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1. Introduction 
 

In the research field of natural language understanding, sentence stands a very prominent 
position in text processing.  The process of sentence understanding involves computing the 
meaning of a sentence based on analysis of meanings of its individual words. Research 
procedures in sentence understanding examine the representations and processes that 
connect the identification of individual words in text reading (Culter, 1995; Balota, 1994) 
with mapping sentence meanings to relevant mental models (Johnson-Laird, 1983) or 
discourse representations (Kintsch, 1988; van Eijck & Kamp, 1997). 
The task of sentence understanding includes two stages, sentence parsing and semantic 
processing. Sentence parsing resides in the fundamental level, while semantic 
understanding involves lexcial and higher discourse analysis.  Sentence understanding has 
compact connections with human cognition, thus this chaper will introduce how cognitive 
models are integrated, with machine learning algorithms (or models), into the procedures of 
sentence parsing and semantic processing.  

 
2. Statistical Learning Review 
 

Over the past decade, statistical learning, a means to discover hidden structures or patterns 
by analyzing statistical properties of the input, has emerged a general candidate mechanism 
by which a wide range of linguistic experience can be acquired (Saffran, 2003).  
Statistical learning, as a type of implicit learning, has been demonstrated across a variety of 
natural and artificial language learning situations, including learning of information that is 
potentially highly relevant to sentence comprehension processes, such as using function 
words to delineate phrases (Green, 1979), integrating prosodic and morphological cues in 
the learning of phrase structure (Morgan et al., 1987), parsing each natural language 
sentence (Charniak, 1997) to a hierarchical structure which presents how words hookup 
together to form constituents, discovering phonological and distributional cues to lexical 
categories (Monaghan et al., 2005), locating syntactic phrase boundaries (Saffran, 2001; 
2003), and detecting long-distance relationships between words (Gómez, 2002; Onnis et al., 
2003).  
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Misyak & Christiansen (2007) revealed that statistical learning ability was a stronger 
predictor of relative clause comprehension than the reading span measure, and suggested 
that statistical learning may play a strong role in the accumulation of linguistic experience 
relevant for sentence processing.  
Moreover, within natural language comprehension and production studies, there is clear 
evidence that prior experience of a given syntactic structure affects (1) comprehension of 
similar structures and (2) the probability that a speaker will utter a sentence with the same 
or similar structure, even when there is no meaning overlap between sentences (Ferreira & 
Bock, 2006).  
Syntactic priming has been described as stemming from statistical learning at the syntactic 
level (Bock & Griffin, 2000; Chang et al., 2006) or at the syntactic–semantic interface (Chang 
et al., 2003), which can be viewed as examples of statistical learning of information relevant 
to sentence processing.  
Above research works have testified the significance of statistical learning for natural 
language processing, including sentence comprehension, and also explicitly pointed out the 
performance bottlenecks (Monaghan et al., 2005; Dell & Bock, 2006; Misyak & Christiansen, 
2007) of statistical processing technologies. Since human, rather than the computer software 
and hardware, is the core subject to process and understand natural language, it is essential 
to survey pivotal research works regarding human cognition.  

 
3. Cognitive Concepts Highlight 
 

Sentences convey not only lexico-semantic information for each word, but sentence meaning 
based on syntactic structures (Townsend & Bever, 2001; Friederici, 2002), which has 
elucidated the importance of syntactic structures for sentences.  
Recursion is a unique human component of the faculty of language (Hauser et al., 2002), 
which is also known as the property of discrete infinity, the ability to generate an infinite 
range of discrete expressions from a finite set of elements. Sentences are indeed such infinite 
expressions generated from a limited set of words, signs, or letters; and syntactic 
mechanisms (Chomsky, 2000) have been applied to instantiate this property. 
Thus, the processing of syntactic structures plays a critical role in the selective integration of 
lexico-semantic information into sentence meaning. Syntactic analyses are performed in the 
service of semantics, and sentence meaning is derived from syntactic analyses of the 
sentence structures. 
As mentioned before, the procedure of sentence understanding includes sentence parsing at 
a fundamental level, and semantic understanding at lexcial and higher discourse analysis. 
This section will highlight several cognitive concepts regarding sentence parsing and 
emantic understanding. 

 
3.1 Syntax-First and Interactive Models 
How human beings parse sentences, especially for syntactically ambiguous sentences, has 
been a long-history cognitive research topic attracting research efforts for decades in the 
field of cognitive psychology.  In cognitive psychology, behavioristic experiments have been 
popularly implemented to explore the sentence-analyzing mechanism, which is also called 
“parser”, especially in the case that human beings cannot automatically constitute the 
meaning of a sentence.  

