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1. Introduction     
 

Comparing DNA, RNA or protein sequences is a fundamental process in computational 
biology. The information deduced by processing genomic sequences remain the base of a 
large panel of bioinformatics activities such as genome assembly, gene annotation, 
phylogeny, prediction of 3D protein structures, meta-genomic analysis, etc. 
For almost two decades, the amounts of data have steadily increased, nearly doubling every 
16-18 months. Hence, from gene level analyses, bioinformatics researches have moved to 
full genome analysis, leading to extremely large quantities of data to process. Furthermore, 
recent progresses in biotechnology, such as the next generation sequencing technology able 
to generate billions of genomic sequences in a single day, still strengthen the needs for fast 
and efficient solutions. 
Basically, genomic data, which are considered here, are DNA or protein sequences. A DNA 
sequence may be as simple as a single gene (a few thousands of nucleotides) or as complex 
as a full genome (three billions of nucleotides for the human genome). A protein sequence is 
shorter. It reflects the DNA to amino acids transcription of genes through the universal 
genetic code. Their lengths range from a few hundreds of amino acids to a few thousands of 
amino acids. The alphabet of a nucleotide sequence is composed of only 4 characters: A, C, 
G and T. The protein alphabet is larger and includes 20 amino acids. From a computational 
point of view, these data are seen as simple strings of characters. 
These sequences are stored in genomic databases. SWISS-PROT and TrEMBL (Apweiler et 
al., 2004), for example, are two well-known protein sequence databases containing 
respectively 466739 and 7695149 entries (May 2009). From the DNA size, GenBank (release 
171, Apr. 2009) contain more than 100 millions of sequences, representing more than 100 
billions of nucleotides (Benson et al., 2008). New releases are made every two months to 
include new data coming from worldwide research institutes. With the exponential growth 
of these databases, performing computation on this mass of data is every day a more and 
more challenging task. 
A lot of bioinformatics applications need to compare genomic sequences in their early 
processing steps. To illustrate our point, we briefly describe some of them in the next 
paragraphs. The goal is not to provide an exhaustive list, but to give, through some 
examples, an idea of the volume of data which are routinely processed. 
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Genome Assembly. Before getting the text of a genome, an initial phase is to sequence the 
long DNA molecule contained in each cell of every living organism. This is achieved by 
randomly breaking the DNA molecule into billions of short fragments which are re-
assembled to compose the final text. Many algorithms have been proposed for 
reconstructing a genome from these short elements (Pop et al., 2002). However, the pre-
processing is always the same: finding overlapping regions between them. This requires 
making intensive pair-wise comparisons to detect similarity between the beginning and the 
end of all fragments. In other words, assembling N fragments leads to N2/2 pair-wise 
independent comparisons. Typically, for eukaryote organisms, N range from 107 to 108. 
Database Scanning.  A common task of the molecular biology is to assign a function to an 
unknown gene. To be functional, a protein must adopt a specific 3D shape related to its 
sequence of amino acids. The shape is important because it determines the function of the 
protein, and how it interacts with other molecules. It is assumed that two proteins with 
identical functions may have similar 3D structures, yielding to a similar sequence of amino 
acids. Even if this hypothesis is not always verified, a large number of algorithms were 
proposed to rapidly extract sequences (or portion of sequences) having a high similarity 
with a query sequence. But the scan of genomic databases is faced to the exponential growth 
of the data. To be able to query databases of billions of nucleotides within reasonable time 
(from seconds to minutes), the use of parallel systems is now the only solution. 
Full Genome Comparison. Mid 2009, about 1000 genomes have been completely sequenced, 
and more than 4000 other genome sequencing projects are under progression (Liolios et al., 
2008). By comparison, only 300 projects were referenced ten years ago. Actually, no decline 
in this activity is expected in the next few years. More and more genomes will come from 
many organisms: virus, bacterium, plants, fishes, vertebrates, etc. This avalanche of data 
opens the door to new ways of investigating the various genome structures. From a 
computational point of view, algorithms do not fundamentally differ from standard string 
comparison algorithms, except that the length of the sequences may seriously limit their use. 
Strings of hundreds of millions of characters need to be intensively processed to detect any 
kind of similarities. Compared to gene analysis, which can be satisfactory performed (in 
time) on a standard computer, genome analysis increases the complexity by several orders 
of magnitude.  
Molecular Phylogeny. On Earth, there are millions of different living organisms. 
Morphological criteria and gene structure suggest that they are genetically related. Their 
genealogical relationships can be represented by a vast evolutionary tree. This assumption 
implies that different species arise from previous forms via descent, and that all organisms 
are connected by the passage of genes along the branches of the phylogenic tree. To build 
such a tree, identical (or near identical) genes present in all organisms are systematically 
compared. This aims to calculate a distance between all genes (larger the distance, older the 
relationship between genes). Based on these distances, trees can be constructed through 
different phylogenic methods. Again, the pre-processing step involves comparing precisely 
a large set of genomic sequences.  
Next Generation Sequencing (NGS). For the last three years, the very fast improvements of 
sequencing machines have revolutionized the genomic research field (Shenure & Hanlee, 
2008). The equivalent (in raw data) of the human genome can now be generated in a single 
day. Billions of nucleotides spread in millions of very short fragments (35 to 70 nucleotides) 
are thus available allowing a large spectrum of new large scale applications to be set up: 

 

genome re-sequencing, meta-genomic analysis, molecular bar-coding, etc. Once again, the 
preliminary step often deals with intensive genomic sequence comparison. 
Since the early 80’s, many efforts were made to optimize the genomic sequence comparison 
problem, both on the software side with powerful heuristics, and on the hardware side with 
dedicated hardwired systems. Another important effort has also been done on the parallel 
side, ranging from pure parallel software implementations to highly specific parallel 
machines. 
The goal of this chapter is to present the various strategies which are used to parallelize this 
essential bioinformatics task, and more specifically strategies using fine-grained parallelism.  
Section 2 formally introduces the problem and section 3 presents the main algorithms. The 
three next sections are devoted to three different technologies: VLSI and FPGA accelerators, 
SIMD instructions, and graphical processing units (GPU). The last section concludes the 
chapter. 

 
2. The genomic sequence comparison problem 
 

Basically, comparing two genomic sequences is equivalent  to find similarities between these 
two elements. Similarities are symbolized by alignments which are the objects that biologists 
are able to interpret. An alignment is composed of two strings where most characters of both 
strings match together. For instance, consider the following alignment: 
 

A G T G G T C T T A - A C G T T A C A T G T T 
        | | | : | | | : | |   | | | |     | | : | | | 
        A G T T G T C A T A T A C G T - - C A A G T T 
 
The symbol | represents a match between two characters. The symbol : represents a 
mismatch. No symbol indicates a deletion or an insertion. In that case, this operation is 
referred as a gap. Given two sequences, the game is to find regions which maximize the 
number of consecutive matches and which represent significant biological similarities. To 
decide if an alignment is significant or not, a score is associated. If the score exceeds a 
statistically predefined threshold value, it is then considered as valid.  
The score is computed as the sum of three elementary costs: 
 

