
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

146,000 185M

TOP 1%154

5,900

Fine-Grained Parallel Genomic Sequence Comparison 273

Fine-Grained Parallel Genomic Sequence Comparison

Dominique Lavenier

x

Fine-Grained Parallel Genomic
Sequence Comparison

Dominique Lavenier

ENS Cachan / IRISA Rennes
France

1. Introduction

Comparing DNA, RNA or protein sequences is a fundamental process in computational
biology. The information deduced by processing genomic sequences remain the base of a
large panel of bioinformatics activities such as genome assembly, gene annotation,
phylogeny, prediction of 3D protein structures, meta-genomic analysis, etc.
For almost two decades, the amounts of data have steadily increased, nearly doubling every
16-18 months. Hence, from gene level analyses, bioinformatics researches have moved to
full genome analysis, leading to extremely large quantities of data to process. Furthermore,
recent progresses in biotechnology, such as the next generation sequencing technology able
to generate billions of genomic sequences in a single day, still strengthen the needs for fast
and efficient solutions.
Basically, genomic data, which are considered here, are DNA or protein sequences. A DNA
sequence may be as simple as a single gene (a few thousands of nucleotides) or as complex
as a full genome (three billions of nucleotides for the human genome). A protein sequence is
shorter. It reflects the DNA to amino acids transcription of genes through the universal
genetic code. Their lengths range from a few hundreds of amino acids to a few thousands of
amino acids. The alphabet of a nucleotide sequence is composed of only 4 characters: A, C,
G and T. The protein alphabet is larger and includes 20 amino acids. From a computational
point of view, these data are seen as simple strings of characters.
These sequences are stored in genomic databases. SWISS-PROT and TrEMBL (Apweiler et
al., 2004), for example, are two well-known protein sequence databases containing
respectively 466739 and 7695149 entries (May 2009). From the DNA size, GenBank (release
171, Apr. 2009) contain more than 100 millions of sequences, representing more than 100
billions of nucleotides (Benson et al., 2008). New releases are made every two months to
include new data coming from worldwide research institutes. With the exponential growth
of these databases, performing computation on this mass of data is every day a more and
more challenging task.
A lot of bioinformatics applications need to compare genomic sequences in their early
processing steps. To illustrate our point, we briefly describe some of them in the next
paragraphs. The goal is not to provide an exhaustive list, but to give, through some
examples, an idea of the volume of data which are routinely processed.

14

www.intechopen.com

Parallel and Distributed Computing274

Genome Assembly. Before getting the text of a genome, an initial phase is to sequence the
long DNA molecule contained in each cell of every living organism. This is achieved by
randomly breaking the DNA molecule into billions of short fragments which are re-
assembled to compose the final text. Many algorithms have been proposed for
reconstructing a genome from these short elements (Pop et al., 2002). However, the pre-
processing is always the same: finding overlapping regions between them. This requires
making intensive pair-wise comparisons to detect similarity between the beginning and the
end of all fragments. In other words, assembling N fragments leads to N2/2 pair-wise
independent comparisons. Typically, for eukaryote organisms, N range from 107 to 108.
Database Scanning. A common task of the molecular biology is to assign a function to an
unknown gene. To be functional, a protein must adopt a specific 3D shape related to its
sequence of amino acids. The shape is important because it determines the function of the
protein, and how it interacts with other molecules. It is assumed that two proteins with
identical functions may have similar 3D structures, yielding to a similar sequence of amino
acids. Even if this hypothesis is not always verified, a large number of algorithms were
proposed to rapidly extract sequences (or portion of sequences) having a high similarity
with a query sequence. But the scan of genomic databases is faced to the exponential growth
of the data. To be able to query databases of billions of nucleotides within reasonable time
(from seconds to minutes), the use of parallel systems is now the only solution.
Full Genome Comparison. Mid 2009, about 1000 genomes have been completely sequenced,
and more than 4000 other genome sequencing projects are under progression (Liolios et al.,
2008). By comparison, only 300 projects were referenced ten years ago. Actually, no decline
in this activity is expected in the next few years. More and more genomes will come from
many organisms: virus, bacterium, plants, fishes, vertebrates, etc. This avalanche of data
opens the door to new ways of investigating the various genome structures. From a
computational point of view, algorithms do not fundamentally differ from standard string
comparison algorithms, except that the length of the sequences may seriously limit their use.
Strings of hundreds of millions of characters need to be intensively processed to detect any
kind of similarities. Compared to gene analysis, which can be satisfactory performed (in
time) on a standard computer, genome analysis increases the complexity by several orders
of magnitude.
Molecular Phylogeny. On Earth, there are millions of different living organisms.
Morphological criteria and gene structure suggest that they are genetically related. Their
genealogical relationships can be represented by a vast evolutionary tree. This assumption
implies that different species arise from previous forms via descent, and that all organisms
are connected by the passage of genes along the branches of the phylogenic tree. To build
such a tree, identical (or near identical) genes present in all organisms are systematically
compared. This aims to calculate a distance between all genes (larger the distance, older the
relationship between genes). Based on these distances, trees can be constructed through
different phylogenic methods. Again, the pre-processing step involves comparing precisely
a large set of genomic sequences.
Next Generation Sequencing (NGS). For the last three years, the very fast improvements of
sequencing machines have revolutionized the genomic research field (Shenure & Hanlee,
2008). The equivalent (in raw data) of the human genome can now be generated in a single
day. Billions of nucleotides spread in millions of very short fragments (35 to 70 nucleotides)
are thus available allowing a large spectrum of new large scale applications to be set up:

genome re-sequencing, meta-genomic analysis, molecular bar-coding, etc. Once again, the
preliminary step often deals with intensive genomic sequence comparison.
Since the early 80’s, many efforts were made to optimize the genomic sequence comparison
problem, both on the software side with powerful heuristics, and on the hardware side with
dedicated hardwired systems. Another important effort has also been done on the parallel
side, ranging from pure parallel software implementations to highly specific parallel
machines.
The goal of this chapter is to present the various strategies which are used to parallelize this
essential bioinformatics task, and more specifically strategies using fine-grained parallelism.
Section 2 formally introduces the problem and section 3 presents the main algorithms. The
three next sections are devoted to three different technologies: VLSI and FPGA accelerators,
SIMD instructions, and graphical processing units (GPU). The last section concludes the
chapter.

2. The genomic sequence comparison problem

Basically, comparing two genomic sequences is equivalent to find similarities between these
two elements. Similarities are symbolized by alignments which are the objects that biologists
are able to interpret. An alignment is composed of two strings where most characters of both
strings match together. For instance, consider the following alignment:

A G T G G T C T T A - A C G T T A C A T G T T
 | | | : | | | : | | | | | | | | : | | |
 A G T T G T C A T A T A C G T - - C A A G T T

The symbol | represents a match between two characters. The symbol : represents a
mismatch. No symbol indicates a deletion or an insertion. In that case, this operation is
referred as a gap. Given two sequences, the game is to find regions which maximize the
number of consecutive matches and which represent significant biological similarities. To
decide if an alignment is significant or not, a score is associated. If the score exceeds a
statistically predefined threshold value, it is then considered as valid.
The score is computed as the sum of three elementary costs:

 Cost of a match
 Cost of a mismatch
 Cost of a gap

If we assign +1 for a match, -1 for a mismatch and -3 for a gap, the score of the above
alignment is equal to: 17 x matches + 3 x mismatches + 3 gaps = (17×1) +(3×-1)+(3×-3) = 5.
This simple scoring scheme is used for DNA sequences. The values of the match, mismatch
and gap costs are given by the user and depend of the applications. To better match the
biological reality, the gap cost is often calculated using an affine function giving a highest
cost for the first gap and a lower cost for the following ones. Taking again the example, and
setting the open gap cost to -3 and the extension gap cost to -1, the value of the score will
increase to 7: the cost of the first gap stay the same, but the cost of the second gap rise to -4.
For protein comparison, the match and mismatch cost is included in a single operation

www.intechopen.com

Fine-Grained Parallel Genomic Sequence Comparison 275

Genome Assembly. Before getting the text of a genome, an initial phase is to sequence the
long DNA molecule contained in each cell of every living organism. This is achieved by
randomly breaking the DNA molecule into billions of short fragments which are re-
assembled to compose the final text. Many algorithms have been proposed for
reconstructing a genome from these short elements (Pop et al., 2002). However, the pre-
processing is always the same: finding overlapping regions between them. This requires
making intensive pair-wise comparisons to detect similarity between the beginning and the
end of all fragments. In other words, assembling N fragments leads to N2/2 pair-wise
independent comparisons. Typically, for eukaryote organisms, N range from 107 to 108.
Database Scanning. A common task of the molecular biology is to assign a function to an
unknown gene. To be functional, a protein must adopt a specific 3D shape related to its
sequence of amino acids. The shape is important because it determines the function of the
protein, and how it interacts with other molecules. It is assumed that two proteins with
identical functions may have similar 3D structures, yielding to a similar sequence of amino
acids. Even if this hypothesis is not always verified, a large number of algorithms were
proposed to rapidly extract sequences (or portion of sequences) having a high similarity
with a query sequence. But the scan of genomic databases is faced to the exponential growth
of the data. To be able to query databases of billions of nucleotides within reasonable time
(from seconds to minutes), the use of parallel systems is now the only solution.
Full Genome Comparison. Mid 2009, about 1000 genomes have been completely sequenced,
and more than 4000 other genome sequencing projects are under progression (Liolios et al.,
2008). By comparison, only 300 projects were referenced ten years ago. Actually, no decline
in this activity is expected in the next few years. More and more genomes will come from
many organisms: virus, bacterium, plants, fishes, vertebrates, etc. This avalanche of data
opens the door to new ways of investigating the various genome structures. From a
computational point of view, algorithms do not fundamentally differ from standard string
comparison algorithms, except that the length of the sequences may seriously limit their use.
Strings of hundreds of millions of characters need to be intensively processed to detect any
kind of similarities. Compared to gene analysis, which can be satisfactory performed (in
time) on a standard computer, genome analysis increases the complexity by several orders
of magnitude.
Molecular Phylogeny. On Earth, there are millions of different living organisms.
Morphological criteria and gene structure suggest that they are genetically related. Their
genealogical relationships can be represented by a vast evolutionary tree. This assumption
implies that different species arise from previous forms via descent, and that all organisms
are connected by the passage of genes along the branches of the phylogenic tree. To build
such a tree, identical (or near identical) genes present in all organisms are systematically
compared. This aims to calculate a distance between all genes (larger the distance, older the
relationship between genes). Based on these distances, trees can be constructed through
different phylogenic methods. Again, the pre-processing step involves comparing precisely
a large set of genomic sequences.
Next Generation Sequencing (NGS). For the last three years, the very fast improvements of
sequencing machines have revolutionized the genomic research field (Shenure & Hanlee,
2008). The equivalent (in raw data) of the human genome can now be generated in a single
day. Billions of nucleotides spread in millions of very short fragments (35 to 70 nucleotides)
are thus available allowing a large spectrum of new large scale applications to be set up:

genome re-sequencing, meta-genomic analysis, molecular bar-coding, etc. Once again, the
preliminary step often deals with intensive genomic sequence comparison.
Since the early 80’s, many efforts were made to optimize the genomic sequence comparison
problem, both on the software side with powerful heuristics, and on the hardware side with
dedicated hardwired systems. Another important effort has also been done on the parallel
side, ranging from pure parallel software implementations to highly specific parallel
machines.
The goal of this chapter is to present the various strategies which are used to parallelize this
essential bioinformatics task, and more specifically strategies using fine-grained parallelism.
Section 2 formally introduces the problem and section 3 presents the main algorithms. The
three next sections are devoted to three different technologies: VLSI and FPGA accelerators,
SIMD instructions, and graphical processing units (GPU). The last section concludes the
chapter.

