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1. Introduction

The task of classification occurs in a wide range of human activity. The problem concerns
learning a decision rule that allows to assign a pattern to a decision option on the basis of
observed attributes or features. Contexts in which a classification task is fundamental include,
sorting letters on the basis of machine-read postcodes, the preliminary diagnosis of a patient’s
disease or the fraud currency and documents detection. In the classical framework, decision
options are given by the pre-defined classes and a decision rule is designed by optimizing a
given loss function, for instance the misclassification rate.
In some cases, the loss function should be more general.
First, for some applications, like face identification or cancer diagnosis, one may favor with-
holding decision instead of taking a wrong decision. In such cases, the introduction of rejec-
tion options should be considered in order to ensure a higher reliability Ha (1997); Horiuchi
(1998); Jrad, Grall-Maës & Beauseroy (2008); Jrad et al. (2009d). Basic rejection consists of as-
signing a pattern to all classes which means that no decision is taken. More advanced rejection
methods enable to assign a pattern ambiguously to a subset of classes. In this class-selective
rejection scheme, decision options are given by the pre-defined classes as well as by defined
subsets of different combinations among these classes. In order to define a decision rule, a
general loss function can be defined by costs that penalize differently the wrong decisions
and the ambiguous ones.
Some applications may require to control the performance of the decision rule or more specif-
ically, the performance measured by indicators related to the decision rule. These latter could
be formulated as the performance constraints. Hence, the decision problem should also take
into account these constraints. A general formulation of this problem was proposed in Grall-
Maës & Beauseroy (2009). The decision problem is formulated as an optimization problem
with constraints. It was shown that the optimal rule can be obtained by optimizing its La-
grangian dual function which consists of finding the saddle point of this Lagrangian function.
This optimal theoretical rule is applicable when the probability distributions are known. How-
ever, in many applications, only amounts of training set is available. Therefore, one should
infer a classifier from a more or less limited set of training examples. In the classical decision
framework, referred as the classical framework, many historical strands of research can be
identified: statistical, Support Vector Machines, Neural Network Bishop (2006); Guobin & Lu
(2007); Hao & Lin (2007); Husband & Lin (2002); Vapnik (1998); Yang et al. (2007)... In the
class-selective rejection scheme, fewer works have been done Ha (1997); Horiuchi (1998).
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One approach based on ν-1-SVM was proposed in Jrad, Grall-Maës & Beauseroy (2008) and
tested on five cancer genes datasets in Jrad et al. (2009d). A cascade of classifiers with class-
selective rejection learned on different feature sets was used as a good way to provide im-
proved supervised diagnosis. In this chapter, multiclass problem is studied in the general
framework of class-selective rejection subject to constraints. Two approaches are presented
and discussed; a class-modeling approach and a boundary based approach.
The class-modeling approach is defined within the statistical community. It exploits flexible
classes of models to provide an estimate of the joint distribution within each class, which in
turn provides a classification rule. Estimators may be either parametric or not. In the paramet-
ric case, an additional hypothesis about the underlying probability density function should be
made. To illustrate that approach, a parametric estimator, Gaussian Mixture Models (GMM)
Titterington et al. (1985), and a non-parametric estimator, Parzen Windows estimator (PW)
Emanuel (1962), are explored. The proposed approach Jrad et al. (2009c) consists of optimiz-
ing the class-conditional density estimates on the basis of a goodness of fit criterion. The
GMM and PW densities are plugged into the hypothesis tests framework to get the decision
rule associated to the estimates. The decision rule is selected by optimizing the Lagrangian
function.
The boundary based approach is defined in the SVM community. It avoids the estimation
of the complete density functions which is unnecessary since only densities in the neighbor-
hood of borders need to be precisely known. A multiclass support vector machine algorithm
(MSVM), based on ν-1-SVM, is used. The proposed method divides the multiple class problem
into several unary classification problems and train one ν-1-SVM for each class Scholkopf et al.
(2001); Scholkopf & Smola (2001); Tax (2001) coupled with its regularization path Hastie et al.
(2004); Rakotomamonjy & Davy (2007). The winning class or subset of classes is determined
using a prediction function that takes into consideration the different costs. The parameters of
all the ν-1-SVMs are optimized jointly in order to minimize the Lagrangian function. Taking
advantage of the regularization path method, the entire parameters searching space is con-
sidered. Compared to similar approaches Bottou et al. (1994); Hao & Lin (2007); Yang et al.
(2007), since the searching space is widely extended, the selected decision rule is more likely
to be the optimal one. Note that standard multiclass learning strategy is a particular case of
the proposed approaches where the different decision options are given by the pre-defined
classes, the loss function is given by the error rate and no constraint is considered. We will
refer to this case as the classical framework.
The class-conditional approach and the boundary based approach were applied to several
artificial datasets or toy problems. The datasets were constructed such that they differ in
modal complexity and sample size. By using toy problems, the characteristics of the datasets
can be exactly set and the performances of the supervised rule can be deduced by a simple
comparison to the theoretical ones. General comments about the behavior of the different ap-
proaches can be made by analyzing these results. As a final example, the boundary approach
is tested on five well-known cancer genes data sets, LEUKEMIA72 Golub et al. (1999), OVAR-
IAN Welsh et al. (2001), NCI Ross et al. (2000); Scherf et al. (2000), LUNG CANCER Garber
et al. (2001) and LYMPHOMA Alizadeh et al. (2000) in order to study the performance of this
approach on real world datasets.
This chapter is outlined as follows. Paragraph 2 introduces the general framework of mul-
ticlass problems with class-selective rejection and performance constraints. It presents the
optimal solution in the statistical theory framework. After describing the problem, we turn
to an exploration of a supervised solution in the class-modeling framework by exploiting the