 Cost of a match 
 Cost of a mismatch 
 Cost of a gap 

 
If we assign +1 for a match, -1 for a mismatch and -3 for a gap, the score of the above 
alignment is equal to: 17 x matches + 3 x mismatches + 3 gaps = (17×1) +(3×-1)+(3×-3) = 5. 
This simple scoring scheme is used for DNA sequences. The values of the match, mismatch 
and gap costs are given by the user and depend of the applications. To better match the 
biological reality, the gap cost is often calculated using an affine function giving a highest 
cost for the first gap and a lower cost for the following ones. Taking again the example, and 
setting the open gap cost to -3 and the extension gap cost to -1, the value of the score will 
increase to 7: the cost of the first gap stay the same, but the cost of the second gap rise to -4. 
For protein comparison, the match and mismatch cost is included in a single operation 
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Genome Assembly. Before getting the text of a genome, an initial phase is to sequence the 
long DNA molecule contained in each cell of every living organism. This is achieved by 
randomly breaking the DNA molecule into billions of short fragments which are re-
assembled to compose the final text. Many algorithms have been proposed for 
reconstructing a genome from these short elements (Pop et al., 2002). However, the pre-
processing is always the same: finding overlapping regions between them. This requires 
making intensive pair-wise comparisons to detect similarity between the beginning and the 
end of all fragments. In other words, assembling N fragments leads to N2/2 pair-wise 
independent comparisons. Typically, for eukaryote organisms, N range from 107 to 108. 
Database Scanning.  A common task of the molecular biology is to assign a function to an 
unknown gene. To be functional, a protein must adopt a specific 3D shape related to its 
sequence of amino acids. The shape is important because it determines the function of the 
protein, and how it interacts with other molecules. It is assumed that two proteins with 
identical functions may have similar 3D structures, yielding to a similar sequence of amino 
acids. Even if this hypothesis is not always verified, a large number of algorithms were 
proposed to rapidly extract sequences (or portion of sequences) having a high similarity 
with a query sequence. But the scan of genomic databases is faced to the exponential growth 
of the data. To be able to query databases of billions of nucleotides within reasonable time 
(from seconds to minutes), the use of parallel systems is now the only solution. 
Full Genome Comparison. Mid 2009, about 1000 genomes have been completely sequenced, 
and more than 4000 other genome sequencing projects are under progression (Liolios et al., 
2008). By comparison, only 300 projects were referenced ten years ago. Actually, no decline 
in this activity is expected in the next few years. More and more genomes will come from 
many organisms: virus, bacterium, plants, fishes, vertebrates, etc. This avalanche of data 
opens the door to new ways of investigating the various genome structures. From a 
computational point of view, algorithms do not fundamentally differ from standard string 
comparison algorithms, except that the length of the sequences may seriously limit their use. 
Strings of hundreds of millions of characters need to be intensively processed to detect any 
kind of similarities. Compared to gene analysis, which can be satisfactory performed (in 
time) on a standard computer, genome analysis increases the complexity by several orders 
of magnitude.  
Molecular Phylogeny. On Earth, there are millions of different living organisms. 
Morphological criteria and gene structure suggest that they are genetically related. Their 
genealogical relationships can be represented by a vast evolutionary tree. This assumption 
implies that different species arise from previous forms via descent, and that all organisms 
are connected by the passage of genes along the branches of the phylogenic tree. To build 
such a tree, identical (or near identical) genes present in all organisms are systematically 
compared. This aims to calculate a distance between all genes (larger the distance, older the 
relationship between genes). Based on these distances, trees can be constructed through 
different phylogenic methods. Again, the pre-processing step involves comparing precisely 
a large set of genomic sequences.  
Next Generation Sequencing (NGS). For the last three years, the very fast improvements of 
sequencing machines have revolutionized the genomic research field (Shenure & Hanlee, 
2008). The equivalent (in raw data) of the human genome can now be generated in a single 
day. Billions of nucleotides spread in millions of very short fragments (35 to 70 nucleotides) 
are thus available allowing a large spectrum of new large scale applications to be set up: 

 

genome re-sequencing, meta-genomic analysis, molecular bar-coding, etc. Once again, the 
preliminary step often deals with intensive genomic sequence comparison. 
Since the early 80’s, many efforts were made to optimize the genomic sequence comparison 
problem, both on the software side with powerful heuristics, and on the hardware side with 
dedicated hardwired systems. Another important effort has also been done on the parallel 
side, ranging from pure parallel software implementations to highly specific parallel 
machines. 
The goal of this chapter is to present the various strategies which are used to parallelize this 
essential bioinformatics task, and more specifically strategies using fine-grained parallelism.  
Section 2 formally introduces the problem and section 3 presents the main algorithms. The 
three next sections are devoted to three different technologies: VLSI and FPGA accelerators, 
SIMD instructions, and graphical processing units (GPU). The last section concludes the 
chapter. 

 
2. The genomic sequence comparison problem 
 

Basically, comparing two genomic sequences is equivalent  to find similarities between these 
two elements. Similarities are symbolized by alignments which are the objects that biologists 
are able to interpret. An alignment is composed of two strings where most characters of both 
strings match together. For instance, consider the following alignment: 
 

A G T G G T C T T A - A C G T T A C A T G T T 
        | | | : | | | : | |   | | | |     | | : | | | 
        A G T T G T C A T A T A C G T - - C A A G T T 
 
The symbol | represents a match between two characters. The symbol : represents a 
mismatch. No symbol indicates a deletion or an insertion. In that case, this operation is 
referred as a gap. Given two sequences, the game is to find regions which maximize the 
number of consecutive matches and which represent significant biological similarities. To 
decide if an alignment is significant or not, a score is associated. If the score exceeds a 
statistically predefined threshold value, it is then considered as valid.  
The score is computed as the sum of three elementary costs: 
 

 Cost of a match 
 Cost of a mismatch 
 Cost of a gap 

 
If we assign +1 for a match, -1 for a mismatch and -3 for a gap, the score of the above 
alignment is equal to: 17 x matches + 3 x mismatches + 3 gaps = (17×1) +(3×-1)+(3×-3) = 5. 
This simple scoring scheme is used for DNA sequences. The values of the match, mismatch 
and gap costs are given by the user and depend of the applications. To better match the 
biological reality, the gap cost is often calculated using an affine function giving a highest 
cost for the first gap and a lower cost for the following ones. Taking again the example, and 
setting the open gap cost to -3 and the extension gap cost to -1, the value of the score will 
increase to 7: the cost of the first gap stay the same, but the cost of the second gap rise to -4. 
For protein comparison, the match and mismatch cost is included in a single operation 
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called substitution given by a substitution matrix reflecting the mutation rate between the 20 
amino acids. 
Depending of the applications, different types of alignment may be considered. Figure 1 
depicts the three main variations commonly used in molecular biology: global alignment, 
local alignment and semi-global alignment. Historically, global alignments were first 
studied. Global alignments try to find the best match between all characters of two 
sequences of similar size. They are typically used for phylogeny studies: the score of the 
alignment between two genes indicates their degrees of proximity.  
On the other hand, local alignments aim to detect similarities of any length. Given two 
sequences, the comparison process aims only to detect part of the sequences having 
significant similarity. The difficulty is that the position and the length of the alignments are 
unknown, leading to explore a vast search space. Finding local similarities represents the 
major needs in bioinformatics. The scan of large databases is the best example. Biologists 
don’t only want to know if there are similar items in the database, they also want to detect if 
their queries shares some common functionalities with other elements. As proteins (or 
genes) are often assemblies of different functional domains, extracting only local similarities 
bring pertinent biological information.  
 

Fig. 1. Schematic representation of the three types of alignments commonly used in 
molecular biology 
 
The semi-global alignments match all the characters of a small sequence over a large one. 
The Next Generation Sequencing (NGS) approach which generates a very large number of 
very short fragments is one of the main activities requiring this treatment. The goal is to 
map small DNA sequences on full genomes allowing only a restricted number of errors.  
Having defined the comparison sequence problem as the search of alignments between two 
sequences, and having described the main features of an alignment, the next section focuses 
on the algorithmic side of the problem. 

 
3. The main algorithms 
 

For the last 25 years, due to the tremendous increase of the genomic field, and the growing 
demand for processing larger and larger amounts of data, many algorithms were proposed 
to search alignments. The goal, here, is not to review in detail all of them. We will only focus 
on the two main families which have been widely adopted by the scientific genomic 
community and which have been implemented on a large panel of parallel structures. The 
first algorithm introduced in 1970 by Needleman & Wunsch (Needleman & Wunsch, 1970) 
and revisited in 1981 and 1982 respectively by Smith and Waterman (Smith & Waterman, 
1981) and Gotoh (Gotoh, 1982) are based on dynamic programming. They are optimal in the 

global local semi-global

 

way that they find the best alignments (local or global) between two sequences. But their 
quadratic complexity – O(n2) –  make them unsuitable for processing large  quantity of data. 
However, for some applications, such as phylogeny or search of weak similarities, there are 
essential, thereby justifying all the efforts among the last three decades to provide efficient 
parallel solutions. 
By the end of the 80’s, however, an important algorithmic breakthrough has emerged, based 
on a powerful heuristic providing extremely good results. This heuristic drastically reduces 
the search space by focusing on interesting points, called hits, between two sequences. 
Using this technique, the execution time could be decreased by nearly two orders of 
magnitude. Two programs have been immediately proposed to the scientific community, 
FASTA in 1988 (Pearson & Lipman, 1988) and BLAST in 1990 (Altschul et al., 1990). The 
later, through many improvements, is now the reference in the bioinformatics community 
(Altschul et al., 1997).  It is maintained by the NCBI (National Center for Biotechnology 
Information) as an open-source software including parallel implementations. 