  

 

With respect to syntactic and semantic processing in sentence comprehension, two main 
classes of cognitive models have been proposed to account for the behavioral data: Syntax-
First and Interactive models.  
Syntax-First models (Fodor, 1983; Frazier & Fodor, 1978; Kako & Wagner, 2001) claims that, 
(1) syntax plays the main part whereas semantics is only a supporting role, (2) the parser 
initially builds a syntactic structure based on word category information, which is 
independent from lexical or semantic information, and (3) thematic role assignment takes 
place during a second stage. If the initial syntactic structure cannot be mapped onto the 
thematic structure, the final stage will require a re-analysis.  
Interactive models (Bates & Mac-Whinney, 1987; MacDonald et al., 1994; Marslen-Wislon & 
Tyler, 1980; Taraban & McClelland, 1988) state that syntactic and semantic processes 
actually interact with each other at an early stage, and both syntax and semantics work 
together to determine the meaning of a sentence. Despite the agreement that syntactic and 
semantic information has to be integrated within a short period of time, the two model 
classes differ in their views on the temporal structure of the integration processes. 
Syntax and semantics are two indispensable properties of sentences. The eye-tracking 
studies (Tanenhaus & Trueswell, 1995) have supported the conclusion that syntax and 
semantics interact during parsing, which denotes that meaning affects early processing. 
These behavioristic experiments have convinced that the interactionist approach (Trueswell 
et al., 1994) is rational and effective to simulate human parsing and semantic understanding 
mechanism. 

 
3.2 The Garden Path Model and Alternatives  
Theories of sentence processing have illustrated various perspectives on when 
comprehenders initiate semantic interpretation of an incoming word. One of the most 
prominent and influential models of sentence processing is the garden path model (Ferreira 
& Clifton, 1986; Frazier & Rayner, 1982; Rayner et al., 1983), which states that semantic 
interpretation generally followes the construction of a syntactic analysis.  
The syntactic analysis applies appropriate syntactic parsing strategy together with 
information of major syntactic category (e.g. noun, verb, adjective, etc.) of incoming words. 
Semantic interpretation can proceed after he construction of a syntactic analysis. The strict 
temporal ordering of syntactic analysis and semantic interpretation produce the fact that 
semantic information cannot influence the construction of a syntactic analysis. The effects of 
semantic information observed during the resolution of syntactic ambiguity have been 
interpreted as reflecting processes occurring after an initial syntactic analysis (Ferreira & 
Clifton, 1986; Kennison, 2001; Speer & Clifton, 1998). 
From the perspective of the garden path theory, the results of the present research can be 
viewed as supporting the claim that certain aspects of high-level integrative semantic 
processing for an incoming word occur only after the comprehender determines the word’s 
syntactic analysis.  
The most prominent alternatives to the garden path model include interactive and 
constraint-based approaches to sentence processing. These approaches stated that language 
comprehension can be achieved through highly interactive and parallel processing 
(MacDonald et al., 1994; Sedivy et al., 1999; Tanenhaus et al., 1995; Taraban & McClelland, 
1988; Trueswell & Tanenhaus, 1994; Trueswell et al., 1993). Word-specific (lexical) 
information will produce candidate syntactic frames, which are activated in parallel. 
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Thus, the processing of syntactic structures plays a critical role in the selective integration of 
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As mentioned before, the procedure of sentence understanding includes sentence parsing at 
a fundamental level, and semantic understanding at lexcial and higher discourse analysis. 
This section will highlight several cognitive concepts regarding sentence parsing and 
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been a long-history cognitive research topic attracting research efforts for decades in the 
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popularly implemented to explore the sentence-analyzing mechanism, which is also called 
“parser”, especially in the case that human beings cannot automatically constitute the 
meaning of a sentence.  
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place during a second stage. If the initial syntactic structure cannot be mapped onto the 
thematic structure, the final stage will require a re-analysis.  
Interactive models (Bates & Mac-Whinney, 1987; MacDonald et al., 1994; Marslen-Wislon & 
Tyler, 1980; Taraban & McClelland, 1988) state that syntactic and semantic processes 
actually interact with each other at an early stage, and both syntax and semantics work 
together to determine the meaning of a sentence. Despite the agreement that syntactic and 
semantic information has to be integrated within a short period of time, the two model 
classes differ in their views on the temporal structure of the integration processes. 
Syntax and semantics are two indispensable properties of sentences. The eye-tracking 
studies (Tanenhaus & Trueswell, 1995) have supported the conclusion that syntax and 
semantics interact during parsing, which denotes that meaning affects early processing. 
These behavioristic experiments have convinced that the interactionist approach (Trueswell 
et al., 1994) is rational and effective to simulate human parsing and semantic understanding 
mechanism. 

