by Nicol (1991), the bounded lag algorithm by 
Lubachevsky (1988), the distance-between-objects algorithm by Ayani (1989), and the TNE 
algorithm by Groselj and Tropper (1988). 
The first optimistic synchronization protocol is the Time Warp algorithm (Jefferson, 1985). 
Since the optimistic approach allows events to be processed out of timestamp order, Time 
Warp provides mechanisms to "roll back" erroneous event processing. An LP is able to save 
and later restore the state of the LP and "unsend" any messages it sends to other LPs during 
an erroneous execution. Since Time Warp requires state saving during event processing, the 
algorithm must be able to reclaim the memory resource; otherwise, the simulation would 
soon run out of memory. To accomplish this, the concept of global virtual time (GVT) is 
introduced as a timestamp lower-bound of all unprocessed or partially processed events at 
any given time. It serves as a "moving commitment horizon": any message and state with a 
timestamp less than GVT can be reclaimed and any irrevocable operations (such as I/O) that 
happen before GVT can be committed. Time Warp needs to overcome several problems in 
order to maintain good efficiency. These problems have prompted a flood of research in 
areas of state saving (e.g., Gomes et al., 1996; Lin and Lazowska, 1990; Lin et al., 1993; 
Ronngren et al., 1996), rollback (e.g., Gafni, 1988; Reiher et al., 1990; West, 1988), GVT 
computation (e.g., Fujimoto and Hybinette, 1997; Mattern, 1993; Samadi, 1985), memory 
management (e.g., Jefferson, 1990; Lin and Preiss, 1991; Preiss and Loucks, 1995), and 
alternative optimistic execution (e.g., Dickens 
and Reynolds, 1990; Sokol et al., 1988; Steinman, 1991, 1993). 
The jury is out on which of the two approaches is a better choice. This is because parallel 
simulation performance largely depends on the characteristics of the simulation model. For 
network simulation, conservative synchronization is generally preferred as it requires a 
smaller memory footprint as opposed to the optimistic counterpart that generally needs 
additional memory for state saving and rollback. An interesting exception is the reverse 
computation technique (Carothers et al., 1999). Instead of applying state saving, one 
performs reverse computation to re-create the original state when rollback happens. Recent 
study shows that, with careful implementation, reverse computation achieves great memory 
efficiency in simulating large networks (Yaun et al., 2003). 

 
3. Real-Time Network Simulation 

Real-time simulation combines the advantages of simulation and emulation by conducting 
network simulation in real time and interacting with real applications and real network 
traffic. It allows us to study the impact of real application traffic on the virtual network and 
study real application behavior under a diverse set of simulated network conditions. 
Specifically, real-time network simulation provides the following capabilities: 
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(Raychaudhuri et al., 2005) is an open large-scale wireless network emulation testbed that 
supports experimental studies using an array of real wireless devices. The CMU Wireless 
Emulator (Judd and Steenkiste, 2004) is a wireless network testbed based on a large Field-
Programmable Gate Array (FPGA) that can modify wireless signals sent by real wireless 
devices according to signal propagation models. A major distinction between simulation 
and emulation is that simulation contains only software modules representing network 
protocols and network entities, such as routers and links, and mimicking network 
transactions as pure logic operations to the state variables. Examples of network simulators 
include Barr et al. (2005); Tyan and Hou (2001) and Varga (2001). The ns-2 simulator 
(Breslau et al., 2000) is one of the most popular simulators with a rich collection of network 
algorithms and protocols for both wired and wireless networks. To scale up network 
simulation, a number of parallel and distributed simulators have also been developed, 
which include SSFNet (Cowie et al., 1999), GTNets (Riley, 2003), ROSSNet (Yaun et al., 
2003), and GloMoSim (Bajaj et al., 1999). Next, we describe parallel and distributed 
simulation as the enabling technique for real-time simulation. 

 
2.2 Parallel and Distributed Simulation 
Parallel and distributed simulation, also known as parallel simulation or parallel discrete-
event simulation (PDES), is concerned with executing a single discrete-event simulation 
program on parallel computers (Fujimoto, 1990). By exploiting the concurrency of a 
simulation model, parallel simulation can overcome the limitations of sequential simulation 
in both execution time and memory space. The critical issue of allowing a discrete-event 
simulation program to run in parallel is to maintain the causality constraint, which means 
that simulation events in the system must be processed in a non-decreasing timestamp 
order. This is because an event with a smaller timestamp has the potential to change the 
state of the system and affect events that happen later (with larger timestamps). Most 
parallel simulation adopts spatial decomposition: a model is divided into sub-models called 
logical processes (LPs), each of which maintains its own local simulation clock and can run 
on a different processor. For network simulation, a simulated network can be partitioned 
into smaller sub-networks, each handled by a different processor. 
The way how the causality constraint is enforced divides parallel simulation into 
conservative and optimistic approaches. The conservative approach strictly prohibits out-of-
order event execution: a processor must be blocked from processing the next event in its 
event queue until it is safe to do so. That is, it must ensure that no event will arrive from 
another processor with a timestamp earlier than the local simulation clock. In contrast, the 
optimistic approach allows events to be processed out of order. Once a causality error is 
detected—an event arrives at a logical process with a timestamp in the simulated past—the 
simulation will be rolled back to a state before the error occurs. In order for the simulation to 
retract and recover from an erroneous execution path, state saving and recovery 
mechanisms are typically provided. The seminal work for the conservative approach is the 
CMB algorithm, an asynchronous algorithm proposed independently by Chandy and Misra 
(1979), and Bryant (1977). The CMB algorithm provides several important observations that 
epitomize the fundamentals of conservative synchronization. One important concept is 
lookahead. To avoid deadlock, an LP must determine a lower bound on the timestamp of 
messages it will send to another LP. In essence, Lookahead is the amount of simulation time 
that an LP can predict into the simulated future. Extensive performance studies emphasize 

the importance of extrapolating lookahead from the model (Fujimoto, 1988,1989; Reed et al., 
1988). Nicol (1996) gave a classification of lookahead based on different levels of knowledge 
that can be extracted from the model. The use of different dimensions of lookahead 
underscores conservative synchronization protocols. Several models have been shown to 
exhibit good lookahead properties, such as first-come-first-serve stochastic queuing 
networks (Nicol, 1988) and continuous-time Markov chains (Nicol and Heidelberger, 1995). 
In addition, several synchronization protocols have been developed to exploit lookahead for 
general applications, such as the conditional event approach by Chandy 
and Sherman (1989), the YAWNS protocol by Nicol (1991), the bounded lag algorithm by 
Lubachevsky (1988), the distance-between-objects algorithm by Ayani (1989), and the TNE 
algorithm by Groselj and Tropper (1988). 
The first optimistic synchronization protocol is the Time Warp algorithm (Jefferson, 1985). 
Since the optimistic approach allows events to be processed out of timestamp order, Time 
Warp provides mechanisms to "roll back" erroneous event processing. An LP is able to save 
and later restore the state of the LP and "unsend" any messages it sends to other LPs during 
an erroneous execution. Since Time Warp requires state saving during event processing, the 
algorithm must be able to reclaim the memory resource; otherwise, the simulation would 
soon run out of memory. To accomplish this, the concept of global virtual time (GVT) is 
introduced as a timestamp lower-bound of all unprocessed or partially processed events at 
any given time. It serves as a "moving commitment horizon": any message and state with a 
timestamp less than GVT can be reclaimed and any irrevocable operations (such as I/O) that 
happen before GVT can be committed. Time Warp needs to overcome several problems in 
order to maintain good efficiency. These problems have prompted a flood of research in 
areas of state saving (e.g., Gomes et al., 1996; Lin and Lazowska, 1990; Lin et al., 1993; 
Ronngren et al., 1996), rollback (e.g., Gafni, 1988; Reiher et al., 1990; West, 1988), GVT 
computation (e.g., Fujimoto and Hybinette, 1997; Mattern, 1993; Samadi, 1985), memory 
management (e.g., Jefferson, 1990; Lin and Preiss, 1991; Preiss and Loucks, 1995), and 
alternative optimistic execution (e.g., Dickens 
and Reynolds, 1990; Sokol et al., 1988; Steinman, 1991, 1993). 
The jury is out on which of the two approaches is a better choice. This is because parallel 
simulation performance largely depends on the characteristics of the simulation model. For 
network simulation, conservative synchronization is generally preferred as it requires a 
smaller memory footprint as opposed to the optimistic counterpart that generally needs 
additional memory for state saving and rollback. An interesting exception is the reverse 
computation technique (Carothers et al., 1999). Instead of applying state saving, one 
performs reverse computation to re-create the original state when rollback happens. Recent 
study shows that, with careful implementation, reverse computation achieves great memory 
efficiency in simulating large networks (Yaun et al., 2003). 