 
3.1 Dynamic programming algorithm 
The dynamic programming algorithm compares two strings of characters by computing a 
distance which represents the minimal cost to transform one segment into another one. As 
stated earlier, two elementary operations are used: the substitution and the gap operations. 
By using a list of such operations any segment may be transformed into any other segment. 
It is then possible to take the smallest number of operations required to change one segment 
to another as the measure of distance between them. 
More formally, let X = (x1, x2,  . . . xn) and Y = (y1, y2,  . . .  ym) two sequences to be compared. 
Let d(x,y) the substitution cost to change x into y and g the gap cost. The Needleman & 
Wunsch algorithm is given by the following recursion: 
 ���� �� � ��� � ��� � �� � � �� �  ���� � ���                                         ��� � �� �� �  �                                                               ���� � � �� �  �                                                    (1) 

 
with the following initialization:  

 D(0,0) = 0 ;  
 D(i,0) = H(i1,0) – i x g for i>0 
 D(0,i) = H(0,i10) – i x g for i>0 

 
D(i,j) represents the maximum similarity of the two segments ending at xi and yj. Thus, 
D(n,m) gives the score representing the similarity between the strings X and Y. Higher the 
score, better the similarity. From the D(n,m) point, a trace-back procedure can be applied to 
recover the alignment, as shown figure 2. In that case, all the values D(i,j) must be stored in a 
2D table. The trace-back procedure consists in reconstructing the optimal path from the last 
two characters (bottom right) to the first two characters (up left). 
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don’t only want to know if there are similar items in the database, they also want to detect if 
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The semi-global alignments match all the characters of a small sequence over a large one. 
The Next Generation Sequencing (NGS) approach which generates a very large number of 
very short fragments is one of the main activities requiring this treatment. The goal is to 
map small DNA sequences on full genomes allowing only a restricted number of errors.  
Having defined the comparison sequence problem as the search of alignments between two 
sequences, and having described the main features of an alignment, the next section focuses 
on the algorithmic side of the problem. 

 
3. The main algorithms 
 

For the last 25 years, due to the tremendous increase of the genomic field, and the growing 
demand for processing larger and larger amounts of data, many algorithms were proposed 
to search alignments. The goal, here, is not to review in detail all of them. We will only focus 
on the two main families which have been widely adopted by the scientific genomic 
community and which have been implemented on a large panel of parallel structures. The 
first algorithm introduced in 1970 by Needleman & Wunsch (Needleman & Wunsch, 1970) 
and revisited in 1981 and 1982 respectively by Smith and Waterman (Smith & Waterman, 
1981) and Gotoh (Gotoh, 1982) are based on dynamic programming. They are optimal in the 

global local semi-global

 

way that they find the best alignments (local or global) between two sequences. But their 
quadratic complexity – O(n2) –  make them unsuitable for processing large  quantity of data. 
However, for some applications, such as phylogeny or search of weak similarities, there are 
essential, thereby justifying all the efforts among the last three decades to provide efficient 
parallel solutions. 
By the end of the 80’s, however, an important algorithmic breakthrough has emerged, based 
on a powerful heuristic providing extremely good results. This heuristic drastically reduces 
the search space by focusing on interesting points, called hits, between two sequences. 
Using this technique, the execution time could be decreased by nearly two orders of 
magnitude. Two programs have been immediately proposed to the scientific community, 
FASTA in 1988 (Pearson & Lipman, 1988) and BLAST in 1990 (Altschul et al., 1990). The 
later, through many improvements, is now the reference in the bioinformatics community 
(Altschul et al., 1997).  It is maintained by the NCBI (National Center for Biotechnology 
Information) as an open-source software including parallel implementations. 

 
3.1 Dynamic programming algorithm 
The dynamic programming algorithm compares two strings of characters by computing a 
distance which represents the minimal cost to transform one segment into another one. As 
stated earlier, two elementary operations are used: the substitution and the gap operations. 
By using a list of such operations any segment may be transformed into any other segment. 
It is then possible to take the smallest number of operations required to change one segment 
to another as the measure of distance between them. 
More formally, let X = (x1, x2,  . . . xn) and Y = (y1, y2,  . . .  ym) two sequences to be compared. 
Let d(x,y) the substitution cost to change x into y and g the gap cost. The Needleman & 
Wunsch algorithm is given by the following recursion: 
 ���� �� � ��� � ��� � �� � � �� �  ���� � ���                                         ��� � �� �� �  �                                                               ���� � � �� �  �                                                    (1) 

 
with the following initialization:  

 D(0,0) = 0 ;  
 D(i,0) = H(i1,0) – i x g for i>0 
 D(0,i) = H(0,i10) – i x g for i>0 

 
D(i,j) represents the maximum similarity of the two segments ending at xi and yj. Thus, 
D(n,m) gives the score representing the similarity between the strings X and Y. Higher the 
score, better the similarity. From the D(n,m) point, a trace-back procedure can be applied to 
recover the alignment, as shown figure 2. In that case, all the values D(i,j) must be stored in a 
2D table. The trace-back procedure consists in reconstructing the optimal path from the last 
two characters (bottom right) to the first two characters (up left). 
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    A T T T G A C G T A T C   

   0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24   

  A -2 1 -1 -3 -5 -7 -9 -11 -13 -15 -17 -19 -21   

  T -4 -1 2 0 -2 -4 -6 -8 -10 -12 -14 -16 -18   

  T -6 -3 0 3 1 -1 -3 -5 -7 -9 -11 -13 -15   

  G -8 -5 -2 1 2 2 0 -2 -4 -6 -8 -10 -12   

  A -10 -7 -4 -1 0 1 3 1 -1 -3 -5 -7 -9   

  C -12 -9 -6 -3 -2 -1 1 4 2 0 -2 -4 -6   

  T -14 -11 -8 -5 -2 -3 -1 2 3 3 1 -1 -3   

  G -16 -13 -10 -7 -4 -1 -3 0 3 2 2 0 -2   

  T -18 -15 -12 -9 -6 -3 -2 -2 1 4 2 3 1   

  A -20 -17 -14 -11 -8 -5 -2 -3 -1 2 5 3 2   

  T -22 -19 -16 -13 -10 -7 -4 -3 -3 0 3 6 4   

  C -24 -21 -18 -15 -12 -9 -6 -3 -4 -2 1 4 7   

                                
Fig. 2. Execution of the Needleman & Wunsch algorithm between two DNA sequences. The 
cost of a match is set to +1, the cost of a mismatch to -1 and the cost of a gap to -2. Once the 
similarity score is computed, a trace-back procedure permits to recover the global alignment 
by reconstructing the optimal path. 

 
Remember that the Needleman & Wunsch algorithm computes a global alignment between 
two sequences. To find shorter similarities, or local alignments, the Smith & Waterman 
algorithm introduces a slight modification to the former recursion: 
 

                                              ���� �� � ��� ��
�     ��� � �� � � �� �  ���� � ���                       ��� � �� �� �  �                                            ���� � � �� �  �                                                  0                                                                                      (2) 

 
with the following initialization: D(0,0) = D(i,0) = D(0,i) = 0 
 
A threshold value, sets to 0, prevents the score to become negative. The effect is that if, 
somewhere on the 2D table, a local maximum occurs, it can reflect some local similarity. 
Figure 3 illustrates this situation. The word ATTGA is present in both sequences and is 
detected by the highest score inside the 2D table. 
 