 
3.2 The Garden Path Model and Alternatives  
Theories of sentence processing have illustrated various perspectives on when 
comprehenders initiate semantic interpretation of an incoming word. One of the most 
prominent and influential models of sentence processing is the garden path model (Ferreira 
& Clifton, 1986; Frazier & Rayner, 1982; Rayner et al., 1983), which states that semantic 
interpretation generally followes the construction of a syntactic analysis.  
The syntactic analysis applies appropriate syntactic parsing strategy together with 
information of major syntactic category (e.g. noun, verb, adjective, etc.) of incoming words. 
Semantic interpretation can proceed after he construction of a syntactic analysis. The strict 
temporal ordering of syntactic analysis and semantic interpretation produce the fact that 
semantic information cannot influence the construction of a syntactic analysis. The effects of 
semantic information observed during the resolution of syntactic ambiguity have been 
interpreted as reflecting processes occurring after an initial syntactic analysis (Ferreira & 
Clifton, 1986; Kennison, 2001; Speer & Clifton, 1998). 
From the perspective of the garden path theory, the results of the present research can be 
viewed as supporting the claim that certain aspects of high-level integrative semantic 
processing for an incoming word occur only after the comprehender determines the word’s 
syntactic analysis.  
The most prominent alternatives to the garden path model include interactive and 
constraint-based approaches to sentence processing. These approaches stated that language 
comprehension can be achieved through highly interactive and parallel processing 
(MacDonald et al., 1994; Sedivy et al., 1999; Tanenhaus et al., 1995; Taraban & McClelland, 
1988; Trueswell & Tanenhaus, 1994; Trueswell et al., 1993). Word-specific (lexical) 
information will produce candidate syntactic frames, which are activated in parallel. 
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Although semantic interpretations are constructed upon syntactic frames (MacDonald et al., 
1994), semantic information can influence the activation of syntactic frames. As a 
consequence, syntactic and semantic analysis may influence each other. 

 
3.3 The Brain-Based Model 
In the brain-based model (Friederici, 2002), language comprehension is divided into three 
functionally and temporally separable processing steps: (1) initial local structure building in 
the first phase; (2) lexical-semantic and thematic processes in the second phase; and (3) 
syntactic integration and revision in the third phase. For an integrative view of language 
processing, recent brain image research (Friederici & Kotz, 2003) provides support evidence 
that syntax-first aspects take place in an early time window and the interactive aspects 
happen in a later time window.  

 
3.4 Working Memory and Semantic Memory 
An early study (Fodor, 1983) of sentence understanding hypothesized a cognitive 
architecture focusing on a component building grammatical structures of sentence 
processing. Later research works (Caplan & Waters, 1999; Gibson, 1998; Just & Carpenter, 
1992; Zurif et al., 1995) involve various executive resources facilitating sentence processing, 
such as working memory (WM), which contains specific sentence features and acts as 
temporary storage for phrasal information manipulation during the processing of long-
distance syntactic dependencies in a sentence. During the course of sentence processing, 
working memory may help maintain, in a linear or non-linear manner, crucial components 
of a sentence in an active state until the correct grammatical relationships are established 
(Lewis et al., 2006). 
Tulving (1972) first introduced semantic memory (SM), which refers to the general 
knowledge of concepts and facts, including word meaning, and involves encoding and 
retrieval of information in multiple domains (Hart et al., 2007). The essence of semantic 
memory is that contents are not statically bound to any particular instance of experience as 
in episodic memory. Instead, semantic memory stores is the gist of experience, an abstract 
structure applicable to a wide range of experiential objects, and delineates categorical and 
functional relationships between such objects. 

 
4. Simple Recurrent Networks (SRNs) 
 

Hadley (1994) proposed that systematic behavior is a matter of learning and generalization; 
thus, a neural network trained on a limited number of sentences should to be able to process 
all possible sentences in a generalize manner. Moreover, since people learn systematic 
language behavior from exposure to only a small fraction of possible sentences, a neural 
network should similarly be able to learn from a relatively small proportion of possible 
sentences, if it is to be considered cognitively plausible.  
Simple Recurrent Networks (SRNs) (Elman, 1991) has been widely applied in basic 
connectionist approaches (parallel distributed processing) for language learning. SRN has 
been implemented to employ the functions of working memory (MacDonald et al., 2001; 
MacDonald & Christiansen, 2002). 