 
3. Real-Time Network Simulation 

Real-time simulation combines the advantages of simulation and emulation by conducting 
network simulation in real time and interacting with real applications and real network 
traffic. It allows us to study the impact of real application traffic on the virtual network and 
study real application behavior under a diverse set of simulated network conditions. 
Specifically, real-time network simulation provides the following capabilities: 
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• Accuracy. Real-time network simulation is based on simulation; thus, it is able to ef-
ficiently capture detailed packet-level transactions in the network. This is particularly 
true for simulating packet forwarding on wired infrastructure networks as it is rela-
tively straightforward to calculate the link state with sufficient accuracy (such as the 
delay for a packet being forwarded from one router to the next). Real-time network 
simulation can also increase the fidelity of simulation since it can create real traffic 
conditions generated by real applications. Furthermore, existing implementations, 
such as routing protocols, can be incorporated directly in simulation rather than using 
a separate implementation just for simulation purposes. The design and 
implementation of network protocols, services, and applications is complex and labor-
intensive. Maintaining code separately for simulation and for real deployment would 
have to include costly procedures for verification and validation. 

• Repeatability. Repeatability is important to both protocol development and 
evaluation. In real-time network simulation, an experiment may or may not be 
repeatable, depending on whether interaction with the applications is repeatable or 
not. The virtual network in real-time network simulation is controlled by simulation 
events, and thus can be used to produce repeatable network conditions to test real 
network applications. 

• Scalability. Emulation typically implements packet transmission by really directing a 
packet across a physical link, although in some cases this process can be accelerated 
by using special programmable devices (e.g., DeHart et al., 2006). In comparison, 
network operations in real-time network simulation are handled in software; each 
packet transmission involves only a few changes to the state variables in simulation 
that are computationally insignificant compared to the I/O overhead. Furthermore, 
since packet forwarding operations are relatively easy to parallelize, the simulated 
network can be scaled up far beyond what could be supported by emulation. 

• Flexibility. Simulation is both a tool for analyzing the performance of existing systems 
and a tool for evaluating new design alternatives potentially under various operating 
settings. Once a simulation model is in place, it takes little effort to conduct simulation 
experiments, for example, to explore a wide spectrum of design space. We can also 
incorporate different analytical models in real-time network simulation. For example, 
we can use low-resolution models to describe aggregate Internet traffic behavior, 
which can significantly increase the scale of the network being simulated. 

Most real-time network simulators are based on existing network simulators added with 
emulation capabilities in order to interact with real applications. Examples include NSE 
(Fall, 1999), IP-TNE (Bradford et al., 2000), MaSSF (Liu et al., 2003), and Maya (Zhou et al., 
2004). NSE is an emulation extension of the popular ns-2 simulator with support for 
connecting with real applications and scheduling real-time events. ns-2 is built on a 
sequential discrete-event simulation engine, which severely limits the size of the network it 
is capable of simulating; for real-time simulation, this means that the size of the network has 
to be kept small to allow realtime processing. IP-TNE is an emulation extension of an 
existing parallel network simulator. It is the first simulator we know that applies parallel 
simulation to large-scale network emulations. MaSSF is built on our parallel simulator 
DaSSF with support for the grid computing environment. Maya is an emulation extension of 
a simulator for wireless mobile networks. Our real-time network simulator is called PRIME, 
which stands for Parallel Real-time Immersive network Modeling Environment. The 

implementation of PRIME inherits most of our previous efforts in the development of 
DaSSF, a process-oriented and conservatively synchronized parallel simulation engine 
designed for multi-protocol communication networks. DaSSF can run on most platforms, 
including shared-memory multiprocessors and clusters of distributed-memory machines. 
The DaSSF simulation engine is ultra fast and has been demonstrated capable of handling 
large network models, including simulation of infrastructure networks, cellular systems, 
wireless ad hoc networks, and wireless sensor networks. In order to support large-scale 
simulation, PRIME applies advanced parallel simulation techniques. For example, to achieve 
good performance on distributed-memory machines, PRIME adopts a hierarchical 
synchronization scheme to address the discrepancy in the communication cost between 
distributed-memory and shared-memory platforms (Liu and Nicol, 2001). Further, PRIME 
implements the composite synchronization algorithm (Nicol and Liu, 2002), which combines 
the traditional synchronous and asynchronous conservative parallel simulation algorithms. 
Consequently, PRIME is able to efficiently simulate diverse network scenarios, including 
those that exhibit large variability in link types (particularly with the existence of low-
latency connections), and node types (especially for those with a large degree of con-
nectivity). 
PRIME extends DaSSF with emulation capabilities, where unmodified implementations of 
real applications can interact with the network simulator that operates in real time. Traffic 
originated from the real applications is captured by PRIME's emulation facilities and for-
warded to the simulator. The real network packets are treated as simulation events as they 
are "carried" on the virtual network and experience appropriate delays and losses according 
to the run-time state of the simulated network. 

 
4. Supporting Real-Time Performance 

Real-time network simulation needs to resolve two important and related issues: 
responsiveness and timeliness. Responsiveness dictates that the real-time simulator must be 
able to interact with real applications in time. That is, the system interface must be able to 
receive and respond to real-time events promptly according to proper real-time deadlines. 
Timeliness refers to the system's ability to keep up with the wall-clock time. That is, the 
simulation must be able to characterize the behavior of the networks, potentially with 
millions of network entities and with a large amount of network traffic flows, in real time. 
Failing to do so will introduce timing faults, where the simulation fails to process events 
before the designated deadlines. An elevated occurrence of timing faults will cause the 
simulator to become less responsive when interacting with real applications. In this section 
we briefly describe the techniques we developed so far to factor out these issues. 

 
4.1 Hybrid Traffic Modeling 
Large-scale real-time network simulation requires simulation be able to characterize the net-
work behavior in real time. To speed up simulation, on the one hand, we apply parallel and 
distributed simulation techniques to harness the computing resources of parallel computers 
to physically increase the event-processing power; on the other hand, we resort to multi-
resolution modeling techniques mixing models with high level of abstraction (and low 
resolution) to reduce the computational demand. 
Our solution to this problem is to use a hybrid network traffic model that combines a fluid-
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• Accuracy. Real-time network simulation is based on simulation; thus, it is able to ef-
ficiently capture detailed packet-level transactions in the network. This is particularly 
true for simulating packet forwarding on wired infrastructure networks as it is rela-
tively straightforward to calculate the link state with sufficient accuracy (such as the 
delay for a packet being forwarded from one router to the next). Real-time network 
simulation can also increase the fidelity of simulation since it can create real traffic 
conditions generated by real applications. Furthermore, existing implementations, 
such as routing protocols, can be incorporated directly in simulation rather than using 
a separate implementation just for simulation purposes. The design and 
implementation of network protocols, services, and applications is complex and labor-
intensive. Maintaining code separately for simulation and for real deployment would 
have to include costly procedures for verification and validation. 

• Repeatability. Repeatability is important to both protocol development and 
evaluation. In real-time network simulation, an experiment may or may not be 
repeatable, depending on whether interaction with the applications is repeatable or 
not. The virtual network in real-time network simulation is controlled by simulation 
events, and thus can be used to produce repeatable network conditions to test real 
network applications. 