 

                                

    C G T T G A A T T G A A   

   0 0 0 0 0 0 0 0 0 0 0 0 0   

  A 0 0 0 0 0 0 1 1 0 0 0 1 1   

  T 0 0 0 1 1 0 0 0 2 1 0 0 0   

  T 0 0 0 1 2 0 0 0 1 3 1 0 0   

  G 0 0 1 0 0 3 1 0 0 1 4 2 0   

  A 0 0 0 0 0 1 4 2 0 0 2 5 3   

  C 0 1 0 0 0 0 2 3 1 0 0 3 4   

  T 0 0 0 1 1 0 0 1 4 2 0 1 2   

  G 0 0 1 0 0 2 0 0 2 3 3 1 0   

  T 0 0 0 2 1 0 1 0 1 3 2 2 0   

  A 0 0 0 0 1 0 1 2 0 1 2 3 3   

  T 0 0 0 1 1 0 0 0 3 1 0 1 2   

  C 0 1 0 0 0 0 0 0 1 2 0 0 0   

                                
Fig. 3. Execution of the Smith & Waterman algorithm between two DNA sequences. A 
match is set to +1, a mismatch to -1 and a gap to -2. A trace-back procedure, starting from 
the highest score, permits to recover the best local alignment.  
 
To better reflect the biological reality, Gotoh improved both algorithms by modifying the 
cost of N consecutive gaps. The fist gap has an open value gopen while the following ones 
have an extended gap cost gext. The recursion is modified as follows: 
 

                             ���� �� � ��� ��
�     ��� � �� � � �� �  ���� � ���                                    ���� ��                                                                       ���� ��                                                                       0                                                                                                (3) 

 ���� �� � ��� ���� � �� �� � �������� � �� �� �  ����    
 ���� �� � ��� ����� � � �� �  ��������� � � �� �  ����    
 

These new equations can be applied both for searching local or global alignments. The 
complexity for comparing two sequences is the same and is in O(nm), where n and m 
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    A T T T G A C G T A T C   

   0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24   

  A -2 1 -1 -3 -5 -7 -9 -11 -13 -15 -17 -19 -21   

  T -4 -1 2 0 -2 -4 -6 -8 -10 -12 -14 -16 -18   

  T -6 -3 0 3 1 -1 -3 -5 -7 -9 -11 -13 -15   

  G -8 -5 -2 1 2 2 0 -2 -4 -6 -8 -10 -12   

  A -10 -7 -4 -1 0 1 3 1 -1 -3 -5 -7 -9   

  C -12 -9 -6 -3 -2 -1 1 4 2 0 -2 -4 -6   

  T -14 -11 -8 -5 -2 -3 -1 2 3 3 1 -1 -3   

  G -16 -13 -10 -7 -4 -1 -3 0 3 2 2 0 -2   

  T -18 -15 -12 -9 -6 -3 -2 -2 1 4 2 3 1   

  A -20 -17 -14 -11 -8 -5 -2 -3 -1 2 5 3 2   

  T -22 -19 -16 -13 -10 -7 -4 -3 -3 0 3 6 4   

  C -24 -21 -18 -15 -12 -9 -6 -3 -4 -2 1 4 7   

                                
Fig. 2. Execution of the Needleman & Wunsch algorithm between two DNA sequences. The 
cost of a match is set to +1, the cost of a mismatch to -1 and the cost of a gap to -2. Once the 
similarity score is computed, a trace-back procedure permits to recover the global alignment 
by reconstructing the optimal path. 

 
Remember that the Needleman & Wunsch algorithm computes a global alignment between 
two sequences. To find shorter similarities, or local alignments, the Smith & Waterman 
algorithm introduces a slight modification to the former recursion: 
 

                                              ���� �� � ��� ��
�     ��� � �� � � �� �  ���� � ���                       ��� � �� �� �  �                                            ���� � � �� �  �                                                  0                                                                                      (2) 

 
with the following initialization: D(0,0) = D(i,0) = D(0,i) = 0 
 
A threshold value, sets to 0, prevents the score to become negative. The effect is that if, 
somewhere on the 2D table, a local maximum occurs, it can reflect some local similarity. 
Figure 3 illustrates this situation. The word ATTGA is present in both sequences and is 
detected by the highest score inside the 2D table. 
 

 

                                

    C G T T G A A T T G A A   

   0 0 0 0 0 0 0 0 0 0 0 0 0   

  A 0 0 0 0 0 0 1 1 0 0 0 1 1   

  T 0 0 0 1 1 0 0 0 2 1 0 0 0   

  T 0 0 0 1 2 0 0 0 1 3 1 0 0   

  G 0 0 1 0 0 3 1 0 0 1 4 2 0   

  A 0 0 0 0 0 1 4 2 0 0 2 5 3   

  C 0 1 0 0 0 0 2 3 1 0 0 3 4   

  T 0 0 0 1 1 0 0 1 4 2 0 1 2   

  G 0 0 1 0 0 2 0 0 2 3 3 1 0   

  T 0 0 0 2 1 0 1 0 1 3 2 2 0   

  A 0 0 0 0 1 0 1 2 0 1 2 3 3   

  T 0 0 0 1 1 0 0 0 3 1 0 1 2   

  C 0 1 0 0 0 0 0 0 1 2 0 0 0   

                                
Fig. 3. Execution of the Smith & Waterman algorithm between two DNA sequences. A 
match is set to +1, a mismatch to -1 and a gap to -2. A trace-back procedure, starting from 
the highest score, permits to recover the best local alignment.  
 
To better reflect the biological reality, Gotoh improved both algorithms by modifying the 
cost of N consecutive gaps. The fist gap has an open value gopen while the following ones 
have an extended gap cost gext. The recursion is modified as follows: 
 

                             ���� �� � ��� ��
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These new equations can be applied both for searching local or global alignments. The 
complexity for comparing two sequences is the same and is in O(nm), where n and m 
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represent the length of the two genomic sequences. Note that to get only the similarity score 
between two sequences, it is not necessary to keep the complete 2D table in memory.  

 
3.2 Heuristic optimization 
The dynamic programming algorithm systematically explores a search space equals to n x 
m. For genomic data mining applications which process billions of sequences, this approach 
cannot practically be used due to its very high computational complexity. To bypass this 
constraint, many heuristic algorithms have been developed having in mind to target only 
regions of interest. These zones can be seen as short regions (sub-sequences) in both 
sequences with good probabilities of match. The quality and the speed of the algorithms 
highly depend of the ability to detect these regions. 
In the FASTA and the BLAST packages, the idea is the following: Generally, the two strings 
of an alignment share, at least, one identical word of W characters. These words, called 
seeds, generate hits between the sequences. From these hits an alignment can thus be 
reconstructed by extending the search on the left and right hand sides. The size of the seeds 
has a great influence on the search sensitivity:  small seeds have a high probability to belong 
to all the alignments detected by programming dynamic methods. On the other hand, large 
seeds often miss weak similarity alignments because such alignments do not include at least 
one similar word of W consecutive characters. Similarly, small seeds will increase the 
computation time while large seeds will tend to limit it, just because of the direct 
relationship between the size of the seed and the number of generated hits: larger the seeds, 
smaller the number of hits, and smaller the time spent in computing extensions. Users are 
then faced to a difficult tradeoff: fast and approximate results or slow and sensitive results. 
Using this technique, the search of alignments is generally split into a few distinct steps. For 
example, the BLAST program works as follows: 
 

 Step 1: find hits of W character words 
 Step 2: perform ungap extension 
 Step 3: perform gap extension 

 
Figure 4 illustrates the process. The first step marks the regions in the 2D space where 
similar words of W characters are found. These regions are called hits. The second step 
starts a restricted search on the hit neighborhoods. The complexity of the search is 
intentionally limited by considering only substitution operations. At this stage, gaps are not 
allowed. This step aims to investigate if a significant similarity exists near the hit before 
launching a full alignment computation. An intermediate score is thus calculated. If it 
exceeds a predefined threshold value, then the third step is run. The last step, only triggered 
by step 2, performs a dynamic programming on both side of the hit (see Figure 4). Again, a 
score is calculated. If this new score becomes greater than a statistically significant threshold 
value, an alignment is generated. 
Algorithms based on seed heuristics have been widely adopted by biologists because of 
their great speed improvements compared to programming dynamic approaches. 
Furthermore, their sensitivity can be efficiently tuned to match the requirements of many 
bioinformatics applications just by setting a simple parameter: the size of the seed. Today, 
these families of algorithms are daily used by thousands of researchers. They represent a 
large part of the processing time of many bioinformatics centers. Their parallelization on 

 

clusters, super-computers or grids has been one of the responses to increase the interactivity 
with end-users for rapidly processing huge masses of genomic data. 
 