2. The genomic sequence comparison problem

Basically, comparing two genomic sequences is equivalent to find similarities between these
two elements. Similarities are symbolized by alignments which are the objects that biologists
are able to interpret. An alignment is composed of two strings where most characters of both
strings match together. For instance, consider the following alignment:

A G T G G T C T T A - A C G T T A C A T G T T
 | | | : | | | : | | | | | | | | : | | |
 A G T T G T C A T A T A C G T - - C A A G T T

The symbol | represents a match between two characters. The symbol : represents a
mismatch. No symbol indicates a deletion or an insertion. In that case, this operation is
referred as a gap. Given two sequences, the game is to find regions which maximize the
number of consecutive matches and which represent significant biological similarities. To
decide if an alignment is significant or not, a score is associated. If the score exceeds a
statistically predefined threshold value, it is then considered as valid.
The score is computed as the sum of three elementary costs:

 Cost of a match
 Cost of a mismatch
 Cost of a gap

If we assign +1 for a match, -1 for a mismatch and -3 for a gap, the score of the above
alignment is equal to: 17 x matches + 3 x mismatches + 3 gaps = (17×1) +(3×-1)+(3×-3) = 5.
This simple scoring scheme is used for DNA sequences. The values of the match, mismatch
and gap costs are given by the user and depend of the applications. To better match the
biological reality, the gap cost is often calculated using an affine function giving a highest
cost for the first gap and a lower cost for the following ones. Taking again the example, and
setting the open gap cost to -3 and the extension gap cost to -1, the value of the score will
increase to 7: the cost of the first gap stay the same, but the cost of the second gap rise to -4.
For protein comparison, the match and mismatch cost is included in a single operation

www.intechopen.com

Parallel and Distributed Computing276

called substitution given by a substitution matrix reflecting the mutation rate between the 20
amino acids.
Depending of the applications, different types of alignment may be considered. Figure 1
depicts the three main variations commonly used in molecular biology: global alignment,
local alignment and semi-global alignment. Historically, global alignments were first
studied. Global alignments try to find the best match between all characters of two
sequences of similar size. They are typically used for phylogeny studies: the score of the
alignment between two genes indicates their degrees of proximity.
On the other hand, local alignments aim to detect similarities of any length. Given two
sequences, the comparison process aims only to detect part of the sequences having
significant similarity. The difficulty is that the position and the length of the alignments are
unknown, leading to explore a vast search space. Finding local similarities represents the
major needs in bioinformatics. The scan of large databases is the best example. Biologists
don’t only want to know if there are similar items in the database, they also want to detect if
their queries shares some common functionalities with other elements. As proteins (or
genes) are often assemblies of different functional domains, extracting only local similarities
bring pertinent biological information.

Fig. 1. Schematic representation of the three types of alignments commonly used in
molecular biology

The semi-global alignments match all the characters of a small sequence over a large one.
The Next Generation Sequencing (NGS) approach which generates a very large number of
very short fragments is one of the main activities requiring this treatment. The goal is to
map small DNA sequences on full genomes allowing only a restricted number of errors.
Having defined the comparison sequence problem as the search of alignments between two
sequences, and having described the main features of an alignment, the next section focuses
on the algorithmic side of the problem.

3. The main algorithms

For the last 25 years, due to the tremendous increase of the genomic field, and the growing
demand for processing larger and larger amounts of data, many algorithms were proposed
to search alignments. The goal, here, is not to review in detail all of them. We will only focus
on the two main families which have been widely adopted by the scientific genomic
community and which have been implemented on a large panel of parallel structures. The
first algorithm introduced in 1970 by Needleman & Wunsch (Needleman & Wunsch, 1970)
and revisited in 1981 and 1982 respectively by Smith and Waterman (Smith & Waterman,
1981) and Gotoh (Gotoh, 1982) are based on dynamic programming. They are optimal in the

global local semi-global

way that they find the best alignments (local or global) between two sequences. But their
quadratic complexity – O(n2) – make them unsuitable for processing large quantity of data.
However, for some applications, such as phylogeny or search of weak similarities, there are
essential, thereby justifying all the efforts among the last three decades to provide efficient
parallel solutions.
By the end of the 80’s, however, an important algorithmic breakthrough has emerged, based
on a powerful heuristic providing extremely good results. This heuristic drastically reduces
the search space by focusing on interesting points, called hits, between two sequences.
Using this technique, the execution time could be decreased by nearly two orders of
magnitude. Two programs have been immediately proposed to the scientific community,
FASTA in 1988 (Pearson & Lipman, 1988) and BLAST in 1990 (Altschul et al., 1990). The
later, through many improvements, is now the reference in the bioinformatics community
(Altschul et al., 1997). It is maintained by the NCBI (National Center for Biotechnology
Information) as an open-source software including parallel implementations.

3.1 Dynamic programming algorithm
The dynamic programming algorithm compares two strings of characters by computing a
distance which represents the minimal cost to transform one segment into another one. As
stated earlier, two elementary operations are used: the substitution and the gap operations.
By using a list of such operations any segment may be transformed into any other segment.
It is then possible to take the smallest number of operations required to change one segment
to another as the measure of distance between them.
More formally, let X = (x1, x2, . . . xn) and Y = (y1, y2, . . . ym) two sequences to be compared.
Let d(x,y) the substitution cost to change x into y and g the gap cost. The Needleman &
Wunsch algorithm is given by the following recursion:
 ���� �� � ��� � ��� � �� � � �� � ���� � ��� ��� � �� �� � � ���� � � �� � � (1)

with the following initialization:

 D(0,0) = 0 ;
 D(i,0) = H(i­1,0) – i x g for i>0
 D(0,i) = H(0,i­10) – i x g for i>0

D(i,j) represents the maximum similarity of the two segments ending at xi and yj. Thus,
D(n,m) gives the score representing the similarity between the strings X and Y. Higher the
score, better the similarity. From the D(n,m) point, a trace-back procedure can be applied to
recover the alignment, as shown figure 2. In that case, all the values D(i,j) must be stored in a
2D table. The trace-back procedure consists in reconstructing the optimal path from the last
two characters (bottom right) to the first two characters (up left).

www.intechopen.com

Fine-Grained Parallel Genomic Sequence Comparison 277

called substitution given by a substitution matrix reflecting the mutation rate between the 20
amino acids.
Depending of the applications, different types of alignment may be considered. Figure 1
depicts the three main variations commonly used in molecular biology: global alignment,
local alignment and semi-global alignment. Historically, global alignments were first
studied. Global alignments try to find the best match between all characters of two
sequences of similar size. They are typically used for phylogeny studies: the score of the
alignment between two genes indicates their degrees of proximity.
On the other hand, local alignments aim to detect similarities of any length. Given two
sequences, the comparison process aims only to detect part of the sequences having
significant similarity. The difficulty is that the position and the length of the alignments are
unknown, leading to explore a vast search space. Finding local similarities represents the
major needs in bioinformatics. The scan of large databases is the best example. Biologists
don’t only want to know if there are similar items in the database, they also want to detect if
their queries shares some common functionalities with other elements. As proteins (or
genes) are often assemblies of different functional domains, extracting only local similarities
bring pertinent biological information.

Fig. 1. Schematic representation of the three types of alignments commonly used in
molecular biology

The semi-global alignments match all the characters of a small sequence over a large one.
The Next Generation Sequencing (NGS) approach which generates a very large number of
very short fragments is one of the main activities requiring this treatment. The goal is to
map small DNA sequences on full genomes allowing only a restricted number of errors.
Having defined the comparison sequence problem as the search of alignments between two
sequences, and having described the main features of an alignment, the next section focuses
on the algorithmic side of the problem.

3. The main algorithms

For the last 25 years, due to the tremendous increase of the genomic field, and the growing
demand for processing larger and larger amounts of data, many algorithms were proposed
to search alignments. The goal, here, is not to review in detail all of them. We will only focus
on the two main families which have been widely adopted by the scientific genomic
community and which have been implemented on a large panel of parallel structures. The
first algorithm introduced in 1970 by Needleman & Wunsch (Needleman & Wunsch, 1970)
and revisited in 1981 and 1982 respectively by Smith and Waterman (Smith & Waterman,
1981) and Gotoh (Gotoh, 1982) are based on dynamic programming. They are optimal in the

global local semi-global

way that they find the best alignments (local or global) between two sequences. But their
quadratic complexity – O(n2) – make them unsuitable for processing large quantity of data.
However, for some applications, such as phylogeny or search of weak similarities, there are
essential, thereby justifying all the efforts among the last three decades to provide efficient
parallel solutions.
By the end of the 80’s, however, an important algorithmic breakthrough has emerged, based
on a powerful heuristic providing extremely good results. This heuristic drastically reduces
the search space by focusing on interesting points, called hits, between two sequences.
Using this technique, the execution time could be decreased by nearly two orders of
magnitude. Two programs have been immediately proposed to the scientific community,
FASTA in 1988 (Pearson & Lipman, 1988) and BLAST in 1990 (Altschul et al., 1990). The
later, through many improvements, is now the reference in the bioinformatics community
(Altschul et al., 1997). It is maintained by the NCBI (National Center for Biotechnology
Information) as an open-source software including parallel implementations.