  

 

The SRN architecture (as illustrated in Fig. 1.) includes the activations from the recurrent 
layer (RL, the hidden layer) as the context layer (CL) in the input layer (IL), aiming at 
processing inputs that consist of sequences of patterns of variable length. This architecture 
allows the network to include information connected with all the previous steps in a 
sequence in its processing of the current stage. The architecture will remember what has 
gone before, forgetting gradually as it progresses through the sequence.  
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Fig.1. Architecture of Simple Recurrent Networks 
 

Symbols Definition 
IU A unit of input layer 
RU A unit of recurrent layer 
CU A unit of context layer 
OU A unit of output layer 
|I| The number of units in IL 
|R| The number of units in RL 
|C| The number of units in CL 
|O| The number of units in OL 
WRI The weight vector from IL to RL 
WRC The weight vector from CL to RL 
WOR The weight vector from RL to OL 

Table 1. Definition of SRN Symbols 
 
Symbols in Fig. 1. are defined in table 1: the first order weight matrices WRI and WOR fully 
connect the units of the input layer (IL) , the recurrent layer (RL) and the output layer (OL) 
respectively, as in the feed forward multilayer perceptron (MLP). The current activities of 
recurrent units RU(t) are fed back through time delay connections to the context layer, which 
is presented as CU(t+1) = RU(t).   
Therefore, each unit in recurrent layer is fed by activities of all recurrent units from previous 
time step through recurrent weight matrix WRC. The context layer, which is composed with 
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activities of recurrent units from previous time step, can be viewed as an extension of input 
layer to the recurrent layer. Above working procedure represents the memory of the 
network via holding contextual information from previous time steps. 
The weight matrices RIW , RCW and ORW  are presented as equations (1) to (3) 
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Here, the activation function f applies the logistic sigmoid function (Eq. 8). 
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5. Cognitive Learning with Machine 
 

Most current cognitive models of language processing agree that sentence comprehension 
involves different types of constraints (Jackendoff, 2002) in which syntactic and semantic 
(conceptual) information deserve the most salient consideration.  
From one point of view, separable, independent but partly sequential processes construct 
distinct syntactic and semantic representations of a sentence (Berwick & Weinberg, 1984; 
Ferreira & Clifton, 1986). The opposed view is that syntactic and semantic constraints 
directly and simultaneously interact with each other at the message-level representation of 
the input (Johnson-Laird, 1983; Marslen-Wilson & Tyler, 1987; McClelland et al., 1989).  
There also exist other proposals in between above fully independent and fully interactive 
models. Frazier (1987) suggests that syntactic analysis is autonomous and independent from 
semantic variables in initial stage(s), but is affected by semantic variables at later stage(s); in 
the contrary, syntactic analysis can influence semantic integration from the very beginning 
of processing. Meanwhile, Trueswell et al., (1994) claims that semantic information affects 
and leads syntactic analysis of the utterance in an immediate and direct mannner.  
Abve and several other diverging proposals can be testified by using event-related brain 
potentials (ERPs), measurements of brain activity, which are elicited during the process of 
sentence comprehension. Different reliable ERP components have been employed to prove 
the distinction between the processing of syntactic and semantic information during 
sentence understanding. The extent and type of interaction of ERPs are taken as evidence for 
the interplay occurring between syntactic and semantic analyses during sentence 
comprehension. 
     This section will focus on how syntactic parsing and semantic processing are 
implemented with sentence processing machinery. 

 
5.1 Sentence Parsing 
The processing of syntactic structures plays a critical role in the selective integration of 
lexico-semantic information into sentence meaning. Syntactic analyses are performed in the 
service of semantics, and sentence meaning is derived from syntactic analyses of the 
sentence structures. 
As discussed in section 3.1, the behavior experiments proved that semantics and syntax 
work together in sentence parsing to clarify the meaning. As a conclusion, semantics should 
be assigned an equal prominent role as syntax to improve parsing results. Thus, how to 
incorporate semantics with syntax simultaneously is the dominant challenge in sentence 
parsing. 
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Here, the activation function f applies the logistic sigmoid function (Eq. 8). 
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5. Cognitive Learning with Machine 
 

Most current cognitive models of language processing agree that sentence comprehension 
involves different types of constraints (Jackendoff, 2002) in which syntactic and semantic 
(conceptual) information deserve the most salient consideration.  
From one point of view, separable, independent but partly sequential processes construct 
distinct syntactic and semantic representations of a sentence (Berwick & Weinberg, 1984; 
Ferreira & Clifton, 1986). The opposed view is that syntactic and semantic constraints 
directly and simultaneously interact with each other at the message-level representation of 
the input (Johnson-Laird, 1983; Marslen-Wilson & Tyler, 1987; McClelland et al., 1989).  
There also exist other proposals in between above fully independent and fully interactive 
models. Frazier (1987) suggests that syntactic analysis is autonomous and independent from 
semantic variables in initial stage(s), but is affected by semantic variables at later stage(s); in 
the contrary, syntactic analysis can influence semantic integration from the very beginning 
of processing. Meanwhile, Trueswell et al., (1994) claims that semantic information affects 
and leads syntactic analysis of the utterance in an immediate and direct mannner.  
Abve and several other diverging proposals can be testified by using event-related brain 
potentials (ERPs), measurements of brain activity, which are elicited during the process of 
sentence comprehension. Different reliable ERP components have been employed to prove 
the distinction between the processing of syntactic and semantic information during 
sentence understanding. The extent and type of interaction of ERPs are taken as evidence for 
the interplay occurring between syntactic and semantic analyses during sentence 
comprehension. 
     This section will focus on how syntactic parsing and semantic processing are 
implemented with sentence processing machinery. 