2. Classification with class selective rejection and performance constraints

2.1 Multiclass problem
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non-parametric Parzen Windows estimator and the parametric Gaussian Mixture Models in
paragraph 3. The boundary strategy based on ν-1-SVM is presented in paragraph 4. The ef-
ficiency of the latter approach is illustrated through a supervised cancer diagnosis. Results
on the five genes datasets are reported in paragraph 5. The last paragraph discusses and
compares the class-conditional and boundary based approaches.

2. Classification with class selective rejection and performance constraints

This section addresses the problem of multiclass decision with class-selective rejection and
performance constraints. It gives a general framework for specifying such a problem. The
optimal solution is presented in the statistical hypothesis testing framework.

2.1 Multiclass problem
Let us consider a multiclass decision problem with N classes. A given pattern x ∈ ℜd belongs
to the class j noted wj, for j = 1, . . . , N, with the class-conditional probability density function
P(x/wj). Each class is characterized by its a priori probability Pj = P(wj). The uncondi-
tional probability function (mixture density) P(x) and the posterior probabilities P(wj/x) are
provided through the total probability theorem and Bayes’ formula.
The proposed general framework, introduced in Grall-Maës et al. (2006a) and developed in
Grall-Maës & Beauseroy (2009), allows to define a multiclass decision problem subject to per-
formance constraints using three kinds of criteria:

• the decision options: they correspond to the assignment subsets of classes that are
deemed as admissible for the problem. In the class-selective rejection scheme, there are
2N − 1 assignment subsets of classes. They correspond to the possible subsets in a set of
N elements excluding the empty set. They can be referred to ψi with i = 1, . . . , 2N − 1.
For example, assigning a pattern to ψi = {1; 3} means that it is assigned to both classes
w1 and w3 with ambiguity.
Thus, the decision options are defined by the set Ψ composed of only the admissible
subsets of classes ψi:

Ψ = {ψ1, ψ2, . . . , ψI},

where I ≤ 2N − 1 is the number of decision options. Any decision rule Z : ℜd →
[1, 2, . . . , I] is defined such that Z(x) = i when x is assigned to the set ψi.
The probability of deciding that an element of the class j belongs to the set ψi is
P(Di/wj):

P(Di/wj) =
∫
{x|Z(x)=i}

P(x/wj)dx.