3.1 Dynamic programming algorithm
The dynamic programming algorithm compares two strings of characters by computing a
distance which represents the minimal cost to transform one segment into another one. As
stated earlier, two elementary operations are used: the substitution and the gap operations.
By using a list of such operations any segment may be transformed into any other segment.
It is then possible to take the smallest number of operations required to change one segment
to another as the measure of distance between them.
More formally, let X = (x1, x2, . . . xn) and Y = (y1, y2, . . . ym) two sequences to be compared.
Let d(x,y) the substitution cost to change x into y and g the gap cost. The Needleman &
Wunsch algorithm is given by the following recursion:
 ���� �� � ��� � ��� � �� � � �� � ���� � ��� ��� � �� �� � � ���� � � �� � � (1)

with the following initialization:

 D(0,0) = 0 ;
 D(i,0) = H(i­1,0) – i x g for i>0
 D(0,i) = H(0,i­10) – i x g for i>0

D(i,j) represents the maximum similarity of the two segments ending at xi and yj. Thus,
D(n,m) gives the score representing the similarity between the strings X and Y. Higher the
score, better the similarity. From the D(n,m) point, a trace-back procedure can be applied to
recover the alignment, as shown figure 2. In that case, all the values D(i,j) must be stored in a
2D table. The trace-back procedure consists in reconstructing the optimal path from the last
two characters (bottom right) to the first two characters (up left).

www.intechopen.com

Parallel and Distributed Computing278

 A T T T G A C G T A T C

 0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24

 A -2 1 -1 -3 -5 -7 -9 -11 -13 -15 -17 -19 -21

 T -4 -1 2 0 -2 -4 -6 -8 -10 -12 -14 -16 -18

 T -6 -3 0 3 1 -1 -3 -5 -7 -9 -11 -13 -15

 G -8 -5 -2 1 2 2 0 -2 -4 -6 -8 -10 -12

 A -10 -7 -4 -1 0 1 3 1 -1 -3 -5 -7 -9

 C -12 -9 -6 -3 -2 -1 1 4 2 0 -2 -4 -6

 T -14 -11 -8 -5 -2 -3 -1 2 3 3 1 -1 -3

 G -16 -13 -10 -7 -4 -1 -3 0 3 2 2 0 -2

 T -18 -15 -12 -9 -6 -3 -2 -2 1 4 2 3 1

 A -20 -17 -14 -11 -8 -5 -2 -3 -1 2 5 3 2

 T -22 -19 -16 -13 -10 -7 -4 -3 -3 0 3 6 4

 C -24 -21 -18 -15 -12 -9 -6 -3 -4 -2 1 4 7

Fig. 2. Execution of the Needleman & Wunsch algorithm between two DNA sequences. The
cost of a match is set to +1, the cost of a mismatch to -1 and the cost of a gap to -2. Once the
similarity score is computed, a trace-back procedure permits to recover the global alignment
by reconstructing the optimal path.

Remember that the Needleman & Wunsch algorithm computes a global alignment between
two sequences. To find shorter similarities, or local alignments, the Smith & Waterman
algorithm introduces a slight modification to the former recursion:

 ���� �� � ��� ��
� ��� � �� � � �� � ���� � ��� ��� � �� �� � � ���� � � �� � � 0 (2)

with the following initialization: D(0,0) = D(i,0) = D(0,i) = 0

A threshold value, sets to 0, prevents the score to become negative. The effect is that if,
somewhere on the 2D table, a local maximum occurs, it can reflect some local similarity.
Figure 3 illustrates this situation. The word ATTGA is present in both sequences and is
detected by the highest score inside the 2D table.

 C G T T G A A T T G A A

 0 0 0 0 0 0 0 0 0 0 0 0 0

 A 0 0 0 0 0 0 1 1 0 0 0 1 1

 T 0 0 0 1 1 0 0 0 2 1 0 0 0

 T 0 0 0 1 2 0 0 0 1 3 1 0 0

 G 0 0 1 0 0 3 1 0 0 1 4 2 0

 A 0 0 0 0 0 1 4 2 0 0 2 5 3

 C 0 1 0 0 0 0 2 3 1 0 0 3 4

 T 0 0 0 1 1 0 0 1 4 2 0 1 2

 G 0 0 1 0 0 2 0 0 2 3 3 1 0

 T 0 0 0 2 1 0 1 0 1 3 2 2 0

 A 0 0 0 0 1 0 1 2 0 1 2 3 3

 T 0 0 0 1 1 0 0 0 3 1 0 1 2

 C 0 1 0 0 0 0 0 0 1 2 0 0 0

Fig. 3. Execution of the Smith & Waterman algorithm between two DNA sequences. A
match is set to +1, a mismatch to -1 and a gap to -2. A trace-back procedure, starting from
the highest score, permits to recover the best local alignment.

To better reflect the biological reality, Gotoh improved both algorithms by modifying the
cost of N consecutive gaps. The fist gap has an open value gopen while the following ones
have an extended gap cost gext. The recursion is modified as follows:

 ���� �� � ��� ��
� ��� � �� � � �� � ���� � ��� ���� �� ���� �� 0 (3)

 ���� �� � ��� ���� � �� �� � �������� � �� �� � ����
 ���� �� � ��� ����� � � �� � ��������� � � �� � ����

These new equations can be applied both for searching local or global alignments. The
complexity for comparing two sequences is the same and is in O(nm), where n and m

www.intechopen.com

Fine-Grained Parallel Genomic Sequence Comparison 279

 A T T T G A C G T A T C

 0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24

 A -2 1 -1 -3 -5 -7 -9 -11 -13 -15 -17 -19 -21

 T -4 -1 2 0 -2 -4 -6 -8 -10 -12 -14 -16 -18

 T -6 -3 0 3 1 -1 -3 -5 -7 -9 -11 -13 -15

 G -8 -5 -2 1 2 2 0 -2 -4 -6 -8 -10 -12

 A -10 -7 -4 -1 0 1 3 1 -1 -3 -5 -7 -9

 C -12 -9 -6 -3 -2 -1 1 4 2 0 -2 -4 -6

 T -14 -11 -8 -5 -2 -3 -1 2 3 3 1 -1 -3

 G -16 -13 -10 -7 -4 -1 -3 0 3 2 2 0 -2

 T -18 -15 -12 -9 -6 -3 -2 -2 1 4 2 3 1

 A -20 -17 -14 -11 -8 -5 -2 -3 -1 2 5 3 2

 T -22 -19 -16 -13 -10 -7 -4 -3 -3 0 3 6 4

 C -24 -21 -18 -15 -12 -9 -6 -3 -4 -2 1 4 7

Fig. 2. Execution of the Needleman & Wunsch algorithm between two DNA sequences. The
cost of a match is set to +1, the cost of a mismatch to -1 and the cost of a gap to -2. Once the
similarity score is computed, a trace-back procedure permits to recover the global alignment
by reconstructing the optimal path.

Remember that the Needleman & Wunsch algorithm computes a global alignment between
two sequences. To find shorter similarities, or local alignments, the Smith & Waterman
algorithm introduces a slight modification to the former recursion:

 ���� �� � ��� ��
� ��� � �� � � �� � ���� � ��� ��� � �� �� � � ���� � � �� � � 0 (2)

with the following initialization: D(0,0) = D(i,0) = D(0,i) = 0

A threshold value, sets to 0, prevents the score to become negative. The effect is that if,
somewhere on the 2D table, a local maximum occurs, it can reflect some local similarity.
Figure 3 illustrates this situation. The word ATTGA is present in both sequences and is
detected by the highest score inside the 2D table.

 C G T T G A A T T G A A

 0 0 0 0 0 0 0 0 0 0 0 0 0

 A 0 0 0 0 0 0 1 1 0 0 0 1 1

 T 0 0 0 1 1 0 0 0 2 1 0 0 0

 T 0 0 0 1 2 0 0 0 1 3 1 0 0

 G 0 0 1 0 0 3 1 0 0 1 4 2 0

 A 0 0 0 0 0 1 4 2 0 0 2 5 3

 C 0 1 0 0 0 0 2 3 1 0 0 3 4

 T 0 0 0 1 1 0 0 1 4 2 0 1 2

 G 0 0 1 0 0 2 0 0 2 3 3 1 0

 T 0 0 0 2 1 0 1 0 1 3 2 2 0

 A 0 0 0 0 1 0 1 2 0 1 2 3 3

 T 0 0 0 1 1 0 0 0 3 1 0 1 2

 C 0 1 0 0 0 0 0 0 1 2 0 0 0

Fig. 3. Execution of the Smith & Waterman algorithm between two DNA sequences. A
match is set to +1, a mismatch to -1 and a gap to -2. A trace-back procedure, starting from
the highest score, permits to recover the best local alignment.

To better reflect the biological reality, Gotoh improved both algorithms by modifying the
cost of N consecutive gaps. The fist gap has an open value gopen while the following ones
have an extended gap cost gext. The recursion is modified as follows:

 ���� �� � ��� ��
� ��� � �� � � �� � ���� � ��� ���� �� ���� �� 0 (3)

 ���� �� � ��� ���� � �� �� � �������� � �� �� � ����
 ���� �� � ��� ����� � � �� � ��������� � � �� � ����

These new equations can be applied both for searching local or global alignments. The
complexity for comparing two sequences is the same and is in O(nm), where n and m

www.intechopen.com

Parallel and Distributed Computing280

represent the length of the two genomic sequences. Note that to get only the similarity score
between two sequences, it is not necessary to keep the complete 2D table in memory.