 
5.1 Sentence Parsing 
The processing of syntactic structures plays a critical role in the selective integration of 
lexico-semantic information into sentence meaning. Syntactic analyses are performed in the 
service of semantics, and sentence meaning is derived from syntactic analyses of the 
sentence structures. 
As discussed in section 3.1, the behavior experiments proved that semantics and syntax 
work together in sentence parsing to clarify the meaning. As a conclusion, semantics should 
be assigned an equal prominent role as syntax to improve parsing results. Thus, how to 
incorporate semantics with syntax simultaneously is the dominant challenge in sentence 
parsing. 
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In recent a few years, the research works of natural language processing (NLP) have strived 
toward the elaboration of huge linguistic dictionaries and ontologies (Knight et al., 1995; 
Miller et al., 1990; Sugumaran & Storey, 2002), even including relations between concepts 
and common sense. The exploitation and implementation of such dictionaries and 
ontologies has fulfilled some understanding requirements. 
Kapetanios et al. (2005) proposed to implement the process of parsing natural language 
queries with an ontology, which preserved extensional semantics, such as domain terms, 
operators and operations. Since the context of terms circumscribed by the real-world 
semantics can be expressed by the ontology, it also will alleviate the semantic parsing. 
Context of terms is defined by the interrelationships expressed with an ontology as well as 
by the intentional meaning expressed with annotations.  
Considering the impacts of linguistic dictionaries and ontologies in NLP, our solution for 
interactionist parsing, CIParser, takes WordNet (Miller et al., 1990) as the linguistic 
dictionary, and designs a corresponding ontology, WNOnto (as defined in Guo & Shao 
(2008)), referring to a W3C working draft (van Assem et al., 2006). Since nouns and verbs are 
more dominant in parsing sentences into phrases, they are the word types deliberately 
chosen for semantical analysis with WordNet. Therefore, the design of WNOnto grounds on 
nouns and verbs, which also benefits time efficiency in machine learning and parsing. 
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Fig. 2. Architecture of CIParser 
 
Based on the architecture of SRN (figure 1), our CIParser is designed as illustrated in Fig. 2. 
The left wing is a classical SRN as described in section 4: all the input units in IL are single 
words from original sentences; the activations from RL of the previous time step produce 
the CL for the current stage; the units of IL and CL respectively multiplying matrices of 

RIW and RCW compose the input of RL; the activations of RL multiplying ORW produce the 
input units of OL in current stage.  
All the grammatical information is implicitly preserved in its pattern of link weights. 
Moreover, there are fewer independence assumptions. The SRN itself decides what to pay 

  

 