• Scalability. Emulation typically implements packet transmission by really directing a 
packet across a physical link, although in some cases this process can be accelerated 
by using special programmable devices (e.g., DeHart et al., 2006). In comparison, 
network operations in real-time network simulation are handled in software; each 
packet transmission involves only a few changes to the state variables in simulation 
that are computationally insignificant compared to the I/O overhead. Furthermore, 
since packet forwarding operations are relatively easy to parallelize, the simulated 
network can be scaled up far beyond what could be supported by emulation. 

• Flexibility. Simulation is both a tool for analyzing the performance of existing systems 
and a tool for evaluating new design alternatives potentially under various operating 
settings. Once a simulation model is in place, it takes little effort to conduct simulation 
experiments, for example, to explore a wide spectrum of design space. We can also 
incorporate different analytical models in real-time network simulation. For example, 
we can use low-resolution models to describe aggregate Internet traffic behavior, 
which can significantly increase the scale of the network being simulated. 

Most real-time network simulators are based on existing network simulators added with 
emulation capabilities in order to interact with real applications. Examples include NSE 
(Fall, 1999), IP-TNE (Bradford et al., 2000), MaSSF (Liu et al., 2003), and Maya (Zhou et al., 
2004). NSE is an emulation extension of the popular ns-2 simulator with support for 
connecting with real applications and scheduling real-time events. ns-2 is built on a 
sequential discrete-event simulation engine, which severely limits the size of the network it 
is capable of simulating; for real-time simulation, this means that the size of the network has 
to be kept small to allow realtime processing. IP-TNE is an emulation extension of an 
existing parallel network simulator. It is the first simulator we know that applies parallel 
simulation to large-scale network emulations. MaSSF is built on our parallel simulator 
DaSSF with support for the grid computing environment. Maya is an emulation extension of 
a simulator for wireless mobile networks. Our real-time network simulator is called PRIME, 
which stands for Parallel Real-time Immersive network Modeling Environment. The 

implementation of PRIME inherits most of our previous efforts in the development of 
DaSSF, a process-oriented and conservatively synchronized parallel simulation engine 
designed for multi-protocol communication networks. DaSSF can run on most platforms, 
including shared-memory multiprocessors and clusters of distributed-memory machines. 
The DaSSF simulation engine is ultra fast and has been demonstrated capable of handling 
large network models, including simulation of infrastructure networks, cellular systems, 
wireless ad hoc networks, and wireless sensor networks. In order to support large-scale 
simulation, PRIME applies advanced parallel simulation techniques. For example, to achieve 
good performance on distributed-memory machines, PRIME adopts a hierarchical 
synchronization scheme to address the discrepancy in the communication cost between 
distributed-memory and shared-memory platforms (Liu and Nicol, 2001). Further, PRIME 
implements the composite synchronization algorithm (Nicol and Liu, 2002), which combines 
the traditional synchronous and asynchronous conservative parallel simulation algorithms. 
Consequently, PRIME is able to efficiently simulate diverse network scenarios, including 
those that exhibit large variability in link types (particularly with the existence of low-
latency connections), and node types (especially for those with a large degree of con-
nectivity). 
PRIME extends DaSSF with emulation capabilities, where unmodified implementations of 
real applications can interact with the network simulator that operates in real time. Traffic 
originated from the real applications is captured by PRIME's emulation facilities and for-
warded to the simulator. The real network packets are treated as simulation events as they 
are "carried" on the virtual network and experience appropriate delays and losses according 
to the run-time state of the simulated network. 

 
4. Supporting Real-Time Performance 

Real-time network simulation needs to resolve two important and related issues: 
responsiveness and timeliness. Responsiveness dictates that the real-time simulator must be 
able to interact with real applications in time. That is, the system interface must be able to 
receive and respond to real-time events promptly according to proper real-time deadlines. 
Timeliness refers to the system's ability to keep up with the wall-clock time. That is, the 
simulation must be able to characterize the behavior of the networks, potentially with 
millions of network entities and with a large amount of network traffic flows, in real time. 
Failing to do so will introduce timing faults, where the simulation fails to process events 
before the designated deadlines. An elevated occurrence of timing faults will cause the 
simulator to become less responsive when interacting with real applications. In this section 
we briefly describe the techniques we developed so far to factor out these issues. 

 
4.1 Hybrid Traffic Modeling 
Large-scale real-time network simulation requires simulation be able to characterize the net-
work behavior in real time. To speed up simulation, on the one hand, we apply parallel and 
distributed simulation techniques to harness the computing resources of parallel computers 
to physically increase the event-processing power; on the other hand, we resort to multi-
resolution modeling techniques mixing models with high level of abstraction (and low 
resolution) to reduce the computational demand. 
Our solution to this problem is to use a hybrid network traffic model that combines a fluid-
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based analytical model using ordinary differential equations (ODEs) with the traditional 
packet-oriented discrete-event simulation (Liu, 2006). The model extends the fluid model by 
Liu et al. (2004) where ODEs are used to predict the mean behavior of the dynamic TCP 
congestion windows, the network queue lengths, and packet loss probabilities, as traffic 
flows through a set of network queues. These network queues are augmented with 
functions to handle both fluid flows and individual packets, as well as the interaction 
between them. We briefly describe the functions of these equations below. A detailed 
discussion of the hybrid model can be found in Liu (2006). We first define the variables in 
Table 1. 
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Table 1. Variables defined in the hybrid model. 
 

ni number of (homogeneous) flows in fluid class i 
W ( t )  congestion window size of fluid class i at time t 
R i ( t )  round trip time of fluid class i at time t 
Xi  ( t )  loss rate of fluid class i at time t 
q i ( t )  instantaneous queue length at link I at time t 
p i ( t )  packet loss rate at link I at time t 
x i ( t )  average queue length at link I at time t 
11 ( t )  aggregate arrival rate at link I at time t 

A ( t )  4 ( t )  
D ( t )  

arrival rate of fluid class i at link I at time t 
average packet arrival rate at link I at time t 
departure rate of fluid class i at link I at time t 

d\ ( t )  cumulative delay of fluid class i at link I at time t 
Yl ( t )  cumulative loss rate of fluid class i at link I at time t 

h first network queue (traversed by flow class i) 
fn last network queue (traversed by flow class i) 

g i ( l )  next queue of I for fluid class i 
b i ( l )  predecessor queue of I for fluid class i 

al propagation delay of link I 
Ci bandwidth of link I 
Ni set of fluid classes passing through link I 

qa, qb, Px RED queue parameters 
a weight used for RED EWMA calculation 

 one-way path propagation delay for fluid class i 
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Equation (1) models the additive-increase-multiplicative-decrease (AIMD) behavior of a 
TCP congestion window during the congestion avoidance stage. The window size and the 
round-trip time determine the arrival rate at the first router in Equation (5). For UDP flows, 
we use a constant send rate instead. The arrival rate at subsequent routers is the same as the 
departure rate at the predecessor router only postponed by the link's propagation delay, as 
prescribed in Equation (6). Equation (7) sums up the arrivals of both fluid and packet flows. 
The total arrival rate, together with the loss probability and the link's bandwidth, are used to 
determine the instantaneous queue length in Equation (2). An average queue length is then 
calculated in Equation (3), which is derived from the Exponential Weighted Moving 
Average (EWMA) calculation in network queues with RED (Random Early Detection) queue 
management. The calculated average queue length contributes to the loss probability as 
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based analytical model using ordinary differential equations (ODEs) with the traditional 
packet-oriented discrete-event simulation (Liu, 2006). The model extends the fluid model by 
Liu et al. (2004) where ODEs are used to predict the mean behavior of the dynamic TCP 
congestion windows, the network queue lengths, and packet loss probabilities, as traffic 
flows through a set of network queues. These network queues are augmented with 
functions to handle both fluid flows and individual packets, as well as the interaction 
between them. We briefly describe the functions of these equations below. A detailed 
discussion of the hybrid model can be found in Liu (2006). We first define the variables in 
Table 1. 
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Table 1. Variables defined in the hybrid model. 
 