3.2 Heuristic optimization
The dynamic programming algorithm systematically explores a search space equals to n x
m. For genomic data mining applications which process billions of sequences, this approach
cannot practically be used due to its very high computational complexity. To bypass this
constraint, many heuristic algorithms have been developed having in mind to target only
regions of interest. These zones can be seen as short regions (sub-sequences) in both
sequences with good probabilities of match. The quality and the speed of the algorithms
highly depend of the ability to detect these regions.
In the FASTA and the BLAST packages, the idea is the following: Generally, the two strings
of an alignment share, at least, one identical word of W characters. These words, called
seeds, generate hits between the sequences. From these hits an alignment can thus be
reconstructed by extending the search on the left and right hand sides. The size of the seeds
has a great influence on the search sensitivity: small seeds have a high probability to belong
to all the alignments detected by programming dynamic methods. On the other hand, large
seeds often miss weak similarity alignments because such alignments do not include at least
one similar word of W consecutive characters. Similarly, small seeds will increase the
computation time while large seeds will tend to limit it, just because of the direct
relationship between the size of the seed and the number of generated hits: larger the seeds,
smaller the number of hits, and smaller the time spent in computing extensions. Users are
then faced to a difficult tradeoff: fast and approximate results or slow and sensitive results.
Using this technique, the search of alignments is generally split into a few distinct steps. For
example, the BLAST program works as follows:

 Step 1: find hits of W character words
 Step 2: perform ungap extension
 Step 3: perform gap extension

Figure 4 illustrates the process. The first step marks the regions in the 2D space where
similar words of W characters are found. These regions are called hits. The second step
starts a restricted search on the hit neighborhoods. The complexity of the search is
intentionally limited by considering only substitution operations. At this stage, gaps are not
allowed. This step aims to investigate if a significant similarity exists near the hit before
launching a full alignment computation. An intermediate score is thus calculated. If it
exceeds a predefined threshold value, then the third step is run. The last step, only triggered
by step 2, performs a dynamic programming on both side of the hit (see Figure 4). Again, a
score is calculated. If this new score becomes greater than a statistically significant threshold
value, an alignment is generated.
Algorithms based on seed heuristics have been widely adopted by biologists because of
their great speed improvements compared to programming dynamic approaches.
Furthermore, their sensitivity can be efficiently tuned to match the requirements of many
bioinformatics applications just by setting a simple parameter: the size of the seed. Today,
these families of algorithms are daily used by thousands of researchers. They represent a
large part of the processing time of many bioinformatics centers. Their parallelization on

clusters, super-computers or grids has been one of the responses to increase the interactivity
with end-users for rapidly processing huge masses of genomic data.

Fig. 4. 3-step BLAST strategy to detect similarity: (1) hit location; (2) ungap extension; (3)
gap extension.

However, this type of parallelization is not the only issue. A lot of research works have been
done to parallelize the genomic sequence algorithms on other hardware platforms. The next
three sections present three different alternatives which exploit the fine-grained potential
parallelism of the algorithms

4. VLSI and FPGA accelerators

Historically, the hardware acceleration of the string comparison problem is related to the
parallelization of the dynamic programming algorithm on systolic arrays. The immediate
implementation consists in hardwiring the recursion of equation (1) on a 2D systolic array as
depicted Figure 5. According to the data dependencies, a cell D(i,j) receives data from its
three top left neighbouring cells D(i-1,j-1), D(i,j-1), D(i-1,j), computes a similarity score and
propagates it to its three bottom right cells D(i+1,j+1), D(i+1,j), D(i,j+1).
If the size of both sequences is n, then, due to the data dependencies, a similarity score is
computed in 2n-1 cycles, providing a speedup of n2/2n-1 ≈ n/2. The efficiency of this
implementation is far from the optimum, since n2 cells provide only a speedup of n/2. It can
be noted that during the computation, only one anti diagonal of cells is active at each cycle.
It is thus possible to emulate one column (or one line) on a single cell. The resulting
architecture is a linear systolic array of n cells. Details of this kind of architectures can be
found in (Lavenier & Giraud, 2005). In that configuration, the number of cycles to compute a
similarity score between two sequences of size n stays the same, but the efficiency is much
better: a speedup of n/2 is obtained with n cells.
To compare one sequence of size n with P sequences of size m with an n-cell array, n+P×m-1
cycles are required. The speedup is thus given by:
 ݊ ൈ ܲ ൈ �݊ � ܲ ൈ � � � ൎ ܲ ݄ݐ�ݓ ݊ ൈ ب � ݊

Search Space
hit

ungap extension

gap extension

Sequence A

Sequence B

www.intechopen.com

Fine-Grained Parallel Genomic Sequence Comparison 281

represent the length of the two genomic sequences. Note that to get only the similarity score
between two sequences, it is not necessary to keep the complete 2D table in memory.

3.2 Heuristic optimization
The dynamic programming algorithm systematically explores a search space equals to n x
m. For genomic data mining applications which process billions of sequences, this approach
cannot practically be used due to its very high computational complexity. To bypass this
constraint, many heuristic algorithms have been developed having in mind to target only
regions of interest. These zones can be seen as short regions (sub-sequences) in both
sequences with good probabilities of match. The quality and the speed of the algorithms
highly depend of the ability to detect these regions.
In the FASTA and the BLAST packages, the idea is the following: Generally, the two strings
of an alignment share, at least, one identical word of W characters. These words, called
seeds, generate hits between the sequences. From these hits an alignment can thus be
reconstructed by extending the search on the left and right hand sides. The size of the seeds
has a great influence on the search sensitivity: small seeds have a high probability to belong
to all the alignments detected by programming dynamic methods. On the other hand, large
seeds often miss weak similarity alignments because such alignments do not include at least
one similar word of W consecutive characters. Similarly, small seeds will increase the
computation time while large seeds will tend to limit it, just because of the direct
relationship between the size of the seed and the number of generated hits: larger the seeds,
smaller the number of hits, and smaller the time spent in computing extensions. Users are
then faced to a difficult tradeoff: fast and approximate results or slow and sensitive results.
Using this technique, the search of alignments is generally split into a few distinct steps. For
example, the BLAST program works as follows:

 Step 1: find hits of W character words
 Step 2: perform ungap extension
 Step 3: perform gap extension

Figure 4 illustrates the process. The first step marks the regions in the 2D space where
similar words of W characters are found. These regions are called hits. The second step
starts a restricted search on the hit neighborhoods. The complexity of the search is
intentionally limited by considering only substitution operations. At this stage, gaps are not
allowed. This step aims to investigate if a significant similarity exists near the hit before
launching a full alignment computation. An intermediate score is thus calculated. If it
exceeds a predefined threshold value, then the third step is run. The last step, only triggered
by step 2, performs a dynamic programming on both side of the hit (see Figure 4). Again, a
score is calculated. If this new score becomes greater than a statistically significant threshold
value, an alignment is generated.
Algorithms based on seed heuristics have been widely adopted by biologists because of
their great speed improvements compared to programming dynamic approaches.
Furthermore, their sensitivity can be efficiently tuned to match the requirements of many
bioinformatics applications just by setting a simple parameter: the size of the seed. Today,
these families of algorithms are daily used by thousands of researchers. They represent a
large part of the processing time of many bioinformatics centers. Their parallelization on

clusters, super-computers or grids has been one of the responses to increase the interactivity
with end-users for rapidly processing huge masses of genomic data.

Fig. 4. 3-step BLAST strategy to detect similarity: (1) hit location; (2) ungap extension; (3)
gap extension.

However, this type of parallelization is not the only issue. A lot of research works have been
done to parallelize the genomic sequence algorithms on other hardware platforms. The next
three sections present three different alternatives which exploit the fine-grained potential
parallelism of the algorithms

4. VLSI and FPGA accelerators

Historically, the hardware acceleration of the string comparison problem is related to the
parallelization of the dynamic programming algorithm on systolic arrays. The immediate
implementation consists in hardwiring the recursion of equation (1) on a 2D systolic array as
depicted Figure 5. According to the data dependencies, a cell D(i,j) receives data from its
three top left neighbouring cells D(i-1,j-1), D(i,j-1), D(i-1,j), computes a similarity score and
propagates it to its three bottom right cells D(i+1,j+1), D(i+1,j), D(i,j+1).
If the size of both sequences is n, then, due to the data dependencies, a similarity score is
computed in 2n-1 cycles, providing a speedup of n2/2n-1 ≈ n/2. The efficiency of this
implementation is far from the optimum, since n2 cells provide only a speedup of n/2. It can
be noted that during the computation, only one anti diagonal of cells is active at each cycle.
It is thus possible to emulate one column (or one line) on a single cell. The resulting
architecture is a linear systolic array of n cells. Details of this kind of architectures can be
found in (Lavenier & Giraud, 2005). In that configuration, the number of cycles to compute a
similarity score between two sequences of size n stays the same, but the efficiency is much
better: a speedup of n/2 is obtained with n cells.
To compare one sequence of size n with P sequences of size m with an n-cell array, n+P×m-1
cycles are required. The speedup is thus given by:
 ݊ ൈ ܲ ൈ �݊ � ܲ ൈ � � � ൎ ܲ ݄ݐ�ݓ ݊ ൈ ب � ݊

Search Space
hit

ungap extension

gap extension

Sequence A

Sequence B

www.intechopen.com

Parallel and Distributed Computing282

In that case, a speedup of n is obtained with a systolic array of n cells. This optimal situation
occurs, for example, in phylogeny studies where thousands of sequences must be compared
together. The systolic array is initialized with one sequence and all the other sequences pass
sequentially through the array. This operation is iterated for all sequences.

Fig. 5. Implementation of the programming dynamic algorithm on a 2D systolic array. Each
cell performs a maximum of three terms. The similarity score is obtained on the bottom right
cell in 2n-1 cycles (n is the length of the sequences).

Many systolic implementations have been studied and prototypes have demonstrated the
efficiency of the systolic approach. Historically, dynamic programming algorithms were
first accelerated with ASIC solutions, such as P-NAC (Lopresti, 1987), BioSCAN (White et
al., 1991), Kestrel (Dashe et al., 1997), Samba (Guerdoux & Lavenier, 1997) or Swasad
(Han & Parameswaran, 2002) accelerators. The performances of these parallel machines
were impressive due to the high number of small processing units running in parallel.
However, they suffered from:

 The high cost induced by the design of specific chips and the relatively small
market niche where these accelerators were intended.

 The competition with software enhancements, such as seed heuristics, making
them not so interested in terms of speed for a wide range of bioinformatics
applications.

With the fast evolution of the FPGA technology, the successors of these machines naturally
moved to reconfigurable hardware. Basically, their parallel structures didn’t change but
they could adapt their configuration according to the nature of the data to process (DNA,
protein), or according to the type of alignments required by the applications (global
alignment, local alignment, with gap, without gap, etc). Pioneer works were realized on the
Splash and Splash-2 FPGA systolic machines in the beginning of the 90's (Hoang, 1993).
Since this date, a lot of variants have been published in the literature, making this specific
domain extremely active to product efficient reconfigurable accelerators (Yamaguchi et al.,
2002) (Puttegowda et al., 2003) (Yu et al., 2003) (Dydel et al., 2004) (Pfeiffer et al., 2005) (Li
et al., 2007).

A T C G

A

T

C

G

D V

H

X

Y

S

S = max
D + d(X,Y)
V – gap
H ‐ gap{

It is also interesting to note that commercial products based on these parallel architectures
are now available. For example, the DeCypher engine from TimeLogic1 or the Cube from
CLCbio2 are two FPGA accelerators dedicated to bioinformatics applications, and especially
tailored for genomic sequence comparisons. Other generic systems, like the SGI RASC-100
reconfigurable platform, for example, are not specifically devoted to this domain, but permit
to implement extremely fast systolic operators (Nguyen et al., 2009).