 

Fig. 4. 3-step BLAST strategy to detect similarity: (1) hit location; (2) ungap extension; (3) 
gap extension. 
 
However, this type of parallelization is not the only issue. A lot of research works have been 
done to parallelize the genomic sequence algorithms on other hardware platforms. The next 
three sections present three different alternatives which exploit the fine-grained potential 
parallelism of the algorithms 

 
4. VLSI and FPGA accelerators 
 

Historically, the hardware acceleration of the string comparison problem is related to the 
parallelization of the dynamic programming algorithm on systolic arrays. The immediate 
implementation consists in hardwiring the recursion of equation (1) on a 2D systolic array as 
depicted Figure 5. According to the data dependencies, a cell D(i,j) receives data from its 
three top left neighbouring cells D(i-1,j-1), D(i,j-1), D(i-1,j), computes a similarity score and 
propagates it to its three bottom right cells D(i+1,j+1), D(i+1,j), D(i,j+1). 
If the size of both sequences is n, then, due to the data dependencies, a similarity score is 
computed in 2n-1 cycles, providing a speedup of n2/2n-1 ≈ n/2. The efficiency of this 
implementation is far from the optimum, since n2 cells provide only a speedup of n/2. It can 
be noted that during the computation, only one anti diagonal of cells is active at each cycle. 
It is thus possible to emulate one column (or one line) on a single cell. The resulting 
architecture is a linear systolic array of n cells. Details of this kind of architectures can be 
found in (Lavenier & Giraud, 2005). In that configuration, the number of cycles to compute a 
similarity score between two sequences of size n stays the same, but the efficiency is much 
better: a speedup of n/2 is obtained with n cells.  
To compare one sequence of size n with P sequences of size m with an n-cell array, n+P×m-1 
cycles are required. The speedup is thus given by: 
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represent the length of the two genomic sequences. Note that to get only the similarity score 
between two sequences, it is not necessary to keep the complete 2D table in memory.  
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highly depend of the ability to detect these regions. 
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reconstructed by extending the search on the left and right hand sides. The size of the seeds 
has a great influence on the search sensitivity:  small seeds have a high probability to belong 
to all the alignments detected by programming dynamic methods. On the other hand, large 
seeds often miss weak similarity alignments because such alignments do not include at least 
one similar word of W consecutive characters. Similarly, small seeds will increase the 
computation time while large seeds will tend to limit it, just because of the direct 
relationship between the size of the seed and the number of generated hits: larger the seeds, 
smaller the number of hits, and smaller the time spent in computing extensions. Users are 
then faced to a difficult tradeoff: fast and approximate results or slow and sensitive results. 
Using this technique, the search of alignments is generally split into a few distinct steps. For 
example, the BLAST program works as follows: 
 

 Step 1: find hits of W character words 
 Step 2: perform ungap extension 
 Step 3: perform gap extension 

 
Figure 4 illustrates the process. The first step marks the regions in the 2D space where 
similar words of W characters are found. These regions are called hits. The second step 
starts a restricted search on the hit neighborhoods. The complexity of the search is 
intentionally limited by considering only substitution operations. At this stage, gaps are not 
allowed. This step aims to investigate if a significant similarity exists near the hit before 
launching a full alignment computation. An intermediate score is thus calculated. If it 
exceeds a predefined threshold value, then the third step is run. The last step, only triggered 
by step 2, performs a dynamic programming on both side of the hit (see Figure 4). Again, a 
score is calculated. If this new score becomes greater than a statistically significant threshold 
value, an alignment is generated. 
Algorithms based on seed heuristics have been widely adopted by biologists because of 
their great speed improvements compared to programming dynamic approaches. 
Furthermore, their sensitivity can be efficiently tuned to match the requirements of many 
bioinformatics applications just by setting a simple parameter: the size of the seed. Today, 
these families of algorithms are daily used by thousands of researchers. They represent a 
large part of the processing time of many bioinformatics centers. Their parallelization on 

 

clusters, super-computers or grids has been one of the responses to increase the interactivity 
with end-users for rapidly processing huge masses of genomic data. 
 

 

Fig. 4. 3-step BLAST strategy to detect similarity: (1) hit location; (2) ungap extension; (3) 
gap extension. 
 
However, this type of parallelization is not the only issue. A lot of research works have been 
done to parallelize the genomic sequence algorithms on other hardware platforms. The next 
three sections present three different alternatives which exploit the fine-grained potential 
parallelism of the algorithms 

 
4. VLSI and FPGA accelerators 
 

Historically, the hardware acceleration of the string comparison problem is related to the 
parallelization of the dynamic programming algorithm on systolic arrays. The immediate 
implementation consists in hardwiring the recursion of equation (1) on a 2D systolic array as 
depicted Figure 5. According to the data dependencies, a cell D(i,j) receives data from its 
three top left neighbouring cells D(i-1,j-1), D(i,j-1), D(i-1,j), computes a similarity score and 
propagates it to its three bottom right cells D(i+1,j+1), D(i+1,j), D(i,j+1). 
If the size of both sequences is n, then, due to the data dependencies, a similarity score is 
computed in 2n-1 cycles, providing a speedup of n2/2n-1 ≈ n/2. The efficiency of this 
implementation is far from the optimum, since n2 cells provide only a speedup of n/2. It can 
be noted that during the computation, only one anti diagonal of cells is active at each cycle. 
It is thus possible to emulate one column (or one line) on a single cell. The resulting 
architecture is a linear systolic array of n cells. Details of this kind of architectures can be 
found in (Lavenier & Giraud, 2005). In that configuration, the number of cycles to compute a 
similarity score between two sequences of size n stays the same, but the efficiency is much 
better: a speedup of n/2 is obtained with n cells.  
To compare one sequence of size n with P sequences of size m with an n-cell array, n+P×m-1 
cycles are required. The speedup is thus given by: 
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In that case, a speedup of n is obtained with a systolic array of n cells. This optimal situation 
occurs, for example, in phylogeny studies where thousands of sequences must be compared 
together. The systolic array is initialized with one sequence and all the other sequences pass 
sequentially through the array. This operation is iterated for all sequences. 
 

 
Fig. 5.  Implementation of the programming dynamic algorithm on a 2D systolic array. Each 
cell performs a maximum of three terms. The similarity score is obtained on the bottom right 
cell in 2n-1 cycles (n is the length of the sequences). 
 
Many systolic implementations have been studied and prototypes have demonstrated the 
efficiency of the systolic approach. Historically, dynamic programming algorithms were 
first accelerated with ASIC solutions, such as P-NAC   (Lopresti, 1987),  BioSCAN  (White et 
al., 1991),  Kestrel (Dashe et al., 1997),   Samba    (Guerdoux & Lavenier, 1997)   or   Swasad 
(Han & Parameswaran, 2002) accelerators.  The performances of these parallel machines 
were impressive due to the high number of small processing units running in parallel. 
However, they suffered from: 

 The high cost induced by the design of specific chips and the relatively small 
market niche where these accelerators were intended. 

 The competition with software enhancements, such as seed heuristics, making 
them not so interested in terms of speed for a wide range of bioinformatics 
applications. 