• the performance constraints to be satisfied. They are defined by inequalities, each of
them defining a threshold on a linear combination of class conditional decision proba-

bilities. Any performance constraint C(k) where k is a integer between 1 and the number

of constraints K is defined by its expression e(k)(Z) and its threshold γ(k):

C(k) : e(k)(Z) =
I

∑
i=1

N

∑
j=1

α
(k)
i,j PjP(Di/wj) ≤ γ(k) (1)

with e(k)(Z) a linear combination of class conditional decision probabilities, αi,j(k), for
i = 1, . . . , I and j = 1, . . . , N, is the cost of deciding that an element x belongs to the set
ψi when it is assigned to the class j, in the expression of the kth constraint.
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• the average expected loss: it corresponds to the cost function to be minimized. It is also
expressed as a linear combination of class-conditional decision probabilities:

c(Z) =
I

∑
i=1

N

∑
j=1

ci,jPjP(Di/wj), (2)

where ci,j, for i = 1, . . . , I and j = 1, . . . , N, is the cost of deciding to assign an element x
to the set ψi when it belongs to the class j. The values of ci,j are relative since the aim is
to minimize c(Z), thus, without loss of generality, the values are defined in the interval
[0; 1].

In this framework, finding the optimal decision rule consists in determining the decision rule
Z∗ so that the cost c is minimum and the constraints given by equation (1) are satisfied. The
decision problem to be solved is expressed by the following optimization problem:

min
Z

c(Z)

s.t. e(k)(Z) ≤ γ(k) ∀k = 1, . . . , K.

Given this primal problem, the Lagrangian dual problem is defined by:

max
µ∈ℜK+

{min
Z

{L(Z,µ)}} (3)

in which µ = [µ1, µ2, . . . , µK]
T is the vector of Lagrangian multipliers associated with the

constraints and γ = [γ(1), γ(2), . . . , γ(K)]T is the vector of the constraint thresholds and

L(Z,µ) =c(Z) +
K

∑
k=1

µk(e
(k)(Z)− γ(k))

=
I

∑
i=1

N

∑
j=1

(
ci,j +

K

∑
k=1

µkα
(k)
i,j

)
PjP(Di/wj)−

K

∑
k=1

µkγ(k)

(4)

2.2 Theoretical optimal decision rule
According to Grall-Maës & Beauseroy (2009) the optimal objective values of the primal and
dual problems are equal. Thus, solving the dual problem provides the optimal decision rule.
The Lagrangian L(Z,µ) can be rewritten as:

L(Z,µ) =
I

∑
i=1

∫

{x|Z(x)=i}
λi(x,µ)dx −µ

T
γ (5)

where λi(x,µ) is given by:

λi(x,µ) =
N

∑
j=1

PjP(x/wj)
(

ci,j +µ
T
αi,j

)

with αi,j = [α
(1)
i,j , α

(2)
i,j , . . . , α

(K)
i,j ]T. For a given µ the minimum value of L(Z,µ) is obtained

when the integrated expression is minimum, that is by choosing the decision rule Z̃µ so that:

Z̃µ(x) = i if λi(x,µ) < λl(x,µ), ∀i = 1, . . . , I, l = 1, . . . , I, l �= i. (6)

3. Class-modeling approach

3.1 Parzen Windows estimator
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2.2 Theoretical optimal decision rule

The solution of the dual problem (3), which defines the optimal decision rule Z∗ is obtained

with µ
∗ that maximizes L(Z̃µ,µ) as follows:

Z∗ = Z̃µ∗ with µ
∗ given by µ

∗ = arg max
µ∈ℜK+

L(Z̃µ,µ)

Note that the same decision rule could be obtained by minimizing a modified loss function:

cmodi f (Z) = c(Z) +
K

∑
k=1

µ
∗
k (e

(k)(Z)− γ
(k)) = L(Z,µ∗) (7)

If µ∗ is known, the optimal rule Z∗ is obtained by minimizing c(Z) + ∑
K
k=1 µ∗

k e(k)(Z).
A particular case of the stated rule can be given by the non constrained rule for which decision
options are given by the admissible classes and the loss function is defined by the probability
of error. We will refer to this case as the classical case.
In the supervised learning framework, Pj and P(Di/wj) are unknown, the process is described
by a training sample set. To tackle the decision problem in that case, two approaches are
developed and tested in the following: one is based on density estimation and the other based
on boundary methods. For each of the two approaches, different models can be designed. In
the following, we will present and discuss some of these methods and their characteristics.