5. SIMD instructions

The use of SIMD instructions available in each microprocessor for video and image
processing purpose is also a very interesting way to parallelize genomic sequence
comparison, and especially the dynamic programming algorithm. It can be efficiently
speedup by considering groups of cells which can be computed concurrently on the 2D
matrix. As stated earlier, the propagation of the computation follows the anti diagonal of the
matrix. Cells belonging to a same anti diagonal can thus be processed independently. This
can be done with SIMD instructions able to perform K instructions in parallel, as shown
figure 6.
A first implementation of the Smith & Waterman algorithm was proposed by Woznia in
1997 (Wozniac, 1997) with the Visual Instruction Set (VIS) available on the SUN ULTRA
SPARC processor. It follows the parallel scheme of figure 6. VIS instructions are executed in
a specially enhanced floating point unit (FPU) and use its 64-bit registers. Instructions
operate on two 32-bit, or four 16-bit integer data packed in a 64-bit double word. In this
pioneer implementation, four cells of the matrix are executed in parallel by VIS instructions,
storing the running score on 16-bit integers. A speedup of two was obtained.

Fig. 6. Diagonal parallelization. Due to the data dependencies of the dynamic programming
algorithm, only cells belonging to the same anti diagonal can be simultaneously processed.
SIMD instructions can process K cells in parallel.

1 www.timelogic.com
2 www.clcbio.com

4 cells can be
computed
simultaneously

anti diagonal
wave front

www.intechopen.com

Fine-Grained Parallel Genomic Sequence Comparison 283

In that case, a speedup of n is obtained with a systolic array of n cells. This optimal situation
occurs, for example, in phylogeny studies where thousands of sequences must be compared
together. The systolic array is initialized with one sequence and all the other sequences pass
sequentially through the array. This operation is iterated for all sequences.

Fig. 5. Implementation of the programming dynamic algorithm on a 2D systolic array. Each
cell performs a maximum of three terms. The similarity score is obtained on the bottom right
cell in 2n-1 cycles (n is the length of the sequences).

Many systolic implementations have been studied and prototypes have demonstrated the
efficiency of the systolic approach. Historically, dynamic programming algorithms were
first accelerated with ASIC solutions, such as P-NAC (Lopresti, 1987), BioSCAN (White et
al., 1991), Kestrel (Dashe et al., 1997), Samba (Guerdoux & Lavenier, 1997) or Swasad
(Han & Parameswaran, 2002) accelerators. The performances of these parallel machines
were impressive due to the high number of small processing units running in parallel.
However, they suffered from:

 The high cost induced by the design of specific chips and the relatively small
market niche where these accelerators were intended.

 The competition with software enhancements, such as seed heuristics, making
them not so interested in terms of speed for a wide range of bioinformatics
applications.

With the fast evolution of the FPGA technology, the successors of these machines naturally
moved to reconfigurable hardware. Basically, their parallel structures didn’t change but
they could adapt their configuration according to the nature of the data to process (DNA,
protein), or according to the type of alignments required by the applications (global
alignment, local alignment, with gap, without gap, etc). Pioneer works were realized on the
Splash and Splash-2 FPGA systolic machines in the beginning of the 90's (Hoang, 1993).
Since this date, a lot of variants have been published in the literature, making this specific
domain extremely active to product efficient reconfigurable accelerators (Yamaguchi et al.,
2002) (Puttegowda et al., 2003) (Yu et al., 2003) (Dydel et al., 2004) (Pfeiffer et al., 2005) (Li
et al., 2007).

A T C G

A

T

C

G

D V

H

X

Y

S

S = max
D + d(X,Y)
V – gap
H ‐ gap{

It is also interesting to note that commercial products based on these parallel architectures
are now available. For example, the DeCypher engine from TimeLogic1 or the Cube from
CLCbio2 are two FPGA accelerators dedicated to bioinformatics applications, and especially
tailored for genomic sequence comparisons. Other generic systems, like the SGI RASC-100
reconfigurable platform, for example, are not specifically devoted to this domain, but permit
to implement extremely fast systolic operators (Nguyen et al., 2009).

5. SIMD instructions

The use of SIMD instructions available in each microprocessor for video and image
processing purpose is also a very interesting way to parallelize genomic sequence
comparison, and especially the dynamic programming algorithm. It can be efficiently
speedup by considering groups of cells which can be computed concurrently on the 2D
matrix. As stated earlier, the propagation of the computation follows the anti diagonal of the
matrix. Cells belonging to a same anti diagonal can thus be processed independently. This
can be done with SIMD instructions able to perform K instructions in parallel, as shown
figure 6.
A first implementation of the Smith & Waterman algorithm was proposed by Woznia in
1997 (Wozniac, 1997) with the Visual Instruction Set (VIS) available on the SUN ULTRA
SPARC processor. It follows the parallel scheme of figure 6. VIS instructions are executed in
a specially enhanced floating point unit (FPU) and use its 64-bit registers. Instructions
operate on two 32-bit, or four 16-bit integer data packed in a 64-bit double word. In this
pioneer implementation, four cells of the matrix are executed in parallel by VIS instructions,
storing the running score on 16-bit integers. A speedup of two was obtained.

Fig. 6. Diagonal parallelization. Due to the data dependencies of the dynamic programming
algorithm, only cells belonging to the same anti diagonal can be simultaneously processed.
SIMD instructions can process K cells in parallel.

1 www.timelogic.com
2 www.clcbio.com

4 cells can be
computed
simultaneously

anti diagonal
wave front

www.intechopen.com

Parallel and Distributed Computing284

In (Rognes & Seeberg, 2000). the SSEARCH program (a quasi standard implementation of
Smith-Waterman for comparing one query with many sequences from a database) was
parallelized using the Intel SSE instructions (Streaming SIMD Extension). Eight cells are
processed in parallel, each of them manipulating only 8-bit integer values. To increase the
precision, unsigned integers are used and a bias mechanism is added to avoid negative
values coming from the matrix substitution costs. Speedup of 6 is measured compared to the
purely sequential version of SSEARCH.

The speedup improvement, compared to the Wozniac implementation, is due to (1) the
superior number of cells computed in parallel, (2) to a clever preprocessing of the query
consisting in building a structure called a profile and (3) to a programming optimization
allowing the cells to be processed in a vertical way as shown figure 7.

Fig. 7. Vertical parallelization. Under certain assumptions, the horizontal or vertical
dependencies can be temporary omitted, leading to the possibility to compute several
horizontal or vertical cells in parallel. Here, the vertical dependency is suppressed.

The optimization of the Smith & Waterman algorithm implemented in the Rognes &
Seeberg version is based on the observation that in equation (3) V and H are often close to
zero and, hence, most of the time, do not participate to the calculation of D. If for K
consecutive vertical cells, the V values do not exceed a threshold value, then the vertical
dependency can be suppressed, saving many computations. It is possible to check
simultaneously if any of the K cells are above a threshold value. If so, the computation of the
D values can be very fast. If not, the K scores are computed sequentially.
Farrar (Farrar, 2007) goes one step further by striping the query sequence into T fragments
where T = n/K (n is the length of the query and K the size of the SIMD vector). As in the
previous implementation, the V values are also neglected to reduce data dependencies. The
combination of these two techniques provides better data accesses to the SSE registers and
greatly optimizes the SIMD parallelization. After the full computation of the 2D matrix, a
lazy evaluation of V is done. Depending of the D scores in some points of the matrix, V
values are updated and D scores are recalculated accordingly. This method is very efficient

Query

Database sequence

for sequences with a low level of similarity. The D scores remain low and a very small
fraction of the matrix needs to be updated. This situation typically happens in the case of
database scanning where only a few sequences have significant similarity among millions of
others. Speedup between 2 to 8 is reported compared to the previous SIMD
implementations. Performance variations come from the fact that the Rognes & Seeberg
implementation is very sensitive to the gap and substitution costs while the Farrar’s
implementation remains stable.
The Farrar implementation has still been improved in the SWSP3 package (Szalkowski,
2008). Modifications of the code are minors but they significantly reduce the cache footprint
especially when long sequences are processed. Furthermore, the lazy V evaluation loop was
restructured by transforming it into two nested loops with specific index ranges to hint the
compiler at execution counts.
Finally, successive software improvements of the Smith & Waterman algorithm and their
clever implementations using SIMD instructions have drastically reduced the performance
gap with the seed heuristic algorithms which cannot directly benefit from these SIMD
optimizations due to their irregular nature. However, in PLAST, a parallel BLAST-like
version for comparing two large databases, SIMD instructions are efficiently used to
speedup the computation of the ungap step which represents an important fraction of the
execution time (Nguyen and Lavenier, 2008). Identical hits of both databases are grouped
together to construct two lists of short sequences. Each sequence of one list is then compared
with all sequences of the other list. At this step, gaps are not allowed, easing the
computation of the scores to bit fit onto SSE instructions manipulating 16 × 8-bit integers.
The parallelization of this part of the algorithm with SSE instructions makes PLAST three to
ten times faster than BLAST.
The next generation of microprocessors will increase the SIMD instructions capabilities.
New instructions will be provided with larger SIMD registers. For instance, the new Intel set
of SSE instructions, called AVX (Firasta et al., 2008), will extend the SIMD integer registers
to 256 and/or 512 bits. The genomic sequence comparison will directly benefit from these
future improvements.

6. Graphical Processing Units (GPU)

GPGPU stands for General-Purpose computation on Graphics Processing Units. Graphics
Processing Units (GPUs) are high-performance many-core processors that can be used to
accelerate a wide range of applications3. Bioinformatics applications and especially the
genomic sequence comparison problem did not escape from deep investigations to evaluate
the potential gain these low-cost hardware accelerators can offer.
The last generation of GPU houses hundred of small processing units than can be easily
programmed with high-level language, such as CUDA proposed by NVIDIA4 or OpenCL
(Open Computing Language) which is the future standard proposed by the Khronos
Group5. In such a language, the GPU is viewed as a compute device suitable for massive
parallel data application. It can randomly access its own data memory and can run a very

3 www.gpu.org
4 www.nvidia.com
5 www.khronos.org/opencl/

www.intechopen.com

Fine-Grained Parallel Genomic Sequence Comparison 285

In (Rognes & Seeberg, 2000). the SSEARCH program (a quasi standard implementation of
Smith-Waterman for comparing one query with many sequences from a database) was
parallelized using the Intel SSE instructions (Streaming SIMD Extension). Eight cells are
processed in parallel, each of them manipulating only 8-bit integer values. To increase the
precision, unsigned integers are used and a bias mechanism is added to avoid negative
values coming from the matrix substitution costs. Speedup of 6 is measured compared to the
purely sequential version of SSEARCH.