ni number of (homogeneous) flows in fluid class i 
W ( t )  congestion window size of fluid class i at time t 
R i ( t )  round trip time of fluid class i at time t 
Xi  ( t )  loss rate of fluid class i at time t 
q i ( t )  instantaneous queue length at link I at time t 
p i ( t )  packet loss rate at link I at time t 
x i ( t )  average queue length at link I at time t 
11 ( t )  aggregate arrival rate at link I at time t 
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h first network queue (traversed by flow class i) 
fn last network queue (traversed by flow class i) 

g i ( l )  next queue of I for fluid class i 
b i ( l )  predecessor queue of I for fluid class i 

al propagation delay of link I 
Ci bandwidth of link I 
Ni set of fluid classes passing through link I 

qa, qb, Px RED queue parameters 
a weight used for RED EWMA calculation 

 one-way path propagation delay for fluid class i 
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Equation (1) models the additive-increase-multiplicative-decrease (AIMD) behavior of a 
TCP congestion window during the congestion avoidance stage. The window size and the 
round-trip time determine the arrival rate at the first router in Equation (5). For UDP flows, 
we use a constant send rate instead. The arrival rate at subsequent routers is the same as the 
departure rate at the predecessor router only postponed by the link's propagation delay, as 
prescribed in Equation (6). Equation (7) sums up the arrivals of both fluid and packet flows. 
The total arrival rate, together with the loss probability and the link's bandwidth, are used to 
determine the instantaneous queue length in Equation (2). An average queue length is then 
calculated in Equation (3), which is derived from the Exponential Weighted Moving 
Average (EWMA) calculation in network queues with RED (Random Early Detection) queue 
management. The calculated average queue length contributes to the loss probability as 
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dictated by the RED policy in Equation (4). The loss probability for drop-tail queues can be 
calculated directly from projected buffer overflows. Equation (9) describes the departure 
rate as a function of the arrival rate postponed by the queuing delay calculated using 
Equation (8). Equations (10) and (11) calculate the cumulative delay and loss since the 
beginning when the segment of flow is originated from the traffic source. The cumulative 
delay and loss are used to calculate the round-trip time and the total loss rate in Equations 
(12) and (13), which in turn are used to calculate the congestion window size. 
With proper performance optimization (Liu and Li, 2008), this hybrid traffic model can 
achieve significant performance improvement, in certain cases, over three orders of 
magnitude. The hybrid model can also be parallelized to achieve even greater performance. 
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Fig. 1. Instantaneous queue length.       
 

 
Fig. 2. Speedup over packet simulation. 
 
To illustrate the potential of this approach, here we examine the accuracy and performance 
of the hybrid model using a simple dumbbell network model. In the experiment, the 

dumbbell network contains two routers in the middle connecting N server nodes on one 
side and N client nodes on the other side. Each server node directs M simultaneous TCP 
flows to the corresponding client node. All links are set with a propagation delay of 5 ms. 
The experiments were run sequentially on an Apple Mac Pro with two 3 GHz dual-core 
Intel Xeon processors and 9 GB of memory. We first set N — 10 and M — 30. Half of the 
connections are established at time 10 and the rest at time 50. We set the bandwidth of the 
bottleneck link to be 20 Mb/s. Each server or client node connects to its adjacent router over 
a 10 Mb/s link. 
Figure 1 compares the instantaneous queues lengths at the bottleneck router as predicted by 
fluid-based and packet-oriented simulations, as well as a hybrid of the two. The result from 
the fluid-based simulation matches well with that of the packet-oriented simulation in terms 
of averaged behavior. The hybrid model (with 50% fluid flows and 50% packet flows) pro-
duces similar results. 
To show the overall performance benefit of our hybrid approach, we use the same dumbbell 
topology but change the parameters, such as the bandwidth at the bottleneck link, so that 
the cost of the simulation may increase proportionally as we increase the number of TCP 
sessions. Specifically, we vary M, the number of simultaneous TCP sessions between each 
pair of client-server nodes. We set the bandwidth of the link between each client or server 
node and its adjacent router to be (10 x M)  Mb/s. The network queues at both ends of the 
link has a buffer size of M MB. The link between the two routers has a bandwidth of (10 ×M 
× N)  Mb/s. The corresponding network queues in the two routers have a buffer size of  
(M × N)  MB. All TCP sessions start at time 0 and the experiments are run for 100 simulated 
seconds. The rest of the parameters are the same as in the previous experiment. Figure 2 
shows the speedup of the fluid model over the pure packet simulation with different 
performance improvement techniques enabled one at a time (see Liu and Li, 2008 for more 
details about these performance improvement techniques). Here we set N — 100 and M — 
{5,10,20,40}. We see that, as we turn on all improving techniques in the case of M — 40, we 
can obtain a speedup as much as 3,057 over packet-oriented simulation. The effective 
packet-event rate actually reaches over 566 million packet-event per second. 
We further extend the hybrid model to represent network background traffic (Li and Liu, 
2009a). In real-time network simulation, we can make a distinction between foreground 
traffic, which is generated by the real applications we intend to study with high fidelity, and 
background traffic, which represents the bulk of the network traffic that is of secondary 
interest and does not necessarily require significant accuracy. Nevertheless, background 
traffic interferes with foreground traffic as they both compete for network resources, and 
thus determines (and also is determined by) the behavior of network applications under 
investigation (Vishwanath and Vahdat, 2008). 
Our enhanced model enables bi-directional flows and uses heavy-tail distributions to 
describe the flow durations. To enable bi-directional flows, we assume that the forwarding 
path of the TCP flows in the fluid class i (from the source to the destination) consists of n 
queues: 1 2, ,..., nf f f , and the reverse path (from the destination to the source) consists of m 

queues: 1 2, ,..., mr r r . We use Equation (5) to calculate the arrival rate at the first queue f1 .  

For subsequent queues except 
1r ,  i.e.,  2 2,..., , ,...,n ml f f r r  , we use Equation (6) to 

calculate the arrival rate from the departure rate at the predecessor queue. For queue 
1r  (the 
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dictated by the RED policy in Equation (4). The loss probability for drop-tail queues can be 
calculated directly from projected buffer overflows. Equation (9) describes the departure 
rate as a function of the arrival rate postponed by the queuing delay calculated using 
Equation (8). Equations (10) and (11) calculate the cumulative delay and loss since the 
beginning when the segment of flow is originated from the traffic source. The cumulative 
delay and loss are used to calculate the round-trip time and the total loss rate in Equations 
(12) and (13), which in turn are used to calculate the congestion window size. 
With proper performance optimization (Liu and Li, 2008), this hybrid traffic model can 
achieve significant performance improvement, in certain cases, over three orders of 
magnitude. The hybrid model can also be parallelized to achieve even greater performance. 
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Fig. 1. Instantaneous queue length.       
 

 
Fig. 2. Speedup over packet simulation. 
 
To illustrate the potential of this approach, here we examine the accuracy and performance 
of the hybrid model using a simple dumbbell network model. In the experiment, the 