3. Class-modeling approach

The most straightforward method to obtain a multiclass rule is to estimate the density of the
training data and exploit them within the decision theory framework to provide a classifica-
tion rule. We will refer to this approach as class-modeling approach. It exploits flexible classes
of models which attempt to provide an estimate of the joint distribution of the features within
each class. The decision rule is determined by plugging these estimations in the statistical
hypothesis framework and solving the latter optimization problem (3). Many estimators may
be used Bishop (2006).
In this section we consider that the data is described by a set of observations {x1, . . . , xn}
drawn from a given class w. Two estimators, the non-parametric Parzen Windows estimator
PW Emanuel (1962) and the parametric Gaussian Mixture Models GMM Titterington et al.
(1985) are investigated. Simulations on artificial datasets were carried out to study the effi-
ciency of the proposed method and discuss its sensibility to estimator choice. In the com-
ing subsections PW and GMM estimators will be presented, followed by the description of
the supervised learning method. Then two different data sets are introduced. They show
very specific features in order to illustrate the advantages and disadvantages of the proposed
methods.

3.1 Parzen Windows estimator
Let us suppose that n observations are being drawn from some unknown probability den-
sity P(x) in some d-dimensional space, which we shall take to be Euclidean, and we wish to
estimate the value of P(x). Suppose that, for some particular applications, no specific hypoth-
esis about the probability law can be made. In this case, a non-parametric density estimator
should be used. Kernels or Parzen Windows estimator (PW) Emanuel (1962) is exploited in
this study. It contains parameters that control the model complexity rather than the form of
the distribution. Thus the density model is obtained by placing kernels over each data point
and adding up the contributions over the whole dataset. Most often, Gaussian kernels are

www.intechopen.com
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chosen with a mean m centered on the individual training objects (m = xp) and diagonal co-
variance matrices S = hI, where h is the smoothness parameter of the windows width. This
choice gives rise to the following density model:

P̂(x; h) =
1

n

n

∑
p=1

G(x; xp, hI) (8)

where G is a gaussian component given by:

G(x; m, S) =
1

(2π)
d
2 | S |

1
2

exp[−0.5(x − m)TS−1(x − m)] (9)

in which x is a given pattern, m is the mean and S is the covariance matrix of the kernel.
When the covariance matrix S is set equal to hI, the Parzen density estimator assumes equally
weighted features. The estimation of the density only depends on one parameter h and on the
sample set. Thus, training a Parzen density consists of the determination of a single parameter.
The smoothness parameter gives a trade-off between sensitivity to noise at small h and over-
smoothing at large h. The optimal width of the kernel h can be obtained by maximizing the
likelihood function. Because only one parameter is estimated the data model is easy to learn.

3.2 Gaussian Mixture Models estimator
A mixture of Gaussians is a linear combination of normal distributions Titterington et al.
(1985). The GMM are given by:

P̂T(x; θT) =
T

∑
t=1

πtG(x; mt, St) (10)

where θT = {m1, . . . , mT, S1, . . . , St, π1, . . . , πT} is the vector parameter of the Gaussian com-
ponents of a given class, T is the number of components per class, G(x; mt, St) is the d-
dimensional gaussian density given by equation (9) and πt is the mixing weight of the t-th
component satisfying:

T

∑
t=1

πt = 1 and πt ≥ 0.

When the number of Gaussians T is defined beforehand by the user, the means mt and covari-
ances St of the individual Gaussian components can efficiently be estimated by an Expectation
Maximization routine Dempster et al. (1977). The total number of free parameters in the mix-

ture of Gaussians is T(d +
d(d+1)

2 + 1).
When T is not defined a priori, the task is to estimate the parameters πt, mt, St and the number
T of components that maximize the log-likelihood:

LT(x1, . . . , xn; θT) =
n

∑
p=1

log P̂T(xp; θT).