attention to and what to ignore. Statistical issues, such as combining multiple estimators or 
smoothing for sparse data, are handled in the training procedure. “One-size-fits-all” is a 
common feature of machine learning techniques. 
The right wing is structurally identical as the left wing, except that the input units in IL 
include not only single words from sentences but also individual ontologies, WordOntos, 
produced according to WNOnto with querying results from WordNet. In another word, 
each input unit of IL is composed with (1) a single word and (2) a corresponding ontology 
(only for a noun or verb). Here, any noun or verb has been appended with its semantical 
information from WordNet in the ontology manner.  
The syntactic structure of a natural language sentence is a hierarchical structure, which 
represents how the words connect together to form constituents, such as phrases and even 
clauses. This structure is normally specified with a constituent-tree, in which the 
constituents are nodes or leaves and the hierarchical structure is denoted with parent-child 
relationships. 
In the final processing phase, “Verification and Adjustment of Parsing Results”, the parsing 
results of left and right wings are verified against each other in case that either wing takes 
too long time to deliver a parsing result. In the case of both wings producing parsing results, 
we have followed a selection rule that the tree containing more constituents wins, which has 
been strictly followed in later experiments. The application of phrases to identify structural 
constituents in our CIParser also offers the competence to generalize machine learned 
information across structural constituents. 
As we know that (1) people has language processing constraints in constructions, such as 
center embedding (Chomsky, 1959), and (2) people can only activate a limited number of 
information units in memory at any one time (Miller, 1956), we introduced working 
memory (Baddeley & Susan, 2006) into our CIParser.  Baddeley et al. (2006) defined working 
memory as a limited capacity system for temporary storage and manipulation of 
information for complex tasks such as comprehension, learning and reasoning.  In this paper, 
we add the storage task of working memory to our CIParser to simulate human processing 
features. 
The nature of SRN decides that each new input, a word or/and its ontology, of the network, 
will also be input of the network in a new state, which indicates that information is 
computed through all of these states in every subsequent time period. However, the 
constraints on the depth of center embedding (Chomsky, 1959) implies that a limited 
number of these states will be referred to by following parts of the constituent-tree in any 
given time period.  
In CIParser, we construct a queue with limited length to simulate the active units in human 
memory. When the SRNs arrive at a new state, this state will be queued from head to tail. 
When a new state comes to the queue fully filled with previous network states, the oldest 
state leaves the queue at tail and the new one enters the head. This queue mechanism 
presents that, when the number of states exceeds the queue length, the oldest state will be 
forgotten. This mechanism also helps the CIParser to focus on active states and to achieve 
precise computing results efficiently.  
Guo & Shao (2008) has designed and constructed experiments for training and examining 
CIParser in sentence parsing. The experiments demonstrate that the SRN-based CIParser 
may be used for connectionist language learning with structured output representations. 
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In recent a few years, the research works of natural language processing (NLP) have strived 
toward the elaboration of huge linguistic dictionaries and ontologies (Knight et al., 1995; 
Miller et al., 1990; Sugumaran & Storey, 2002), even including relations between concepts 
and common sense. The exploitation and implementation of such dictionaries and 
ontologies has fulfilled some understanding requirements. 
Kapetanios et al. (2005) proposed to implement the process of parsing natural language 
queries with an ontology, which preserved extensional semantics, such as domain terms, 
operators and operations. Since the context of terms circumscribed by the real-world 
semantics can be expressed by the ontology, it also will alleviate the semantic parsing. 
Context of terms is defined by the interrelationships expressed with an ontology as well as 
by the intentional meaning expressed with annotations.  
Considering the impacts of linguistic dictionaries and ontologies in NLP, our solution for 
interactionist parsing, CIParser, takes WordNet (Miller et al., 1990) as the linguistic 
dictionary, and designs a corresponding ontology, WNOnto (as defined in Guo & Shao 
(2008)), referring to a W3C working draft (van Assem et al., 2006). Since nouns and verbs are 
more dominant in parsing sentences into phrases, they are the word types deliberately 
chosen for semantical analysis with WordNet. Therefore, the design of WNOnto grounds on 
nouns and verbs, which also benefits time efficiency in machine learning and parsing. 
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attention to and what to ignore. Statistical issues, such as combining multiple estimators or 
smoothing for sparse data, are handled in the training procedure. “One-size-fits-all” is a 
common feature of machine learning techniques. 
The right wing is structurally identical as the left wing, except that the input units in IL 
include not only single words from sentences but also individual ontologies, WordOntos, 
produced according to WNOnto with querying results from WordNet. In another word, 
each input unit of IL is composed with (1) a single word and (2) a corresponding ontology 
(only for a noun or verb). Here, any noun or verb has been appended with its semantical 
information from WordNet in the ontology manner.  
The syntactic structure of a natural language sentence is a hierarchical structure, which 
represents how the words connect together to form constituents, such as phrases and even 
clauses. This structure is normally specified with a constituent-tree, in which the 
constituents are nodes or leaves and the hierarchical structure is denoted with parent-child 
relationships. 
In the final processing phase, “Verification and Adjustment of Parsing Results”, the parsing 
results of left and right wings are verified against each other in case that either wing takes 
too long time to deliver a parsing result. In the case of both wings producing parsing results, 
we have followed a selection rule that the tree containing more constituents wins, which has 
been strictly followed in later experiments. The application of phrases to identify structural 
constituents in our CIParser also offers the competence to generalize machine learned 
information across structural constituents. 
As we know that (1) people has language processing constraints in constructions, such as 
center embedding (Chomsky, 1959), and (2) people can only activate a limited number of 
information units in memory at any one time (Miller, 1956), we introduced working 
memory (Baddeley & Susan, 2006) into our CIParser.  Baddeley et al. (2006) defined working 
memory as a limited capacity system for temporary storage and manipulation of 
information for complex tasks such as comprehension, learning and reasoning.  In this paper, 
we add the storage task of working memory to our CIParser to simulate human processing 
features. 
The nature of SRN decides that each new input, a word or/and its ontology, of the network, 
will also be input of the network in a new state, which indicates that information is 
computed through all of these states in every subsequent time period. However, the 
constraints on the depth of center embedding (Chomsky, 1959) implies that a limited 
number of these states will be referred to by following parts of the constituent-tree in any 
given time period.  
In CIParser, we construct a queue with limited length to simulate the active units in human 
memory. When the SRNs arrive at a new state, this state will be queued from head to tail. 
When a new state comes to the queue fully filled with previous network states, the oldest 
state leaves the queue at tail and the new one enters the head. This queue mechanism 
presents that, when the number of states exceeds the queue length, the oldest state will be 
forgotten. This mechanism also helps the CIParser to focus on active states and to achieve 
precise computing results efficiently.  
Guo & Shao (2008) has designed and constructed experiments for training and examining 
CIParser in sentence parsing. The experiments demonstrate that the SRN-based CIParser 
may be used for connectionist language learning with structured output representations. 
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The performance of CIParser is evaluated in terms of traditional measures, Precision and 
Recall of constituents with the famous SUSANNE Corpus.  
The experimental results demonstrate that the CIParser has comparability with the state-of-
the-art parsing techniques based on statistical language learning. Guo & Shao (2008) also 
pointed out that (1) thinking of the parsing efficiency, only the semantic information of 
nouns and verbs are considered in current stage; (2) involving other word types (e.g. adverb 
and adjective) will be future research efforts.  