dumbbell network contains two routers in the middle connecting N server nodes on one 
side and N client nodes on the other side. Each server node directs M simultaneous TCP 
flows to the corresponding client node. All links are set with a propagation delay of 5 ms. 
The experiments were run sequentially on an Apple Mac Pro with two 3 GHz dual-core 
Intel Xeon processors and 9 GB of memory. We first set N — 10 and M — 30. Half of the 
connections are established at time 10 and the rest at time 50. We set the bandwidth of the 
bottleneck link to be 20 Mb/s. Each server or client node connects to its adjacent router over 
a 10 Mb/s link. 
Figure 1 compares the instantaneous queues lengths at the bottleneck router as predicted by 
fluid-based and packet-oriented simulations, as well as a hybrid of the two. The result from 
the fluid-based simulation matches well with that of the packet-oriented simulation in terms 
of averaged behavior. The hybrid model (with 50% fluid flows and 50% packet flows) pro-
duces similar results. 
To show the overall performance benefit of our hybrid approach, we use the same dumbbell 
topology but change the parameters, such as the bandwidth at the bottleneck link, so that 
the cost of the simulation may increase proportionally as we increase the number of TCP 
sessions. Specifically, we vary M, the number of simultaneous TCP sessions between each 
pair of client-server nodes. We set the bandwidth of the link between each client or server 
node and its adjacent router to be (10 x M)  Mb/s. The network queues at both ends of the 
link has a buffer size of M MB. The link between the two routers has a bandwidth of (10 ×M 
× N)  Mb/s. The corresponding network queues in the two routers have a buffer size of  
(M × N)  MB. All TCP sessions start at time 0 and the experiments are run for 100 simulated 
seconds. The rest of the parameters are the same as in the previous experiment. Figure 2 
shows the speedup of the fluid model over the pure packet simulation with different 
performance improvement techniques enabled one at a time (see Liu and Li, 2008 for more 
details about these performance improvement techniques). Here we set N — 100 and M — 
{5,10,20,40}. We see that, as we turn on all improving techniques in the case of M — 40, we 
can obtain a speedup as much as 3,057 over packet-oriented simulation. The effective 
packet-event rate actually reaches over 566 million packet-event per second. 
We further extend the hybrid model to represent network background traffic (Li and Liu, 
2009a). In real-time network simulation, we can make a distinction between foreground 
traffic, which is generated by the real applications we intend to study with high fidelity, and 
background traffic, which represents the bulk of the network traffic that is of secondary 
interest and does not necessarily require significant accuracy. Nevertheless, background 
traffic interferes with foreground traffic as they both compete for network resources, and 
thus determines (and also is determined by) the behavior of network applications under 
investigation (Vishwanath and Vahdat, 2008). 
Our enhanced model enables bi-directional flows and uses heavy-tail distributions to 
describe the flow durations. To enable bi-directional flows, we assume that the forwarding 
path of the TCP flows in the fluid class i (from the source to the destination) consists of n 
queues: 1 2, ,..., nf f f , and the reverse path (from the destination to the source) consists of m 

queues: 1 2, ,..., mr r r . We use Equation (5) to calculate the arrival rate at the first queue f1 .  

For subsequent queues except 
1r ,  i.e.,  2 2,..., , ,...,n ml f f r r  , we use Equation (6) to 

calculate the arrival rate from the departure rate at the predecessor queue. For queue 
1r  (the 
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first queue on the reverse path), we have: 
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where α1 is the average ACK packet size, and βi is the average data packet size in fluid class 
i. This equation represents the conversion from the data flows on the forwarding path to the 
corresponding ACK flows on the reverse path. 
To capture traffic burstness, we use the Poisson Pareto Burst process (PPBP) model to 
predict the aggregate Internet traffic. PPBP is a process based on multiple overlapping 
bursts, with Poisson arrival and burst lengths following a heavy-tail distribution (Zukerman 
et al., 2003). We schedule TCP session arrivals using the exponential distribution with a 
mean arrival rate μ. The durations of the TCP sessions d are independent and identically 
distributed Pareto random variables with parameters δ> 0 and 1 < γ < 2: 
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With the Pareto distributed flow duration, we can regenerate the long range dependence 
(LRD) characteristic of realistic background traffic in our model, which can be evaluated by 
a parameter called the Hurst parameter: 
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When 0.5 < H < 1, it implies that the traffic exhibits LRD and is self-similar. In our fluid 
model, we replace the constant number of homogeneous fluid flows ni with the PPBP 
process, N i( t ) .  Specifically, we redefine the equations for calculating the arrival rate at the 
first queue f1 (Equation 5), and the end-to-end packet loss rate (Equation 13) as follows: 
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Figure 3 shows the result of an experiment using the same dumbbell model measuring the 
number of packets per second sent over time for both packet simulation (left plots) and the 
fluid background traffic model (right plots). From top down we progressively decreasing 
the sampling time scale, while maintaining the number of samples to be 300. The starting 
time scale is 1 second; each subsequent plot is obtained from the previous one by 
concentrating on a randomly chosen sub-interval with a length being one tenth of the 
previous one. 
That is, the time resolution is increased by a factor of 10. To a large extent, the results from 

the packet-oriented simulation and from the fluid-based simulation are similar, except for 
the 10 ms timescale (bottom plots). The fluid model does not capture packet details at sub-
RTT level; the RTT for the dumbbell model is at least 10 ms. 
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Fig. 3. Traffic burstness. 

 
4.2 Scalable Emulation Infrastructure 
A large-scale network simulation must be able to interact with a large number of real appli-
cations. The emulation infrastructure, which connects the simulator to the applications, 
must be able to embed real applications easily in the real-time simulation. There are several 
ways to incorporate real applications into a simulation environment, the decision of which 
to use largely depends on where the interactions take place. Several techniques exist that 
allow running unmodified software, which include using packet capturing techniques (such 
as libpcap, IP table, and IP tunnel), preloading dynamic libraries, and modifying the binary 
executables. In certain cases, moderate software modifications are necessary to allow 
efficient direct execution. 
Our first attempt follows an open system approach (Liu et al., 2007). The emulation infras-
tructure is built on the Virtual Private Network (VPN), which is customized to function as a 
gateway that bridges traffic between the physical entities and the simulated network (see 
Figure 4). Client machines run real applications. They establish connection to the simulation 
gateway as VPN clients (by running an automatically generated VPN configuration scripts). 
Traffic generated by the applications running on the client machines and destined for the 
virtual network is directed by the emulation infrastructure to the real-time network 
simulator. We use an example to show how it works. Suppose two client machines are 
connected to the simulation gateway (not necessarily the same one) and want to 
communicate with each other. One client is assigned with the IP address 10.0.0.14 and 
the other with 10.0.1.2. Packets 
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first queue on the reverse path), we have: 
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4.2 Scalable Emulation Infrastructure 
A large-scale network simulation must be able to interact with a large number of real appli-
cations. The emulation infrastructure, which connects the simulator to the applications, 
must be able to embed real applications easily in the real-time simulation. There are several 
ways to incorporate real applications into a simulation environment, the decision of which 
to use largely depends on where the interactions take place. Several techniques exist that 
allow running unmodified software, which include using packet capturing techniques (such 
as libpcap, IP table, and IP tunnel), preloading dynamic libraries, and modifying the binary 
executables. In certain cases, moderate software modifications are necessary to allow 
efficient direct execution. 
Our first attempt follows an open system approach (Liu et al., 2007). The emulation infras-
tructure is built on the Virtual Private Network (VPN), which is customized to function as a 
gateway that bridges traffic between the physical entities and the simulated network (see 
Figure 4). Client machines run real applications. They establish connection to the simulation 
gateway as VPN clients (by running an automatically generated VPN configuration scripts). 
Traffic generated by the applications running on the client machines and destined for the 
virtual network is directed by the emulation infrastructure to the real-time network 
simulator. We use an example to show how it works. Suppose two client machines are 
connected to the simulation gateway (not necessarily the same one) and want to 
communicate with each other. One client is assigned with the IP address 10.0.0.14 and 
the other with 10.0.1.2. Packets 
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sent from 10.0.0.14 to 10.0.1.2 are forwarded to the VPN server at the simulation gate-
way. The VPN server has been altered to forward the packets to a daemon process (ssfgwd), 
which then sends the packets to the real-time simulator via a dedicated TCP connection. At 
the simulator, the packets are injected into the simulation event list; the simulator simulates 
the packets being forwarded on the virtual network as if they were created by the virtual 