The speedup improvement, compared to the Wozniac implementation, is due to (1) the
superior number of cells computed in parallel, (2) to a clever preprocessing of the query
consisting in building a structure called a profile and (3) to a programming optimization
allowing the cells to be processed in a vertical way as shown figure 7.

Fig. 7. Vertical parallelization. Under certain assumptions, the horizontal or vertical
dependencies can be temporary omitted, leading to the possibility to compute several
horizontal or vertical cells in parallel. Here, the vertical dependency is suppressed.

The optimization of the Smith & Waterman algorithm implemented in the Rognes &
Seeberg version is based on the observation that in equation (3) V and H are often close to
zero and, hence, most of the time, do not participate to the calculation of D. If for K
consecutive vertical cells, the V values do not exceed a threshold value, then the vertical
dependency can be suppressed, saving many computations. It is possible to check
simultaneously if any of the K cells are above a threshold value. If so, the computation of the
D values can be very fast. If not, the K scores are computed sequentially.
Farrar (Farrar, 2007) goes one step further by striping the query sequence into T fragments
where T = n/K (n is the length of the query and K the size of the SIMD vector). As in the
previous implementation, the V values are also neglected to reduce data dependencies. The
combination of these two techniques provides better data accesses to the SSE registers and
greatly optimizes the SIMD parallelization. After the full computation of the 2D matrix, a
lazy evaluation of V is done. Depending of the D scores in some points of the matrix, V
values are updated and D scores are recalculated accordingly. This method is very efficient

Query

Database sequence

for sequences with a low level of similarity. The D scores remain low and a very small
fraction of the matrix needs to be updated. This situation typically happens in the case of
database scanning where only a few sequences have significant similarity among millions of
others. Speedup between 2 to 8 is reported compared to the previous SIMD
implementations. Performance variations come from the fact that the Rognes & Seeberg
implementation is very sensitive to the gap and substitution costs while the Farrar’s
implementation remains stable.
The Farrar implementation has still been improved in the SWSP3 package (Szalkowski,
2008). Modifications of the code are minors but they significantly reduce the cache footprint
especially when long sequences are processed. Furthermore, the lazy V evaluation loop was
restructured by transforming it into two nested loops with specific index ranges to hint the
compiler at execution counts.
Finally, successive software improvements of the Smith & Waterman algorithm and their
clever implementations using SIMD instructions have drastically reduced the performance
gap with the seed heuristic algorithms which cannot directly benefit from these SIMD
optimizations due to their irregular nature. However, in PLAST, a parallel BLAST-like
version for comparing two large databases, SIMD instructions are efficiently used to
speedup the computation of the ungap step which represents an important fraction of the
execution time (Nguyen and Lavenier, 2008). Identical hits of both databases are grouped
together to construct two lists of short sequences. Each sequence of one list is then compared
with all sequences of the other list. At this step, gaps are not allowed, easing the
computation of the scores to bit fit onto SSE instructions manipulating 16 × 8-bit integers.
The parallelization of this part of the algorithm with SSE instructions makes PLAST three to
ten times faster than BLAST.
The next generation of microprocessors will increase the SIMD instructions capabilities.
New instructions will be provided with larger SIMD registers. For instance, the new Intel set
of SSE instructions, called AVX (Firasta et al., 2008), will extend the SIMD integer registers
to 256 and/or 512 bits. The genomic sequence comparison will directly benefit from these
future improvements.

6. Graphical Processing Units (GPU)

GPGPU stands for General-Purpose computation on Graphics Processing Units. Graphics
Processing Units (GPUs) are high-performance many-core processors that can be used to
accelerate a wide range of applications3. Bioinformatics applications and especially the
genomic sequence comparison problem did not escape from deep investigations to evaluate
the potential gain these low-cost hardware accelerators can offer.
The last generation of GPU houses hundred of small processing units than can be easily
programmed with high-level language, such as CUDA proposed by NVIDIA4 or OpenCL
(Open Computing Language) which is the future standard proposed by the Khronos
Group5. In such a language, the GPU is viewed as a compute device suitable for massive
parallel data application. It can randomly access its own data memory and can run a very

3 www.gpu.org
4 www.nvidia.com
5 www.khronos.org/opencl/

www.intechopen.com

Parallel and Distributed Computing286

high numbers of tasks in parallel. These tasks, called threads, are grouped in blocks and
perform the same algorithms in a SIMD mode. Threads of the same block share data
through a complex memory hierarchy and can be synchronized through specific
synchronization points.
Again, the dynamic programming algorithm is a good candidate to for GPU because of its
high regularity. Different parallelization techniques have been tested. The first relies on the
independence of the computation which can be performed on the anti diagonal of the matrix
(cf. previous sections). In that case, a thread is assigned to the computation of one anti
diagonal. If n is the length of the sequences to be compared, then there is the possibility to
run simultaneously up to n threads performing the recursion of equation (3). This approach
has been implemented in (Liu et al., 2007). Speedup from 3 to 10 have been measured
compared to the SSEARCH program, depending of the length of the sequences. Long
sequences favor the use of GPU accelerators.
The implementation of (Manavski & Valle, 2008) is quite different and targets the scan of
databases. The genomic bank is first sorted by the length of the sequences. Then each thread
is assigned with a complete comparison between the query and one sequence of the
database. As the threads are executed in a SIMD mode, it is important to have the same
volume of computation per thread. This is why the sequences are sorted: blocks of
sequences of identical size are processed together. Blocks of 64 threads are executed
simultaneously, leading to a speedup of 30 compared to SSEARCH (not optimized with SSE
instructions). The same style of implementation is done in (Ligowski & Rudnicki, 2009), but
with a more efficient use of the global memory bandwidth, providing still better
performance.
Another GPU implementation, called CUDASW++, and based on the same parallelization
scheme as described above, compares its own performance with one of best multithreaded
heuristic implementation (BLAST). A standard Linux workstation (3 GHz dual core
processor) equipped with the latest NVIDIA board (GTX 295) including two GPU chips
provides much better performance: an average speedup of 10 was reported. In that
configuration, the adjunction of a low-cost accelerator outperforms the best seed-based
heuristic software while increasing the quality of the results.
In the GPU version of PLAST (cf. previous section), the ungap alignment step for detecting
local similarity near the hits are deported on GPU. Two lists (List1 and List2) of short
sequences are sent to the GPU in order to make an all-by-all comparison. The parallelization
is an adaptation of the matrix multiplication algorithm proposed in the CUDA
documentation (Cuda, 2007). Matrices of numbers are simply replaced by blocks of strings.
More precisely, suppose that block B1[N1, L] and block B2[N2,L] correspond respectively to
List1 and List2, with L the length of the sequences and N1 (N2) the number of sequences in
List 1 (List2). A third block SC[N1,N2] stores the scores of all the computation between
block B1 and block B2.
The global treatment is done by partitioning the computation into block of threads
computing only a sub block of SC, called SCsub. Each thread within the block processes one
element of SCsub dimensioned as a 16.x16 square matrix. This size has been chosen to
optimize the memory accesses, allowing the GPU internal fast memory to store short
sequences which can simultaneously be shared by 256 threads. At the end, the host
processor gets back an N1xN2 matrix of scores from which significant ones need to be

extracted. Figure 8 illustrates the parallelization scheme of a 16 x 16 string comparison,
corresponding to a sub bloc SCsub.

Fig. 8. Principle of the parallelization of an all-by-all string comparison on GPU. A thread
(i,j) performs the comparison between the ith and the jth sequences.

Compared to an optimized sequential algorithm an average speedup of 10 is measured for
performing this computation on recent NVIDIA graphic boards (GTX 280).

7. Conclusion

This chapter presented three approaches to parallelize the genomic sequence comparison
problem: (1) systolic parallelization with VLSI or FPGA accelerators, (2) SIMD
parallelization with microprocessor SSE instruction sets, and (3) streaming parallelization
with GPU boards. These types of parallelization, referred as fine-grained parallelization,
exploit the internal parallelism of the algorithms.
Another possibility is the data-level parallelism. This is actually the approach which is
mostly exploited in many bioinformatics applications. A sequence, or a group of sequences,
is generally compared with millions of other sequences. There is thus a natural way to split
the computation on parallel machines, starting from multicores to clusters or grid platforms.
The implementation is immediate: the database is dispatched among the available
processing units, and each node works independently on its own subset of data. This
approach is very efficient and fit well with the structures of the bioinformatics centres which
are mainly composed of clusters of multiprocessors. Besides, MPI versions of the most
popular bioinformatics software are now available.
These two alternatives, however, are not antagonist and can be combined to provide higher
performance. A few nodes of a general purpose cluster can be equipped with hardware
accelerators such as FPGA or GPU boards. When intensive comparisons are required, the
system automatically assigns these nodes for this specific process, freeing the rest of the
machines for other tasks. As a matter of fact, the scan of genomic databases may represent
up to 60%-70% of the execution time of a bioinformatics server. As seen in this chapter, the
heart of the algorithms mostly manipulates small integers and, consequently, exploits a
relatively small fraction of the microprocessor computational power. Fitting these