With the fast evolution of the FPGA technology, the successors of these machines naturally 
moved to reconfigurable hardware. Basically, their parallel structures didn’t change but 
they could adapt their configuration according to the nature of the data to process (DNA, 
protein), or according to the type of alignments required by the applications (global 
alignment, local alignment, with gap, without gap, etc). Pioneer works were realized on the 
Splash and   Splash-2 FPGA systolic machines in the beginning of the 90's (Hoang, 1993). 
Since this date, a lot of variants have been published in the literature, making this specific 
domain extremely active to product efficient reconfigurable accelerators (Yamaguchi et al., 
2002)  (Puttegowda et al., 2003)  (Yu et al., 2003)  (Dydel et al., 2004)  (Pfeiffer et al., 2005)  (Li 
et al., 2007).  
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It is also interesting to note that commercial products based on these parallel architectures 
are now available. For example, the DeCypher engine from TimeLogic1 or the Cube from 
CLCbio2 are two FPGA accelerators dedicated to bioinformatics applications, and especially 
tailored for genomic sequence comparisons. Other generic systems, like the SGI RASC-100 
reconfigurable platform, for example, are not specifically devoted to this domain, but permit 
to implement extremely fast systolic operators (Nguyen et al., 2009). 

 
5. SIMD instructions 
 

The use of SIMD instructions available in each microprocessor for video and image 
processing purpose is also a very interesting way to parallelize genomic sequence 
comparison, and especially the dynamic programming algorithm. It can be efficiently 
speedup by considering groups of cells which can be computed concurrently on the 2D 
matrix. As stated earlier, the propagation of the computation follows the anti diagonal of the 
matrix. Cells belonging to a same anti diagonal can thus be processed independently. This 
can be done with SIMD instructions able to perform K instructions in parallel, as shown 
figure 6. 
A first implementation of the Smith & Waterman algorithm was proposed by Woznia in 
1997 (Wozniac, 1997) with the Visual Instruction Set (VIS) available on the SUN ULTRA 
SPARC processor. It follows the parallel scheme of figure 6. VIS instructions are executed in 
a specially enhanced floating point unit (FPU) and use its 64-bit registers. Instructions 
operate on two 32-bit, or four 16-bit integer data packed in a 64-bit double word. In this 
pioneer implementation, four cells of the matrix are executed in parallel by VIS instructions, 
storing the running score on 16-bit integers. A speedup of two was obtained. 

 
Fig. 6. Diagonal parallelization. Due to the data dependencies of the dynamic programming 
algorithm, only cells belonging to the same anti diagonal can be simultaneously processed. 
SIMD instructions can process K cells in parallel. 
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them not so interested in terms of speed for a wide range of bioinformatics 
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protein), or according to the type of alignments required by the applications (global 
alignment, local alignment, with gap, without gap, etc). Pioneer works were realized on the 
Splash and   Splash-2 FPGA systolic machines in the beginning of the 90's (Hoang, 1993). 
Since this date, a lot of variants have been published in the literature, making this specific 
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It is also interesting to note that commercial products based on these parallel architectures 
are now available. For example, the DeCypher engine from TimeLogic1 or the Cube from 
CLCbio2 are two FPGA accelerators dedicated to bioinformatics applications, and especially 
tailored for genomic sequence comparisons. Other generic systems, like the SGI RASC-100 
reconfigurable platform, for example, are not specifically devoted to this domain, but permit 
to implement extremely fast systolic operators (Nguyen et al., 2009). 

 
5. SIMD instructions 
 

The use of SIMD instructions available in each microprocessor for video and image 
processing purpose is also a very interesting way to parallelize genomic sequence 
comparison, and especially the dynamic programming algorithm. It can be efficiently 
speedup by considering groups of cells which can be computed concurrently on the 2D 
matrix. As stated earlier, the propagation of the computation follows the anti diagonal of the 
matrix. Cells belonging to a same anti diagonal can thus be processed independently. This 
can be done with SIMD instructions able to perform K instructions in parallel, as shown 
figure 6. 
A first implementation of the Smith & Waterman algorithm was proposed by Woznia in 
1997 (Wozniac, 1997) with the Visual Instruction Set (VIS) available on the SUN ULTRA 
SPARC processor. It follows the parallel scheme of figure 6. VIS instructions are executed in 
a specially enhanced floating point unit (FPU) and use its 64-bit registers. Instructions 
operate on two 32-bit, or four 16-bit integer data packed in a 64-bit double word. In this 
pioneer implementation, four cells of the matrix are executed in parallel by VIS instructions, 
storing the running score on 16-bit integers. A speedup of two was obtained. 
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algorithm, only cells belonging to the same anti diagonal can be simultaneously processed. 
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In (Rognes & Seeberg, 2000). the SSEARCH program (a quasi standard implementation of 
Smith-Waterman for comparing one query with many sequences from a database) was 
parallelized using the Intel SSE instructions (Streaming SIMD Extension). Eight cells are 
processed in parallel, each of them manipulating only 8-bit integer values. To increase the 
precision, unsigned integers are used and a bias mechanism is added to avoid negative 
values coming from the matrix substitution costs. Speedup of 6 is measured compared to the 
purely sequential version of SSEARCH.  
 
The speedup improvement, compared to the Wozniac implementation, is due to (1) the 
superior number of cells computed in parallel, (2) to a clever preprocessing of the query 
consisting in building a structure called a profile and (3) to a programming optimization 
allowing the cells to be processed in a vertical way as shown figure 7. 
 

 
Fig. 7. Vertical parallelization. Under certain assumptions, the horizontal or vertical 
dependencies can be temporary omitted, leading to the possibility to compute several 
horizontal or vertical cells in parallel. Here, the vertical dependency is suppressed. 
 
The optimization of the Smith & Waterman algorithm implemented in the Rognes & 
Seeberg version is based on the observation that in equation (3) V and H are often close to 
zero and, hence, most of the time, do not participate to the calculation of D. If for K 
consecutive vertical cells, the V values do not exceed a threshold value, then the vertical 
dependency can be suppressed, saving many computations. It is possible to check 
simultaneously if any of the K cells are above a threshold value. If so, the computation of the 
D values can be very fast. If not, the K scores are computed sequentially.  
Farrar (Farrar, 2007) goes one step further by striping the query sequence into T fragments 
where T = n/K (n is the length of the query and K the size of the SIMD vector). As in the 
previous implementation, the V values are also neglected to reduce data dependencies. The 
combination of these two techniques provides better data accesses to the SSE registers and 
greatly optimizes the SIMD parallelization. After the full computation of the 2D matrix, a 
lazy evaluation of V is done. Depending of the D scores in some points of the matrix, V 
values are updated and D scores are recalculated accordingly. This method is very efficient 

Query

Database sequence

 

for sequences with a low level of similarity. The D scores remain low and a very small 
fraction of the matrix needs to be updated. This situation typically happens in the case of 
database scanning where only a few sequences have significant similarity among millions of 
others. Speedup between 2 to 8 is reported compared to the previous SIMD 
implementations. Performance variations come from the fact that the Rognes & Seeberg 
implementation is very sensitive to the gap and substitution costs while the Farrar’s 
implementation remains stable. 
The Farrar implementation has still been improved in the SWSP3 package (Szalkowski, 
2008). Modifications of the code are minors but they significantly reduce the cache footprint 
especially when long sequences are processed. Furthermore, the lazy V evaluation loop was 
restructured by transforming it into two nested loops with specific index ranges to hint the 
compiler at execution counts. 
Finally, successive software improvements of the Smith & Waterman algorithm and their 
clever implementations using SIMD instructions have drastically reduced the performance 
gap with the seed heuristic algorithms which cannot directly benefit from these SIMD 
optimizations due to their irregular nature. However, in PLAST, a parallel BLAST-like 
version for comparing two large databases, SIMD instructions are efficiently used to 
speedup the computation of the ungap step which represents an important fraction of the 
execution time (Nguyen and Lavenier, 2008). Identical hits of both databases are grouped 
together to construct two lists of short sequences. Each sequence of one list is then compared 
with all sequences of the other list. At this step, gaps are not allowed, easing the 
computation of the scores to bit fit onto SSE instructions manipulating 16 × 8-bit integers. 
The parallelization of this part of the algorithm with SSE instructions makes PLAST three to 
ten times faster than BLAST. 
The next generation of microprocessors will increase the SIMD instructions capabilities. 
New instructions will be provided with larger SIMD registers. For instance, the new Intel set 
of SSE instructions, called AVX (Firasta et al., 2008), will extend the SIMD integer registers 
to 256 and/or 512 bits. The genomic sequence comparison will directly benefit from these 
future improvements. 