node with the same IP address 10.0.0.14. Upon reaching the virtual node 10.0.1.2, the 
packets are exported from simulation and travel in the reverse direction via the simulation 
gateway back to the client machine assigned with the IP address 10.0.1.2. 
One distinct advantage of this approach is that the emulation infrastructure does not require 
special hardware to set up. It is also secure and scalable, which are merits inherited directly 
from the underlying VPN implementation. Multiple simulation gateways can run simulta-
neously. In order to produce accurate results, however, the emulation infrastructure needs a 
tight coupling between the emulated entities (i.e., the client machines) and the real-time 
simulator. In particular, the segment between the client machines and the real-time network 
simulator should consist of only low-latency links. To maintain high throughput, the 
segment must also provide sufficient bandwidth to carry the emulation traffic. With these 
constraints, the physical latency between the clients and the simulator can actually be made 
transparent in the network model (Liljenstam et al., 2005). The idea is to allow an emulation 
packet in simulation to preempt other simulated packets in the network queues so that the 
packet can be delivered ahead of its schedule in order to compensate for the physical delays. 
We also inspect machine virtualization solutions for an accurate environment of running 
real applications. Machine virtualization has found a number of interesting applications, 
including resource management in data centers, security, virtual desktop environments, and 
software distribution. Recently, researchers have also proposed using virtualization 
techniques for building network emulation testbeds. We follow the method proposed by 
Maier et al. (2007) to classify virtual machine (VM) solutions for network emulation. 
Classical virtual machines, such as VMWare Workstation and User-Mode Linux (Dike, 
2000), provide full machine virtualization and can therefore run unmodified guest operating 
systems. These solutions offer complete transparency (with a complete abstraction of a 
computer system) to the guest operating system, but in doing so incur a large performance 
overhead. Light-weight virtual machines, such as Xen (Barham et al., 2003), VMWare ESX 
Server, and Denali (Whitaker et al., 2002), implement partial virtualization for greater 
efficiency, but require slight modification of guest OSes. 
In addition to virtualizing an entire operating system instance, researchers have proposed 
virtual network stacks (Bavier et al., 2006; Huang et al., 1999; OpenVZ; Soltesz et al., 2007; 
Zec, 2003) and virtual routers (Maier et al., 2007; VRF) as alternative solutions. With virtual 
network stacks, applications running on the same OS instance are presented with multiple 
independent network stacks, which can be managed individually and control distinct 
physical devices. With virtual routers, a single OS instance can maintain multiple routing 
table instances, thereby allowing the co-execution of multiple router software. Since these 
two techniques only virtualize the network resource, they provide greater efficiency than 
light-weight VMs. They do not, however, provide a complete isolation of resources (such as 
CPU); they are also invasive, sometimes requiring substantial modification to the guest OS. 
Our work so far has explored the use of light-weight virtual machines and virtual network 
stacks as candidate emulated elements in a real-time simulation infrastructure. We have 
built a real-time simulation infrastructure that can seamlessly use light-weight virtual 
machines to emulate arbitrary network elements including routers and application end-
points. We looked into four types of network resources that may be provided by a virtual 
machine: network sockets, network interfaces, forwarding table, and loopback device. 
Network sockets (TCP, UDP, and raw sockets) are used by applications to establish 
connectivity and exchanging information. Network interfaces and the forwarding table are 
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sent from 10.0.0.14 to 10.0.1.2 are forwarded to the VPN server at the simulation gate-
way. The VPN server has been altered to forward the packets to a daemon process (ssfgwd), 
which then sends the packets to the real-time simulator via a dedicated TCP connection. At 
the simulator, the packets are injected into the simulation event list; the simulator simulates 
the packets being forwarded on the virtual network as if they were created by the virtual 

node with the same IP address 10.0.0.14. Upon reaching the virtual node 10.0.1.2, the 
packets are exported from simulation and travel in the reverse direction via the simulation 
gateway back to the client machine assigned with the IP address 10.0.1.2. 
One distinct advantage of this approach is that the emulation infrastructure does not require 
special hardware to set up. It is also secure and scalable, which are merits inherited directly 
from the underlying VPN implementation. Multiple simulation gateways can run simulta-
neously. In order to produce accurate results, however, the emulation infrastructure needs a 
tight coupling between the emulated entities (i.e., the client machines) and the real-time 
simulator. In particular, the segment between the client machines and the real-time network 
simulator should consist of only low-latency links. To maintain high throughput, the 
segment must also provide sufficient bandwidth to carry the emulation traffic. With these 
constraints, the physical latency between the clients and the simulator can actually be made 
transparent in the network model (Liljenstam et al., 2005). The idea is to allow an emulation 
packet in simulation to preempt other simulated packets in the network queues so that the 
packet can be delivered ahead of its schedule in order to compensate for the physical delays. 
We also inspect machine virtualization solutions for an accurate environment of running 
real applications. Machine virtualization has found a number of interesting applications, 
including resource management in data centers, security, virtual desktop environments, and 
software distribution. Recently, researchers have also proposed using virtualization 
techniques for building network emulation testbeds. We follow the method proposed by 
Maier et al. (2007) to classify virtual machine (VM) solutions for network emulation. 
Classical virtual machines, such as VMWare Workstation and User-Mode Linux (Dike, 
2000), provide full machine virtualization and can therefore run unmodified guest operating 
systems. These solutions offer complete transparency (with a complete abstraction of a 
computer system) to the guest operating system, but in doing so incur a large performance 
overhead. Light-weight virtual machines, such as Xen (Barham et al., 2003), VMWare ESX 
Server, and Denali (Whitaker et al., 2002), implement partial virtualization for greater 
efficiency, but require slight modification of guest OSes. 
In addition to virtualizing an entire operating system instance, researchers have proposed 
virtual network stacks (Bavier et al., 2006; Huang et al., 1999; OpenVZ; Soltesz et al., 2007; 
Zec, 2003) and virtual routers (Maier et al., 2007; VRF) as alternative solutions. With virtual 
network stacks, applications running on the same OS instance are presented with multiple 
independent network stacks, which can be managed individually and control distinct 
physical devices. With virtual routers, a single OS instance can maintain multiple routing 
table instances, thereby allowing the co-execution of multiple router software. Since these 
two techniques only virtualize the network resource, they provide greater efficiency than 
light-weight VMs. They do not, however, provide a complete isolation of resources (such as 
CPU); they are also invasive, sometimes requiring substantial modification to the guest OS. 
Our work so far has explored the use of light-weight virtual machines and virtual network 
stacks as candidate emulated elements in a real-time simulation infrastructure. We have 
built a real-time simulation infrastructure that can seamlessly use light-weight virtual 
machines to emulate arbitrary network elements including routers and application end-
points. We looked into four types of network resources that may be provided by a virtual 
machine: network sockets, network interfaces, forwarding table, and loopback device. 
Network sockets (TCP, UDP, and raw sockets) are used by applications to establish 
connectivity and exchanging information. Network interfaces and the forwarding table are 
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used by routing protocols to conduct network forwarding. A network loopback device is 
sometimes used by separate processes to communicate on the same machine. We 
investigated four popular virtualization technologies: Xen, OpenVZ, Linux-VServer and 
VRF and found that, while all four types of network resources are provided in Xen and 
OpenVZ, Linux-VServer and VRF have only partial network virtualization support. 
Figure 5 shows a high-level view of our VM-based emulation infrastructure. We view each 
physical machine as a basic scaling unit, where emulated hosts are mapped to independent 
virtual machines (or virtual environments) so that they can run unmodified applications. 
Each instance of the real-time simulator runs on a separate virtual machine of the same 
physical machine, and processes events associated with a designated sub-network. The 
simulator instances on different physical machines are synchronized using conservative 
parallel simulation techniques. Real network traffic generated by the applications is 
intercepted by the hypervisor (or VM manager) and sent to the virtual machine where the 
corresponding realtime simulator instance is located. The simulator then processes these 
packets applying packet delays and losses according to the simulated network conditions. 

 
5. Applications and Case Studies 

We have been able to successfully apply real-time simulation to study many applications, 
including routing algorithms, transport protocols, content distribution services, web 
services, multimedia streaming, and peer-to-peer networks. In this section, we select several 
case studies to demonstrate the potentials of real-time simulation. 

 
5.1 Large-Scale Routing Experiments 
The availability of open-source router platforms, such as XORP, Zebra, and Quagga, has 
simplified the task of researchers, who can now prototype and evaluate routing protocols 
with relative ease. To support experiments on a large-scale network consisting of many 
routers with multiple traffic sources and sinks, we need to integrate the open-source router 
platforms with the real-time network simulator. 
Since the routers are emulated outside the real-time simulator on client machines where 
they can run the real routing software directly, every packet traveling along its path from 
the source to the destination needs to be exported to each intermediate router for 
forwarding decisions, and subsequently imported back into the simulation engine. Thus, the 
forwarding operation for each packet at each hop would incur substantial I/O overhead. 
Consequently, the overall overhead would significantly impact the performance of the 
emulation infrastructure, especially in large-scale routing experiments. To avoid this 
problem, we propose a forwarding plane offloading approach, which moves the packet 
forwarding functions from the emulated router software to the simulation engine so that we 
can eliminate the I/O overhead associated with communicating bulk-traffic back and forth 
between the router software and the real-time 
simulator (Li et al., 2008). 
In our current implementation, we combine XORP with PRIME to provide a scalable 
platform for conducting routing experiments. We create a forwarding plane plug-in in 
XORP, which maintains a command channel with the PRIME simulator for transferring 
forwarding information updates and network interface configuration requests between the 
XORP instance and the corresponding simulated router. 