. . . T T A G C T G G C

. . . C A T G T G T A A

. . . C C T A T A G G T

0,0

0,1

0,15

1,0

1,1

1,15

15,0

15,1

15,15

. . . C A A C T G T A A

. . . C A A C T G T A A

. . . C A A C T G T A A

Block 1: 16 sequences

Block 2: 16 sequences

www.intechopen.com

Fine-Grained Parallel Genomic Sequence Comparison 287

high numbers of tasks in parallel. These tasks, called threads, are grouped in blocks and
perform the same algorithms in a SIMD mode. Threads of the same block share data
through a complex memory hierarchy and can be synchronized through specific
synchronization points.
Again, the dynamic programming algorithm is a good candidate to for GPU because of its
high regularity. Different parallelization techniques have been tested. The first relies on the
independence of the computation which can be performed on the anti diagonal of the matrix
(cf. previous sections). In that case, a thread is assigned to the computation of one anti
diagonal. If n is the length of the sequences to be compared, then there is the possibility to
run simultaneously up to n threads performing the recursion of equation (3). This approach
has been implemented in (Liu et al., 2007). Speedup from 3 to 10 have been measured
compared to the SSEARCH program, depending of the length of the sequences. Long
sequences favor the use of GPU accelerators.
The implementation of (Manavski & Valle, 2008) is quite different and targets the scan of
databases. The genomic bank is first sorted by the length of the sequences. Then each thread
is assigned with a complete comparison between the query and one sequence of the
database. As the threads are executed in a SIMD mode, it is important to have the same
volume of computation per thread. This is why the sequences are sorted: blocks of
sequences of identical size are processed together. Blocks of 64 threads are executed
simultaneously, leading to a speedup of 30 compared to SSEARCH (not optimized with SSE
instructions). The same style of implementation is done in (Ligowski & Rudnicki, 2009), but
with a more efficient use of the global memory bandwidth, providing still better
performance.
Another GPU implementation, called CUDASW++, and based on the same parallelization
scheme as described above, compares its own performance with one of best multithreaded
heuristic implementation (BLAST). A standard Linux workstation (3 GHz dual core
processor) equipped with the latest NVIDIA board (GTX 295) including two GPU chips
provides much better performance: an average speedup of 10 was reported. In that
configuration, the adjunction of a low-cost accelerator outperforms the best seed-based
heuristic software while increasing the quality of the results.
In the GPU version of PLAST (cf. previous section), the ungap alignment step for detecting
local similarity near the hits are deported on GPU. Two lists (List1 and List2) of short
sequences are sent to the GPU in order to make an all-by-all comparison. The parallelization
is an adaptation of the matrix multiplication algorithm proposed in the CUDA
documentation (Cuda, 2007). Matrices of numbers are simply replaced by blocks of strings.
More precisely, suppose that block B1[N1, L] and block B2[N2,L] correspond respectively to
List1 and List2, with L the length of the sequences and N1 (N2) the number of sequences in
List 1 (List2). A third block SC[N1,N2] stores the scores of all the computation between
block B1 and block B2.
The global treatment is done by partitioning the computation into block of threads
computing only a sub block of SC, called SCsub. Each thread within the block processes one
element of SCsub dimensioned as a 16.x16 square matrix. This size has been chosen to
optimize the memory accesses, allowing the GPU internal fast memory to store short
sequences which can simultaneously be shared by 256 threads. At the end, the host
processor gets back an N1xN2 matrix of scores from which significant ones need to be

extracted. Figure 8 illustrates the parallelization scheme of a 16 x 16 string comparison,
corresponding to a sub bloc SCsub.

Fig. 8. Principle of the parallelization of an all-by-all string comparison on GPU. A thread
(i,j) performs the comparison between the ith and the jth sequences.

Compared to an optimized sequential algorithm an average speedup of 10 is measured for
performing this computation on recent NVIDIA graphic boards (GTX 280).

7. Conclusion

This chapter presented three approaches to parallelize the genomic sequence comparison
problem: (1) systolic parallelization with VLSI or FPGA accelerators, (2) SIMD
parallelization with microprocessor SSE instruction sets, and (3) streaming parallelization
with GPU boards. These types of parallelization, referred as fine-grained parallelization,
exploit the internal parallelism of the algorithms.
Another possibility is the data-level parallelism. This is actually the approach which is
mostly exploited in many bioinformatics applications. A sequence, or a group of sequences,
is generally compared with millions of other sequences. There is thus a natural way to split
the computation on parallel machines, starting from multicores to clusters or grid platforms.
The implementation is immediate: the database is dispatched among the available
processing units, and each node works independently on its own subset of data. This
approach is very efficient and fit well with the structures of the bioinformatics centres which
are mainly composed of clusters of multiprocessors. Besides, MPI versions of the most
popular bioinformatics software are now available.
These two alternatives, however, are not antagonist and can be combined to provide higher
performance. A few nodes of a general purpose cluster can be equipped with hardware
accelerators such as FPGA or GPU boards. When intensive comparisons are required, the
system automatically assigns these nodes for this specific process, freeing the rest of the
machines for other tasks. As a matter of fact, the scan of genomic databases may represent
up to 60%-70% of the execution time of a bioinformatics server. As seen in this chapter, the
heart of the algorithms mostly manipulates small integers and, consequently, exploits a
relatively small fraction of the microprocessor computational power. Fitting these

. . . T T A G C T G G C

. . . C A T G T G T A A

. . . C C T A T A G G T

0,0

0,1

0,15

1,0

1,1

1,15

15,0

15,1

15,15

. . . C A A C T G T A A

. . . C A A C T G T A A

. . . C A A C T G T A A

Block 1: 16 sequences

Block 2: 16 sequences

www.intechopen.com

Parallel and Distributed Computing288

algorithms into dedicated platforms is much more efficient both in terms of cost and electric
power consumption.
With the next generation sequencing technology, the amounts of data to process become a
real challenge. Comparing billions of genomic sequences is not the ultimate goal; it is just a
necessary step before more complex data analysis in order to filter, organize or classify raw
data coming from the fast sequencing machines. In order for this step to not become a
serious bottleneck, comparison algorithms must exploit any forms of parallelism available in
the next generation of microprocessors. The structures of the genomic sequence comparison
algorithms probably need to be revisited to better fit tomorrow architectures such as
manycores architectures enhanced with powerful SIMD instruction sets.

8. References

Altschul, S.; Gish, W.; Miller ,W.; Myers, E. & Lipman, D. (1990). Basic local alignment
search tool, J. Mol. Biol., vol. 215, no. 3, pp. 403–410

Altschul, S.; Madden, T.; Schäffer, A.; Zhang, J.; Zhang, Z.; Miller, W. & Lipman, D. (1997)
Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs, Nucleic Acids Res, vol. 25, pp. 3389-3402

Apweiler, R. et al. (2004). UniProt: the Universal Protein knowledgebase, Nucleic Acids Res.,
vol. 32, database issue, pp. 115-119

Benson, D. et al. (2008). GenBank, Nucleic Acids Res., vol. 36, database issue, pp. 25-30
Cuda. (2007). NVIDUA CUDA: Compute Unified Device Architecture, Programming guide,

Version 1.0
Dahle, D.; Hirschberg, J.; Karplus, K.; Keller, H.; Rice, E.; Speck, D.; Williams, D. & Hughey,

R. (1997). Kestrel: Design of an 8-bit SIMD Parallel Processor, Proceedings of the 17th
Conference on Advanced Research in VLSI (ARVLSI '97), September 15 – 16, pp. 145-
163, Ann Arbor, Michigan

Dydel, S. & Piotr, B. (2004). Large Scale Protein Sequence Alignment Using FPGA
Reprogrammable Logic Devices, 14 th International conference on field-programmable
logic and applications, Antwerp , Belgique, pp. 23-32

Farrar, M. (2007). Striped Smith–Waterman speeds database searches six times over other
SIMD implementations, Bioinformatics, vol. 23, no. 2, pp. 156-161

Firasta, N.; Buxton, M.; Jimbo, P.; Nasri, K. & Kuo, S. (2008). Intel AVX: New frontiers in
performance improvements and Energy Efficiency. Intel White paper

Gotoh, O. (1982). An improved algorithm for matching biological sequences. Journal of
Molecular biology, vol. 162, no. 3, pp. 705-708

Gpu .(2009). http://gpgpu.org
Green, P. (1996). SWAT Optimization, www.phrap.org/phredphrap/swat.html
Guerdoux-Jamet, P. & Lavenier, D. (1997). SAMBA: hardware accelerator for biological

sequence comparison, Bioinformatics, vol. 13, no. 6, pp. 609-615.
Han, T. & Parameswaran, S. (2002). Swasad: An Asic Design For High Speed Dna Sequence

Matching, Proceedings of the 2002 Conference on Asia South Pacific Design
automation/VLSI Design, January 07–11, Bangalore, India

Hoang, D. (1993). Searching genetic databases on SPLASH2, IEEE Workshop on FPGAs for
Custom Computing Machines, pp. 185-191, Napa, California

Lavenier, D. & Giraud, M. (2005). Bioinformatcs Applications, in Reconfigurable Computing:
Accelerating Computation with Field-Programmable Gate Arrays, Gokhale, M. & P.S.
Graham P. editor, chapter 9, Springer, ISBN 0-387-26105-2

Liolios, K. et al. (2008). The Genomes On Line Database (GOLD) in 2007: status of genomic
and metagenomic projects and their associated metadata, Nucl. Acids Res., vol. 36,
database issue, pp. 475-479

Li, IT.; Shum, W. & Truong, K. (2007). 160-fold acceleration of the Smith-Waterman
algorithm using a field programmable gate array (FPGA). BMC Bioinformatics. vol.
8, no. 185

Ligowski, L. & Rudnicki, W. (2009). An efficient implementation of the Smith-Waterman
algorithm on GPU using CUDA for massively parallel scanning of sequence
databases, HiComb 2009: Eighth IEEE International Workshop on High Performance
Computational Biology, Rome, Italy

Liu, Y.; Huang, W.; Johnson, j; & Vaidya, S. (2006). GPU Accelerated Smith-Waterman,
General Purpose Computation on Graphics Hardware (GPGPU): Methods, Algorithms and
Applications, LNCS, vol. 3994, pp. 188-195, ISSN 0302-9743

Liu, W.; Schmidt, B.; Voss, G.; Muller-Wittig, W., (2007). Streaming Algorithms for
Biological Sequence Alignment on GPUs, Parallel and Distributed Systems, IEEE
Transactions on Parallel and Distributed Systems , vol. 18, no. 9, pp. 1270-1281

Liu, Y.; Maskell, D. & Schmidt, B. (2009). CUDASW++: Optimizing Smith-Waterman
sequence database searches for CUDA-enabled graphics processing units, BMC
Research Notes, vol. 2 no. 73

Lopresti, D. (1987). P-NAC: A Systolic Array for Comparing Nucleic Acid Sequences.
Computer, vol. 20, no. 7, pp. 98-99

Manavski A. & Valle, G. (2008). CUDA compatible GPU cards as efficient hardware
accelerators for Smith-Waterman sequence alignment, BMC Bioinformatics, vol. 9,
no. 10.