 
6. Graphical Processing Units (GPU) 
 

GPGPU stands for General-Purpose computation on Graphics Processing Units. Graphics 
Processing Units (GPUs) are high-performance many-core processors that can be used to 
accelerate a wide range of applications3. Bioinformatics applications and especially the 
genomic sequence comparison problem did not escape from deep investigations to evaluate 
the potential gain these low-cost hardware accelerators can offer. 
The last generation of GPU houses hundred of small processing units than can be easily 
programmed with high-level language, such as CUDA proposed by NVIDIA4 or OpenCL 
(Open Computing Language) which is the future standard proposed by the Khronos 
Group5. In such a language, the GPU is viewed as a compute device suitable for massive 
parallel data application. It can randomly access its own data memory and can run a very 
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dependencies can be temporary omitted, leading to the possibility to compute several 
horizontal or vertical cells in parallel. Here, the vertical dependency is suppressed. 
 
The optimization of the Smith & Waterman algorithm implemented in the Rognes & 
Seeberg version is based on the observation that in equation (3) V and H are often close to 
zero and, hence, most of the time, do not participate to the calculation of D. If for K 
consecutive vertical cells, the V values do not exceed a threshold value, then the vertical 
dependency can be suppressed, saving many computations. It is possible to check 
simultaneously if any of the K cells are above a threshold value. If so, the computation of the 
D values can be very fast. If not, the K scores are computed sequentially.  
Farrar (Farrar, 2007) goes one step further by striping the query sequence into T fragments 
where T = n/K (n is the length of the query and K the size of the SIMD vector). As in the 
previous implementation, the V values are also neglected to reduce data dependencies. The 
combination of these two techniques provides better data accesses to the SSE registers and 
greatly optimizes the SIMD parallelization. After the full computation of the 2D matrix, a 
lazy evaluation of V is done. Depending of the D scores in some points of the matrix, V 
values are updated and D scores are recalculated accordingly. This method is very efficient 
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for sequences with a low level of similarity. The D scores remain low and a very small 
fraction of the matrix needs to be updated. This situation typically happens in the case of 
database scanning where only a few sequences have significant similarity among millions of 
others. Speedup between 2 to 8 is reported compared to the previous SIMD 
implementations. Performance variations come from the fact that the Rognes & Seeberg 
implementation is very sensitive to the gap and substitution costs while the Farrar’s 
implementation remains stable. 
The Farrar implementation has still been improved in the SWSP3 package (Szalkowski, 
2008). Modifications of the code are minors but they significantly reduce the cache footprint 
especially when long sequences are processed. Furthermore, the lazy V evaluation loop was 
restructured by transforming it into two nested loops with specific index ranges to hint the 
compiler at execution counts. 
Finally, successive software improvements of the Smith & Waterman algorithm and their 
clever implementations using SIMD instructions have drastically reduced the performance 
gap with the seed heuristic algorithms which cannot directly benefit from these SIMD 
optimizations due to their irregular nature. However, in PLAST, a parallel BLAST-like 
version for comparing two large databases, SIMD instructions are efficiently used to 
speedup the computation of the ungap step which represents an important fraction of the 
execution time (Nguyen and Lavenier, 2008). Identical hits of both databases are grouped 
together to construct two lists of short sequences. Each sequence of one list is then compared 
with all sequences of the other list. At this step, gaps are not allowed, easing the 
computation of the scores to bit fit onto SSE instructions manipulating 16 × 8-bit integers. 
The parallelization of this part of the algorithm with SSE instructions makes PLAST three to 
ten times faster than BLAST. 
The next generation of microprocessors will increase the SIMD instructions capabilities. 
New instructions will be provided with larger SIMD registers. For instance, the new Intel set 
of SSE instructions, called AVX (Firasta et al., 2008), will extend the SIMD integer registers 
to 256 and/or 512 bits. The genomic sequence comparison will directly benefit from these 
future improvements. 

 
6. Graphical Processing Units (GPU) 
 

GPGPU stands for General-Purpose computation on Graphics Processing Units. Graphics 
Processing Units (GPUs) are high-performance many-core processors that can be used to 
accelerate a wide range of applications3. Bioinformatics applications and especially the 
genomic sequence comparison problem did not escape from deep investigations to evaluate 
the potential gain these low-cost hardware accelerators can offer. 
The last generation of GPU houses hundred of small processing units than can be easily 
programmed with high-level language, such as CUDA proposed by NVIDIA4 or OpenCL 
(Open Computing Language) which is the future standard proposed by the Khronos 
Group5. In such a language, the GPU is viewed as a compute device suitable for massive 
parallel data application. It can randomly access its own data memory and can run a very 

                                                                 
3 www.gpu.org 
4 www.nvidia.com 
5 www.khronos.org/opencl/ 
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high numbers of tasks in parallel. These tasks, called threads, are grouped in blocks and 
perform the same algorithms in a SIMD mode. Threads of the same block share data 
through a complex memory hierarchy and can be synchronized through specific 
synchronization points. 
Again, the dynamic programming algorithm is a good candidate to for GPU because of its 
high regularity. Different parallelization techniques have been tested. The first relies on the 
independence of the computation which can be performed on the anti diagonal of the matrix 
(cf. previous sections).  In that case, a thread is assigned to the computation of one anti 
diagonal. If n is the length of the sequences to be compared, then there is the possibility to 
run simultaneously up to n threads performing the recursion of equation (3). This approach 
has been implemented in (Liu et al., 2007). Speedup from 3 to 10 have been measured 
compared to the SSEARCH program, depending of the length of the sequences. Long 
sequences favor the use of GPU accelerators. 
The implementation of (Manavski  & Valle, 2008) is quite different and targets the scan of 
databases. The genomic bank is first sorted by the length of the sequences. Then each thread 
is assigned with a complete comparison between the query and one sequence of the 
database. As the threads are executed in a SIMD mode, it is important to have the same 
volume of computation per thread. This is why the sequences are sorted: blocks of 
sequences of identical size are processed together. Blocks of 64 threads are executed 
simultaneously, leading to a speedup of 30 compared to SSEARCH (not optimized with SSE 
instructions). The same style of implementation is done in (Ligowski & Rudnicki, 2009), but 
with a more efficient use of the global memory bandwidth, providing still better 
performance. 
Another GPU implementation, called CUDASW++, and based on the same parallelization 
scheme as described above, compares its own performance with one of best multithreaded 
heuristic implementation (BLAST). A standard Linux workstation (3 GHz dual core 
processor) equipped with the latest NVIDIA board (GTX 295) including two GPU chips 
provides much better performance: an average speedup of 10 was reported. In that 
configuration, the adjunction of a low-cost accelerator outperforms the best seed-based 
heuristic software while increasing the quality of the results. 
In the GPU version of PLAST (cf. previous section), the ungap alignment step for detecting 
local similarity near the hits are deported on GPU. Two lists (List1 and List2) of short 
sequences are sent to the GPU in order to make an all-by-all comparison. The parallelization 
is an adaptation of the matrix multiplication algorithm proposed in the CUDA 
documentation (Cuda, 2007). Matrices of numbers are simply replaced by blocks of strings. 
More precisely, suppose that block B1[N1, L] and block B2[N2,L] correspond respectively to 
List1 and List2, with L the length of the sequences and N1 (N2) the number of sequences in 
List 1 (List2). A third block SC[N1,N2]  stores the scores of all the computation between 
block B1 and block B2.  
The global treatment is done by partitioning the computation into block of threads 
computing only a sub block of SC, called SCsub. Each thread within the block processes one 
element of SCsub dimensioned as a 16.x16 square matrix. This size has been chosen to 
optimize the memory accesses, allowing the GPU internal fast memory to store short 
sequences which can simultaneously be shared by 256 threads. At the end, the host 
processor gets back an N1xN2 matrix of scores from which significant ones need to be 

 

extracted. Figure 8 illustrates the parallelization scheme of a 16 x 16 string comparison, 
corresponding to a sub bloc SCsub. 
 