We carried out several experiments using the scalable routing platform. These experiments 
include an intra-domain routing experiment consisting of a realistic Abilene network model 
(Li et al., 2008) with the objective of observing the convergence of OSPF and its effect on 
data traffic. We injected a link failure followed by a recovery between two routers on the 
network. We were able to measure their effect on the round-trip time and data throughput 
of end applications. We also conducted realistic large-scale inter-domain routing 
experiments consisting of major autonomous systems connecting Swedish Internet users 
with realistic routing configurations derived from the routing registry (Li and Liu, 2009b). 
We ran a series of real-time security exercises on this routing system to study the 
consequence of intentionally propagating false routing information on interdomain routing 
and the effectiveness of corresponding defensive measures. 

 
5.2 Large-Scale TCP Evaluation 
The TCP congestion control mechanism, which limits the rate of data entering the network, 
is essential to the overall stability of the network under traffic congestion and important to 
the protocol's performance. It has been widely documented that the traditional TCP 
congestion control algorithms (such as TCP Reno and TCP SACK) have serious problems 
preventing TCP from reaching high data throughput over high-speed long-latency links. 
Consequently, quite a number of TCP variants have been proposed to directly tackle these 
problems. Compared with the traditional methods, these TCP variants typically adopt more 
aggressive congestion control methods in order to address the under-utilization problem of 
TCP over networks with a large bandwidth-delay product. 
The ability to establish an objective comparison between these high-performance TCP 
variants under diverse networking conditions and to obtain a quantitative assessment of 
their impact on the global network traffic is essential to a community-wide understanding of 
various design approaches. Small-scale experiments are insufficient for a comprehensive 
study of these TCP variants. We developed a TCP performance evaluation testbed, called 
SVEET, based on real-time simulation technique using real implementations of the TCP 
variants, which are evaluated under diverse network configurations and workloads in large-
scale network settings (Erazo et al., 2009). 
In order for SVEET to accommodate data communications with multi-gigabit throughput 
performance, we apply time dilation, proportionally slowing down the virtual machines 
and the network simulator. Using time dilation allows us to provide much higher 
bandwidths than what can be provided by the physical system and the network simulator at 
the cost of increased experiment time. We adopt the time dilation technique developed by 
Gupta et al. (2006), which can uniformly slow the passage of time from the perspective of 
the guest operating system (XenoLinux). This is achieved primarily by enlarging the interval 
between timer interrupts delivered to the virtual machines from the Xen hypervisor by a 
specified factor, called the Time Dilation Factor (TDF). Time dilation can scale the perceived 
I/O rate and processing power on the virtual machines by the same factor. For instance, if a 
virtual machine has a TDF of 10, it means that the time, as perceived by the applications 
running on the virtual machine, will be advanced at a pace 10 times slower than the true 
wall-time clock. Similarly, the applications would experience a tenfold increase in both 
network capacity and CPU cycles. 
We ported several TCP congestion control algorithms from the ns-2 simulator consisting of 
thirteen TCP variants originally implemented for Linux. In doing so we are able to conduct 
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used by routing protocols to conduct network forwarding. A network loopback device is 
sometimes used by separate processes to communicate on the same machine. We 
investigated four popular virtualization technologies: Xen, OpenVZ, Linux-VServer and 
VRF and found that, while all four types of network resources are provided in Xen and 
OpenVZ, Linux-VServer and VRF have only partial network virtualization support. 
Figure 5 shows a high-level view of our VM-based emulation infrastructure. We view each 
physical machine as a basic scaling unit, where emulated hosts are mapped to independent 
virtual machines (or virtual environments) so that they can run unmodified applications. 
Each instance of the real-time simulator runs on a separate virtual machine of the same 
physical machine, and processes events associated with a designated sub-network. The 
simulator instances on different physical machines are synchronized using conservative 
parallel simulation techniques. Real network traffic generated by the applications is 
intercepted by the hypervisor (or VM manager) and sent to the virtual machine where the 
corresponding realtime simulator instance is located. The simulator then processes these 
packets applying packet delays and losses according to the simulated network conditions. 

 
5. Applications and Case Studies 

We have been able to successfully apply real-time simulation to study many applications, 
including routing algorithms, transport protocols, content distribution services, web 
services, multimedia streaming, and peer-to-peer networks. In this section, we select several 
case studies to demonstrate the potentials of real-time simulation. 

 
5.1 Large-Scale Routing Experiments 
The availability of open-source router platforms, such as XORP, Zebra, and Quagga, has 
simplified the task of researchers, who can now prototype and evaluate routing protocols 
with relative ease. To support experiments on a large-scale network consisting of many 
routers with multiple traffic sources and sinks, we need to integrate the open-source router 
platforms with the real-time network simulator. 
Since the routers are emulated outside the real-time simulator on client machines where 
they can run the real routing software directly, every packet traveling along its path from 
the source to the destination needs to be exported to each intermediate router for 
forwarding decisions, and subsequently imported back into the simulation engine. Thus, the 
forwarding operation for each packet at each hop would incur substantial I/O overhead. 
Consequently, the overall overhead would significantly impact the performance of the 
emulation infrastructure, especially in large-scale routing experiments. To avoid this 
problem, we propose a forwarding plane offloading approach, which moves the packet 
forwarding functions from the emulated router software to the simulation engine so that we 
can eliminate the I/O overhead associated with communicating bulk-traffic back and forth 
between the router software and the real-time 
simulator (Li et al., 2008). 
In our current implementation, we combine XORP with PRIME to provide a scalable 
platform for conducting routing experiments. We create a forwarding plane plug-in in 
XORP, which maintains a command channel with the PRIME simulator for transferring 
forwarding information updates and network interface configuration requests between the 
XORP instance and the corresponding simulated router. 

We carried out several experiments using the scalable routing platform. These experiments 
include an intra-domain routing experiment consisting of a realistic Abilene network model 
(Li et al., 2008) with the objective of observing the convergence of OSPF and its effect on 
data traffic. We injected a link failure followed by a recovery between two routers on the 
network. We were able to measure their effect on the round-trip time and data throughput 
of end applications. We also conducted realistic large-scale inter-domain routing 
experiments consisting of major autonomous systems connecting Swedish Internet users 
with realistic routing configurations derived from the routing registry (Li and Liu, 2009b). 
We ran a series of real-time security exercises on this routing system to study the 
consequence of intentionally propagating false routing information on interdomain routing 
and the effectiveness of corresponding defensive measures. 