Needleman , S. & Wunsch, C. (1970). A general method applicable to the search for
similarities in the amino acid sequence of two proteins, J. Mol Biol., vol. 48, no. 3,
pp. 443–53

Nguyen, V. ; Cornu, A. & Lavenier, D. (2009). Implementing Protein Seed-Based
Comparison Algorithm on the SGI RASC-100 platform, 16th Reconfigurable
Architectures Workshop, May 25-26, Rome, Italy

Nguyen, V. & Lavenier, D. (2008) Fine-grained parallelization of similarity search between
protein sequences, INRIA Report, (RR-6513)

Pearson, W. & Lipman, D. (1988) Improved tools for biological sequence comparison. Proc.
National Academy of Science, vol. 85, no. 8, pp. 2444–2448

Pfeiffer G,; Kreft H. & Schimmler, M. (2005) Hardware Enhanced Biosequence Alignment,
International Conference on METMBS’05, Monte Carlo Resort, Las Vegas, Nevada,
USA

Pop,M.; Salzberg, S. & Shumway, M. (2002). Genome Sequence Assembly:Algorithms and
Issues, Computer, vol. 35, no. 7, pp. 47-54

Puttegowda, K.; Worek, W.; Pappas, N.; Dandapani, A.; Athanas, P. & Dickerman, A. (2003).
A Run-Time Reconfigurable System for Gene-Sequence Searching, Proceedings of the
16th international Conference on VLSI Design, January 04 - 08, New Delhi, India

www.intechopen.com

Fine-Grained Parallel Genomic Sequence Comparison 289

algorithms into dedicated platforms is much more efficient both in terms of cost and electric
power consumption.
With the next generation sequencing technology, the amounts of data to process become a
real challenge. Comparing billions of genomic sequences is not the ultimate goal; it is just a
necessary step before more complex data analysis in order to filter, organize or classify raw
data coming from the fast sequencing machines. In order for this step to not become a
serious bottleneck, comparison algorithms must exploit any forms of parallelism available in
the next generation of microprocessors. The structures of the genomic sequence comparison
algorithms probably need to be revisited to better fit tomorrow architectures such as
manycores architectures enhanced with powerful SIMD instruction sets.

8. References

Altschul, S.; Gish, W.; Miller ,W.; Myers, E. & Lipman, D. (1990). Basic local alignment
search tool, J. Mol. Biol., vol. 215, no. 3, pp. 403–410

Altschul, S.; Madden, T.; Schäffer, A.; Zhang, J.; Zhang, Z.; Miller, W. & Lipman, D. (1997)
Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs, Nucleic Acids Res, vol. 25, pp. 3389-3402

Apweiler, R. et al. (2004). UniProt: the Universal Protein knowledgebase, Nucleic Acids Res.,
vol. 32, database issue, pp. 115-119

Benson, D. et al. (2008). GenBank, Nucleic Acids Res., vol. 36, database issue, pp. 25-30
Cuda. (2007). NVIDUA CUDA: Compute Unified Device Architecture, Programming guide,

Version 1.0
Dahle, D.; Hirschberg, J.; Karplus, K.; Keller, H.; Rice, E.; Speck, D.; Williams, D. & Hughey,

R. (1997). Kestrel: Design of an 8-bit SIMD Parallel Processor, Proceedings of the 17th
Conference on Advanced Research in VLSI (ARVLSI '97), September 15 – 16, pp. 145-
163, Ann Arbor, Michigan

Dydel, S. & Piotr, B. (2004). Large Scale Protein Sequence Alignment Using FPGA
Reprogrammable Logic Devices, 14 th International conference on field-programmable
logic and applications, Antwerp , Belgique, pp. 23-32

Farrar, M. (2007). Striped Smith–Waterman speeds database searches six times over other
SIMD implementations, Bioinformatics, vol. 23, no. 2, pp. 156-161

Firasta, N.; Buxton, M.; Jimbo, P.; Nasri, K. & Kuo, S. (2008). Intel AVX: New frontiers in
performance improvements and Energy Efficiency. Intel White paper

Gotoh, O. (1982). An improved algorithm for matching biological sequences. Journal of
Molecular biology, vol. 162, no. 3, pp. 705-708

Gpu .(2009). http://gpgpu.org
Green, P. (1996). SWAT Optimization, www.phrap.org/phredphrap/swat.html
Guerdoux-Jamet, P. & Lavenier, D. (1997). SAMBA: hardware accelerator for biological

sequence comparison, Bioinformatics, vol. 13, no. 6, pp. 609-615.
Han, T. & Parameswaran, S. (2002). Swasad: An Asic Design For High Speed Dna Sequence

Matching, Proceedings of the 2002 Conference on Asia South Pacific Design
automation/VLSI Design, January 07–11, Bangalore, India

Hoang, D. (1993). Searching genetic databases on SPLASH2, IEEE Workshop on FPGAs for
Custom Computing Machines, pp. 185-191, Napa, California

Lavenier, D. & Giraud, M. (2005). Bioinformatcs Applications, in Reconfigurable Computing:
Accelerating Computation with Field-Programmable Gate Arrays, Gokhale, M. & P.S.
Graham P. editor, chapter 9, Springer, ISBN 0-387-26105-2

Liolios, K. et al. (2008). The Genomes On Line Database (GOLD) in 2007: status of genomic
and metagenomic projects and their associated metadata, Nucl. Acids Res., vol. 36,
database issue, pp. 475-479

Li, IT.; Shum, W. & Truong, K. (2007). 160-fold acceleration of the Smith-Waterman
algorithm using a field programmable gate array (FPGA). BMC Bioinformatics. vol.
8, no. 185

Ligowski, L. & Rudnicki, W. (2009). An efficient implementation of the Smith-Waterman
algorithm on GPU using CUDA for massively parallel scanning of sequence
databases, HiComb 2009: Eighth IEEE International Workshop on High Performance
Computational Biology, Rome, Italy

Liu, Y.; Huang, W.; Johnson, j; & Vaidya, S. (2006). GPU Accelerated Smith-Waterman,
General Purpose Computation on Graphics Hardware (GPGPU): Methods, Algorithms and
Applications, LNCS, vol. 3994, pp. 188-195, ISSN 0302-9743

Liu, W.; Schmidt, B.; Voss, G.; Muller-Wittig, W., (2007). Streaming Algorithms for
Biological Sequence Alignment on GPUs, Parallel and Distributed Systems, IEEE
Transactions on Parallel and Distributed Systems , vol. 18, no. 9, pp. 1270-1281

Liu, Y.; Maskell, D. & Schmidt, B. (2009). CUDASW++: Optimizing Smith-Waterman
sequence database searches for CUDA-enabled graphics processing units, BMC
Research Notes, vol. 2 no. 73

Lopresti, D. (1987). P-NAC: A Systolic Array for Comparing Nucleic Acid Sequences.
Computer, vol. 20, no. 7, pp. 98-99

Manavski A. & Valle, G. (2008). CUDA compatible GPU cards as efficient hardware
accelerators for Smith-Waterman sequence alignment, BMC Bioinformatics, vol. 9,
no. 10.

Needleman , S. & Wunsch, C. (1970). A general method applicable to the search for
similarities in the amino acid sequence of two proteins, J. Mol Biol., vol. 48, no. 3,
pp. 443–53

Nguyen, V. ; Cornu, A. & Lavenier, D. (2009). Implementing Protein Seed-Based
Comparison Algorithm on the SGI RASC-100 platform, 16th Reconfigurable
Architectures Workshop, May 25-26, Rome, Italy

Nguyen, V. & Lavenier, D. (2008) Fine-grained parallelization of similarity search between
protein sequences, INRIA Report, (RR-6513)

Pearson, W. & Lipman, D. (1988) Improved tools for biological sequence comparison. Proc.
National Academy of Science, vol. 85, no. 8, pp. 2444–2448

Pfeiffer G,; Kreft H. & Schimmler, M. (2005) Hardware Enhanced Biosequence Alignment,
International Conference on METMBS’05, Monte Carlo Resort, Las Vegas, Nevada,
USA

Pop,M.; Salzberg, S. & Shumway, M. (2002). Genome Sequence Assembly:Algorithms and
Issues, Computer, vol. 35, no. 7, pp. 47-54

Puttegowda, K.; Worek, W.; Pappas, N.; Dandapani, A.; Athanas, P. & Dickerman, A. (2003).
A Run-Time Reconfigurable System for Gene-Sequence Searching, Proceedings of the
16th international Conference on VLSI Design, January 04 - 08, New Delhi, India

www.intechopen.com

Parallel and Distributed Computing290

Rognes, T., Seeberg, E. (2000). Six-fold speed-up of Smith-Waterman sequence database
searches using parallel processing on common microprocessors, Bioinformatics, vol.
16, no. 8, pp. 699–706

Shendure, J. & Hanlee, J. (2008). Next-generation DNA sequencing, Nature Biotechnology, vol.
26, no. 10, pp.1135-1145

Smith, T. & Waterman, M. (1981). Identification of common molecular subsequences. Journal
of Molecular Biology, vol. 147, no .1, pp. 195–197

Szalkowski A.; Ledergerber, C.; Krähenbühl, P. & Dessimoz C. (2008). SWP3 – fast multi-
threaded vectorized Smith-Waterman for IBM Cell/BE and x86/SSE2, BMC
Research notes, vol. 1, no. 107

White, C.; Singh, R.; Reintjes, P.; Lampe, J.; Erickson, B.; Dettloff, W.; Chi, V. & Altschul, S.
(1991). BioSCAN: A VLSI-Based System for Biosequence Analysis, IEEE
International Conference on Computer Design: VLSI in Computer & Processors, pp. 504-
509, October 14 – 16, Cambridge, Massachusetts, USA

Wozniak, A. (1997). Using video-oriented instructions to speed up sequence comparison,
Comput Appl Biosci., vol.13, no. 2, pp. 145–50.

Yamaguchi, Y.; Marumaya, T. & Konagaya, A. (2002). High speed homology search with
FPGAs, Pacific Symposium on Biocomputing, pp. 271–282, Lihue, Hawaii

Yu C.; Kwon K. ; Lee K. & Leong P. (2003). A Smith-Waterman systolic cell, 13 th
International conference on field-programmable logic and applications, Lisbon , Portugal

www.intechopen.com

Parallel and Distributed Computing

Edited by Alberto Ros

ISBN 978-953-307-057-5

Hard cover, 290 pages

Publisher InTech

Published online 01, January, 2010

Published in print edition January, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The 14 chapters presented in this book cover a wide variety of representative works ranging from hardware

design to application development. Particularly, the topics that are addressed are programmable and

reconfigurable devices and systems, dependability of GPUs (General Purpose Units), network topologies,

cache coherence protocols, resource allocation, scheduling algorithms, peertopeer networks, largescale

network simulation, and parallel routines and algorithms. In this way, the articles included in this book

constitute an excellent reference for engineers and researchers who have particular interests in each of these

topics in parallel and distributed computing.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Dominique Lavenier (2010). Fine-Grained Parallel Genomic Sequence Comparison, Parallel and Distributed

Computing, Alberto Ros (Ed.), ISBN: 978-953-307-057-5, InTech, Available from:

http://www.intechopen.com/books/parallel-and-distributed-computing/fine-grained-parallel-genomic-sequence-

comparison

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