 
5.2 Semantic Processing 
As we know, several knowledge repositories, e.g. WordNet (Miller et al., 1990) and Cyc 
(Lenat, 2006), have been developed to support programs (or agents) to increase the 
intelligence of specified tasks. Meanwhile, other existing repositories are domain dependent 
and only represent information about certain aspects of the domains. 
WordNet, as a linguistic repository, does not have the capability to capture the semantic 
relationships or integrity constraints between concepts. As linguistic repositories lack 
semantic knowledge, query expansion cannot deal with several issues: (1) knowledge 
related to the domain of the query, (2) common sense inferences, or (3) the semantic 
relationships in which the concepts of the query can participate. 
The Cyc ontology is a semantic repository developed to capture and represent common 
sense, but can not represent linguistic relationships of the concepts (e.g. whether two 
concepts are synonyms). Semantic repositories need linguistic knowledge to identify 
relevant concepts from the repository that represent a given term used in the query. Thus, a 
semantic repository, as Cyc, can be extended with linguistic information from the WordNet 
lexicon, and factual information from the World Wide Web. 
In section 5.1, we have illustrated a model for sentence parsing, and we will construct 
another model (as Fig. 3.) for semantic processing in this section. In order to implement 
semantic processing in sentence understanding, we have to consider semantic repositories 
to represent semantic information; the integration of linguistic and semantic information 
could be useful to increase the contexts where knowledge in these repositories can be used 
successfully. 
In step one, each original sentence will be first processed by CIParser to obtain a 
corresponding syntactic structure, e.g. a constituent tree.  In step two, as the sentence is 
processed word by word, open and closed class words are segregated into distinct 
processing streams. The Grammatical Relations Mapping module will integrate constituent 
information for each word or phrase with strict mapping operations.  In step three, the 
Linguistic Relations Construction module constructs linguistic relationships (e.g. synonyms, 
antonyms, hypernyms, and hyponyms) of the concepts in a sentence with referent provided 
by WordNet. In step four, the Semantic Relations Construction module captures the 
semantic relationships or integrity constraints between concepts, so as to successfully deal 
with domain knowledge and common sense inferences. Finally, in step five, all the 
structured data (instances of ontolgy in XML format) from previous processing steps are 
used to fulfill the appropriate components of the meaning structure, the Sentence-Meaning 
Construction Index (SMCI). Obviously, SMCI contains four types, lexical, syntactic, 
grammatical and semantic (or conceptual) of information. 
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Fig. 3. A Computing Model of Semantic Processing for Sentence Understanding 
 
The above model is able to store and retrieve different sentence-meaning construction 
appropriate for different sentences. The requirement is that each individual sentence should 
yield a unique construction index. The construction indices are used in a working memory 
or an associative memory to store and retrieve the correct sentence-meaning construction 
index. 