 
5.2 Large-Scale TCP Evaluation 
The TCP congestion control mechanism, which limits the rate of data entering the network, 
is essential to the overall stability of the network under traffic congestion and important to 
the protocol's performance. It has been widely documented that the traditional TCP 
congestion control algorithms (such as TCP Reno and TCP SACK) have serious problems 
preventing TCP from reaching high data throughput over high-speed long-latency links. 
Consequently, quite a number of TCP variants have been proposed to directly tackle these 
problems. Compared with the traditional methods, these TCP variants typically adopt more 
aggressive congestion control methods in order to address the under-utilization problem of 
TCP over networks with a large bandwidth-delay product. 
The ability to establish an objective comparison between these high-performance TCP 
variants under diverse networking conditions and to obtain a quantitative assessment of 
their impact on the global network traffic is essential to a community-wide understanding of 
various design approaches. Small-scale experiments are insufficient for a comprehensive 
study of these TCP variants. We developed a TCP performance evaluation testbed, called 
SVEET, based on real-time simulation technique using real implementations of the TCP 
variants, which are evaluated under diverse network configurations and workloads in large-
scale network settings (Erazo et al., 2009). 
In order for SVEET to accommodate data communications with multi-gigabit throughput 
performance, we apply time dilation, proportionally slowing down the virtual machines 
and the network simulator. Using time dilation allows us to provide much higher 
bandwidths than what can be provided by the physical system and the network simulator at 
the cost of increased experiment time. We adopt the time dilation technique developed by 
Gupta et al. (2006), which can uniformly slow the passage of time from the perspective of 
the guest operating system (XenoLinux). This is achieved primarily by enlarging the interval 
between timer interrupts delivered to the virtual machines from the Xen hypervisor by a 
specified factor, called the Time Dilation Factor (TDF). Time dilation can scale the perceived 
I/O rate and processing power on the virtual machines by the same factor. For instance, if a 
virtual machine has a TDF of 10, it means that the time, as perceived by the applications 
running on the virtual machine, will be advanced at a pace 10 times slower than the true 
wall-time clock. Similarly, the applications would experience a tenfold increase in both 
network capacity and CPU cycles. 
We ported several TCP congestion control algorithms from the ns-2 simulator consisting of 
thirteen TCP variants originally implemented for Linux. In doing so we are able to conduct 
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large-scale experiments using simulated traffic generated by these TCP variants. We also 
customized the Linux kernel on the virtual machines to include these TCP variants so that 
we can test them using real applications running on the virtual machines to communicate 
via the TCP/IP stack. We conducted extensive experiments to validate our testbed and 
investigated the impact of TCP variants on web applications, multimedia streaming, and 
peer-to-peer traffic. 

 
5.3 Large-Scale Peer-to-Peer Content Distribution Network 
We design one of the largest network experiments that involve a real implementation of a 
peer-to-peer content distribution system under HTTP traffic from a public-domain empirical 
workload trace and using a realistic large network model (Liu et al., 2009). The main idea 
behind the content distribution network (CDN) is to replicate content at the edge of the In-
ternet closer to the clients. In doing so, CDN can alleviate both the workload at the server 
and the traffic load at the network core. We choose to use an open-source CDN system 
called CoralCDN (Freedman et al., 2004), which is a peer-to-peer web-content distribution 
network that consists of three parts: 1) a network of cooperative web proxies for handling 
HTTP requests, 2) a network of domain name servers (DNS) to map clients to nearby web 
proxies, and 3) an underlying clustering mechanism and an indexing infrastructure to 
facilitate DNS mapping and content distribution. We statically mapped the clients to nearby 
Coral nodes to send HTTP requests. Thus we ignore CoralCDN's DNS redirection function 
and only focus on web-content distribution for the experiment. 
We extend the Rocketfuel to build the network model for our study. Rocketfuel (Spring et 
al., 2004) contains the topology of 13 tier-1 ISPs, derived from information obtained from 
traceroute paths, BGP routing tables, and DNS. Previously, we created a best-effort Internet 
topology for large-scale network simulation studies using the Rocketfuel dataset (Liljenstam 
et al., 2003). Based on this study, we further process the Rocketfuel network topology to 
improve accuracy and reduce data noise. We choose to use one of the tier-1 ISP networks for 
our study, which contains 637 routers (out of which 235 are backbone routers) connected by 
1,381 links. Attached to the backbone network are medium-sized stub networks, called the 
campus network. Each campus network consists of 504 end hosts, organized into 12 local 
area networks (LANs) connected by 18 routers. Four extra end hosts are designated to form 
a server cluster. Each LAN consists of a gateway router and 42 end-hosts. The entire campus 
network is divided into four OSPF areas. The campus network is connected to the outside 
world through a BGP router. We attach 84 such campus networks to the tier-1 ISP network. 
The entire network thus contains 42,672 end hosts and 3,157 routers. 
We place one CoralCDN node within each of the 12 LANs of the 84 campus network (at one 
of the 42 end hosts in each LAN), thus making a total of 1,008 CoralCDN nodes overall. Each 
CoralCDN node is emulated in a separate OpenVZ container. The web clients are simulated; 
they send HTTP requests to the CoralCDN node within the same LAN and subsequently 
receive data objects from the Coral proxy. PRIME implements a full-fledged TCP model that 
allows simulated nodes to interact with real TCP counterparts. We attach a stub network to 
a backbone router in the tier-1 ISP network (located in Paris, France) to run a web server, 
emulated on a separate compute node. 
We select the HTTP trace at the 1998 World Cup web site, which is publicly available (Arlitt 
and Jin, 1998). The trace is collected with all HTTP requests made to the 1998 World Cup 
Web site. We select a 24-hour period of this trace (from June 5,1998, 22:00:01 GMT to June 

6,1998, 22:00:00 GMT). The segment consists of 5,452,684 requests originated from 40,491 
clients. We pre-process the trace to filter out the sequence of requests sent from each client 
and randomly map the 40,491 clients to the end hosts in our network model for a complete 
daily pattern of the caching behavior. Through the experiment, we were able to successfully 
collect three important metrics to analyze the performance the peer-to-peer content 
distribution network: cache hit rate, web server load, and response time. 

 
6. Conclusions and Future Work 

In this chapter we describe real-time simulation of large-scale networks and compare it 
against other major tools for networking research. We discuss the problems that may 
prevent simulation from achieving real-time performance and subsequently present our 
current solutions. We conduct large-scale network experiments incorporating real-time 
simulation to demonstrate its capabilities. 
Future work includes efficient background traffic models for large-scale networks, high-
performance communication conduit for connecting virtual machines and the real-time sim-
ulator, and effective methods for configuring, running and visualizing network 
experiments. 
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behind the content distribution network (CDN) is to replicate content at the edge of the In-
ternet closer to the clients. In doing so, CDN can alleviate both the workload at the server 
and the traffic load at the network core. We choose to use an open-source CDN system 
called CoralCDN (Freedman et al., 2004), which is a peer-to-peer web-content distribution 
network that consists of three parts: 1) a network of cooperative web proxies for handling 
HTTP requests, 2) a network of domain name servers (DNS) to map clients to nearby web 
proxies, and 3) an underlying clustering mechanism and an indexing infrastructure to 
facilitate DNS mapping and content distribution. We statically mapped the clients to nearby 
Coral nodes to send HTTP requests. Thus we ignore CoralCDN's DNS redirection function 
and only focus on web-content distribution for the experiment. 
We extend the Rocketfuel to build the network model for our study. Rocketfuel (Spring et 
al., 2004) contains the topology of 13 tier-1 ISPs, derived from information obtained from 
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topology for large-scale network simulation studies using the Rocketfuel dataset (Liljenstam 
et al., 2003). Based on this study, we further process the Rocketfuel network topology to 
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they send HTTP requests to the CoralCDN node within the same LAN and subsequently 
receive data objects from the Coral proxy. PRIME implements a full-fledged TCP model that 
allows simulated nodes to interact with real TCP counterparts. We attach a stub network to 
a backbone router in the tier-1 ISP network (located in Paris, France) to run a web server, 
emulated on a separate compute node. 
We select the HTTP trace at the 1998 World Cup web site, which is publicly available (Arlitt 
and Jin, 1998). The trace is collected with all HTTP requests made to the 1998 World Cup 
Web site. We select a 24-hour period of this trace (from June 5,1998, 22:00:01 GMT to June 

6,1998, 22:00:00 GMT). The segment consists of 5,452,684 requests originated from 40,491 
clients. We pre-process the trace to filter out the sequence of requests sent from each client 
and randomly map the 40,491 clients to the end hosts in our network model for a complete 
daily pattern of the caching behavior. Through the experiment, we were able to successfully 
collect three important metrics to analyze the performance the peer-to-peer content 
distribution network: cache hit rate, web server load, and response time. 

 
6. Conclusions and Future Work 

In this chapter we describe real-time simulation of large-scale networks and compare it 
against other major tools for networking research. We discuss the problems that may 
prevent simulation from achieving real-time performance and subsequently present our 
current solutions. We conduct large-scale network experiments incorporating real-time 
simulation to demonstrate its capabilities. 
Future work includes efficient background traffic models for large-scale networks, high-
performance communication conduit for connecting virtual machines and the real-time sim-
ulator, and effective methods for configuring, running and visualizing network 
experiments. 
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