 
Fig. 8. Principle of the parallelization of an all-by-all string comparison on GPU. A thread 
(i,j) performs the comparison between the ith and the jth sequences.  
 
Compared to an optimized sequential algorithm an average speedup of 10 is measured for 
performing this computation on recent NVIDIA graphic boards (GTX 280). 

 
7. Conclusion 
 

This chapter presented three approaches to parallelize the genomic sequence comparison 
problem: (1) systolic parallelization with VLSI or FPGA accelerators, (2) SIMD 
parallelization with microprocessor SSE instruction sets, and (3) streaming parallelization 
with GPU boards. These types of parallelization, referred as fine-grained parallelization, 
exploit the internal parallelism of the algorithms. 
Another possibility is the data-level parallelism. This is actually the approach which is 
mostly exploited in many bioinformatics applications. A sequence, or a group of sequences, 
is generally compared with millions of other sequences. There is thus a natural way to split 
the computation on parallel machines, starting from multicores to clusters or grid platforms. 
The implementation is immediate: the database is dispatched among the available 
processing units, and each node works independently on its own subset of data. This 
approach is very efficient and fit well with the structures of the bioinformatics centres which 
are mainly composed of clusters of multiprocessors. Besides, MPI versions of the most 
popular bioinformatics software are now available. 
These two alternatives, however, are not antagonist and can be combined to provide higher 
performance. A few nodes of a general purpose cluster can be equipped with hardware 
accelerators such as FPGA or GPU boards. When intensive comparisons are required, the 
system automatically assigns these nodes for this specific process, freeing the rest of the 
machines for other tasks. As a matter of fact, the scan of genomic databases may represent 
up to 60%-70% of the execution time of a bioinformatics server. As seen in this chapter, the 
heart of the algorithms mostly manipulates small integers and, consequently, exploits a 
relatively small fraction of the microprocessor computational power. Fitting these 
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high numbers of tasks in parallel. These tasks, called threads, are grouped in blocks and 
perform the same algorithms in a SIMD mode. Threads of the same block share data 
through a complex memory hierarchy and can be synchronized through specific 
synchronization points. 
Again, the dynamic programming algorithm is a good candidate to for GPU because of its 
high regularity. Different parallelization techniques have been tested. The first relies on the 
independence of the computation which can be performed on the anti diagonal of the matrix 
(cf. previous sections).  In that case, a thread is assigned to the computation of one anti 
diagonal. If n is the length of the sequences to be compared, then there is the possibility to 
run simultaneously up to n threads performing the recursion of equation (3). This approach 
has been implemented in (Liu et al., 2007). Speedup from 3 to 10 have been measured 
compared to the SSEARCH program, depending of the length of the sequences. Long 
sequences favor the use of GPU accelerators. 
The implementation of (Manavski  & Valle, 2008) is quite different and targets the scan of 
databases. The genomic bank is first sorted by the length of the sequences. Then each thread 
is assigned with a complete comparison between the query and one sequence of the 
database. As the threads are executed in a SIMD mode, it is important to have the same 
volume of computation per thread. This is why the sequences are sorted: blocks of 
sequences of identical size are processed together. Blocks of 64 threads are executed 
simultaneously, leading to a speedup of 30 compared to SSEARCH (not optimized with SSE 
instructions). The same style of implementation is done in (Ligowski & Rudnicki, 2009), but 
with a more efficient use of the global memory bandwidth, providing still better 
performance. 
Another GPU implementation, called CUDASW++, and based on the same parallelization 
scheme as described above, compares its own performance with one of best multithreaded 
heuristic implementation (BLAST). A standard Linux workstation (3 GHz dual core 
processor) equipped with the latest NVIDIA board (GTX 295) including two GPU chips 
provides much better performance: an average speedup of 10 was reported. In that 
configuration, the adjunction of a low-cost accelerator outperforms the best seed-based 
heuristic software while increasing the quality of the results. 
In the GPU version of PLAST (cf. previous section), the ungap alignment step for detecting 
local similarity near the hits are deported on GPU. Two lists (List1 and List2) of short 
sequences are sent to the GPU in order to make an all-by-all comparison. The parallelization 
is an adaptation of the matrix multiplication algorithm proposed in the CUDA 
documentation (Cuda, 2007). Matrices of numbers are simply replaced by blocks of strings. 
More precisely, suppose that block B1[N1, L] and block B2[N2,L] correspond respectively to 
List1 and List2, with L the length of the sequences and N1 (N2) the number of sequences in 
List 1 (List2). A third block SC[N1,N2]  stores the scores of all the computation between 
block B1 and block B2.  
The global treatment is done by partitioning the computation into block of threads 
computing only a sub block of SC, called SCsub. Each thread within the block processes one 
element of SCsub dimensioned as a 16.x16 square matrix. This size has been chosen to 
optimize the memory accesses, allowing the GPU internal fast memory to store short 
sequences which can simultaneously be shared by 256 threads. At the end, the host 
processor gets back an N1xN2 matrix of scores from which significant ones need to be 

 

extracted. Figure 8 illustrates the parallelization scheme of a 16 x 16 string comparison, 
corresponding to a sub bloc SCsub. 
 

 
Fig. 8. Principle of the parallelization of an all-by-all string comparison on GPU. A thread 
(i,j) performs the comparison between the ith and the jth sequences.  
 
Compared to an optimized sequential algorithm an average speedup of 10 is measured for 
performing this computation on recent NVIDIA graphic boards (GTX 280). 

 
7. Conclusion 
 

This chapter presented three approaches to parallelize the genomic sequence comparison 
problem: (1) systolic parallelization with VLSI or FPGA accelerators, (2) SIMD 
parallelization with microprocessor SSE instruction sets, and (3) streaming parallelization 
with GPU boards. These types of parallelization, referred as fine-grained parallelization, 
exploit the internal parallelism of the algorithms. 
Another possibility is the data-level parallelism. This is actually the approach which is 
mostly exploited in many bioinformatics applications. A sequence, or a group of sequences, 
is generally compared with millions of other sequences. There is thus a natural way to split 
the computation on parallel machines, starting from multicores to clusters or grid platforms. 
The implementation is immediate: the database is dispatched among the available 
processing units, and each node works independently on its own subset of data. This 
approach is very efficient and fit well with the structures of the bioinformatics centres which 
are mainly composed of clusters of multiprocessors. Besides, MPI versions of the most 
popular bioinformatics software are now available. 
These two alternatives, however, are not antagonist and can be combined to provide higher 
performance. A few nodes of a general purpose cluster can be equipped with hardware 
accelerators such as FPGA or GPU boards. When intensive comparisons are required, the 
system automatically assigns these nodes for this specific process, freeing the rest of the 
machines for other tasks. As a matter of fact, the scan of genomic databases may represent 
up to 60%-70% of the execution time of a bioinformatics server. As seen in this chapter, the 
heart of the algorithms mostly manipulates small integers and, consequently, exploits a 
relatively small fraction of the microprocessor computational power. Fitting these 
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algorithms into dedicated platforms is much more efficient both in terms of cost and electric 
power consumption. 
With the next generation sequencing technology, the amounts of data to process become a 
real challenge. Comparing billions of genomic sequences is not the ultimate goal; it is just a 
necessary step before more complex data analysis in order to filter, organize or classify raw 
data coming from the fast sequencing machines. In order for this step to not become a 
serious bottleneck, comparison algorithms must exploit any forms of parallelism available in 
the next generation of microprocessors. The structures of the genomic sequence comparison 
algorithms probably need to be revisited to better fit tomorrow architectures such as 
manycores architectures enhanced with powerful SIMD instruction sets.  
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