 
6. Conclusion  
 

This chaper starts with a review of classical and traditional statistical learning approaches. 
As sentence understanding has latent compact connections with human cognition, this 
chaper also highlights relevant cognitive concepts or models in sentence understanding 
domain. Afterwards, this chapter described the completion of sentence understanding task 
from two aspects, sentence parsing and semantic processing, and how cognitive models are 
integrated, with machine learning algorithms (or models), into the procedures of sentence 
parsing and semantic processing.  
The CIParser has been evaluated and proven comparablr with the state-of-the-art parsing 
techniques based on statistical language learning. Another computing model of Semantic 
Processing for Sentence Understanding (Fig. 3.) also has been constructed to deliver 
Sentence-Meaning Construction Index (SMCI) for each sentence. With SMCI, a sentence can 
be understood in four dimensions, which are lexical, syntactic, grammatical and semantic 
(or conceptual) dimensions. 
Cognitive learning with machines for sentence understanding has just started with minor 
productions, in which our works took SRNs as an initial model of artificial neural networks.  
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The performance of CIParser is evaluated in terms of traditional measures, Precision and 
Recall of constituents with the famous SUSANNE Corpus.  
The experimental results demonstrate that the CIParser has comparability with the state-of-
the-art parsing techniques based on statistical language learning. Guo & Shao (2008) also 
pointed out that (1) thinking of the parsing efficiency, only the semantic information of 
nouns and verbs are considered in current stage; (2) involving other word types (e.g. adverb 
and adjective) will be future research efforts.  
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(Lenat, 2006), have been developed to support programs (or agents) to increase the 
intelligence of specified tasks. Meanwhile, other existing repositories are domain dependent 
and only represent information about certain aspects of the domains. 
WordNet, as a linguistic repository, does not have the capability to capture the semantic 
relationships or integrity constraints between concepts. As linguistic repositories lack 
semantic knowledge, query expansion cannot deal with several issues: (1) knowledge 
related to the domain of the query, (2) common sense inferences, or (3) the semantic 
relationships in which the concepts of the query can participate. 
The Cyc ontology is a semantic repository developed to capture and represent common 
sense, but can not represent linguistic relationships of the concepts (e.g. whether two 
concepts are synonyms). Semantic repositories need linguistic knowledge to identify 
relevant concepts from the repository that represent a given term used in the query. Thus, a 
semantic repository, as Cyc, can be extended with linguistic information from the WordNet 
lexicon, and factual information from the World Wide Web. 
In section 5.1, we have illustrated a model for sentence parsing, and we will construct 
another model (as Fig. 3.) for semantic processing in this section. In order to implement 
semantic processing in sentence understanding, we have to consider semantic repositories 
to represent semantic information; the integration of linguistic and semantic information 
could be useful to increase the contexts where knowledge in these repositories can be used 
successfully. 
In step one, each original sentence will be first processed by CIParser to obtain a 
corresponding syntactic structure, e.g. a constituent tree.  In step two, as the sentence is 
processed word by word, open and closed class words are segregated into distinct 
processing streams. The Grammatical Relations Mapping module will integrate constituent 
information for each word or phrase with strict mapping operations.  In step three, the 
Linguistic Relations Construction module constructs linguistic relationships (e.g. synonyms, 
antonyms, hypernyms, and hyponyms) of the concepts in a sentence with referent provided 
by WordNet. In step four, the Semantic Relations Construction module captures the 
semantic relationships or integrity constraints between concepts, so as to successfully deal 
with domain knowledge and common sense inferences. Finally, in step five, all the 
structured data (instances of ontolgy in XML format) from previous processing steps are 
used to fulfill the appropriate components of the meaning structure, the Sentence-Meaning 
Construction Index (SMCI). Obviously, SMCI contains four types, lexical, syntactic, 
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The above model is able to store and retrieve different sentence-meaning construction 
appropriate for different sentences. The requirement is that each individual sentence should 
yield a unique construction index. The construction indices are used in a working memory 
or an associative memory to store and retrieve the correct sentence-meaning construction 
index. 
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As sentence understanding has latent compact connections with human cognition, this 
chaper also highlights relevant cognitive concepts or models in sentence understanding 
domain. Afterwards, this chapter described the completion of sentence understanding task 
from two aspects, sentence parsing and semantic processing, and how cognitive models are 
integrated, with machine learning algorithms (or models), into the procedures of sentence 
parsing and semantic processing.  
The CIParser has been evaluated and proven comparablr with the state-of-the-art parsing 
techniques based on statistical language learning. Another computing model of Semantic 
Processing for Sentence Understanding (Fig. 3.) also has been constructed to deliver 
Sentence-Meaning Construction Index (SMCI) for each sentence. With SMCI, a sentence can 
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(or conceptual) dimensions. 
Cognitive learning with machines for sentence understanding has just started with minor 
productions, in which our works took SRNs as an initial model of artificial neural networks.  
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In an artificial language learning task (next-word prediction), van der Velde et al. (2004) 
evaluated a simple recurrent network (SRN) and claimed that the SRN failed to process 
novel sentences appropriately, for example, by correctly distinguishing between nouns and 
verbs. However, Frank (2006) extended above simulations and showed that, although 
limitations had arisen from overfitting in large networks (van der Velde et al., 2004), an 
identical SRN still can display some generalization performance in the condition that the 
lexicon size was increased properly. Moreover, Frank (2006) demonstrated that 
generalization could be further improved by employing the echo-state network (ESN) 
(Jaeger, 2003), an alternative network that requires less training (due to fixed input and 
recurrent weights) and is less prone to overfitting.  
Recurrent Self-Organizing Networks (RSON) (Farkaš & Crocker, 2006), coupled with two 
types of a single-layer prediction module, had demonstrated salient benefit in learning 
temporal context representations. In the task of next-word prediction, RSON achieved the 
best performance, which turned out to be more robust and faster to train than SRN and 
higher prediction accuracy than ESN. As a conclusiong, further investigation will take ESN 
and RSON as neural network models, and we believe that comparison and evalation works 
among SRNs, ESNs, and RSONs are also venturing and promising directions. 
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