The log-likelihood maximization can be carried out by the greedy EM algorithm based on the
theoretical results of Li & Barron (1999). In this latter, Li and Barron show that the difference
in Kullback-Leibler divergence achievable by T-component mixtures and the Kullback-Leibler
distance achievable by any (possibly non-finite) mixture from the same family of components

www.intechopen.com
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3.2 Gaussian Mixture Models estimator

tends to zero with the rate c/T with c a constant dependant from the component family. Fur-
thermore, this bound is reachable by employing the greedy procedure. Therefore, the max-
imum likelihood of the mixture can be determined by adding iteratively a new component
to the mixture. In this chapter, the greedy EM Verbeek et al. (2003); Vlassis & Likas (2002)
algorithm for learning GMM is used since it is able to find the global likelihood maxima and
to estimate the unknown number of the mixture components. This algorithm can be summa-
rized as follows.

• Starting from a 1-component mixture (T = 1), the optimal parameters are
obtained by an EM procedure until convergence(| Literation(x1, . . . , xn; θT) −
Literation−1(x1, . . . , xn; θT) |≤ ε). Then, a search for a new component G(x; m∗

T+1, S∗
T+1)

location and a corresponding weight π
∗
T+1 is performed in order to maximize the new

log-likelihood:

LT+1(x1, . . . , xn ; θT+1) =
n

∑
p=1

log P̂T+1(xp; θT+1)

=
n

∑
p=1

log[(1 − π
∗
T+1)P̂T(xp; θT)+ π

∗
T+1G(xp; m∗

T+1, S∗
T+1)]

(11)

with P̂T(x; θT) remaining unchanged. It is obvious that the crucial step of this algorithm
is the search of a new component location. It can be shown that LT+1(x1, . . . , xn; θT+1)
is concave as function of πT+1 but can have multiple maxima as function of m∗

T+1 and
S∗

T+1. Hence, a global search is required.
One way pointed in Vlassis & Likas (2002) proposes to use all the points as initial can-
didates of the sought component. Every point is the mean of a corresponding candi-
date (mT+1 = xp) with the same covariance matrix σ

2 I, where σ is set according to
Weston & Watkins (1999). For each candidate component, πT+1 is set to the mixing
weight maximizing the second order Taylor approximation of LT+1(x1, . . . , xn; θT+1)
around πT+1 = 0.5. The candidate yielding to the highest log-likelihood when added

to P̂T(x; θT) in (11) is selected and updated using EM until convergence. The new com-

ponent is added to P̂T(x; θT) and the research is repeated until reaching the maximum
likelihood on a validation set.

• An improved version of this global search Verbeek et al. (2003) is used in this work. For
each insertion problem, the proposed method constructs a fixed number of candidates
per existing mixture component. Based on the posterior distributions, we partition the
data set in T disjoint subsets At. For each set, C candidate components are constructed
(for the following experiences C = 10 candidates). To generate new candidates from
At, we pick uniformly random two data points xl and xr in At. Then, we partition At

into two disjoint subsets Atl and Atr. For elements of Atl the point xl is closer than xr

and vice versa for Atr. The mean and covariance of the sets Atl and Atr are used as
parameters for two candidate components. The initial mixing weights for candidates
generated from At are set to πt/2. To obtain the next two candidates we draw new xl

and xr , until the desired number of candidates is reached. After computing the log-
likelihood of each of the CT candidates, we set the new component as the candidate

that maximizes the log-likelihood P̂T+1(x; θT+1) when added to the existing mixture
with its corresponding mixing weight.

www.intechopen.com
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3.3 Supervised decision rule
In the statistical decision theory framework, the determination of a multiclass rule that sat-
isfies performance constraints consists in finding the optimal Z∗ and the optimal Lagrange
multipliers µ

∗ by solving the optimization problem defined in (3). However, in the super-
vised learning framework, Pj and P(Di/wj) are unknown. One strategy to learn a supervised
classifier is to estimate these probabilities and determine the corresponding optimal super-

vised rule Ẑ∗ and Lagrange multipliers µ̂∗. In these experiments, we study the repercussion
due to the estimation of P(x/wj) and we consider that Pj is known. The two estimators intro-
duced above are used. The probability estimates depend on the labeled set and on the density
estimators parameters, h of Parzen and T, (mt, St, πt), t = 1, . . . , T of the GMM. These pa-
rameters are determined by maximizing the log-likelihood of a validation set using 10-Cross
Validation.
Each estimator produces its own optimal solution Ẑ∗ and µ̂

∗ which minimizes the correspond-

ing loss function L̂(Ẑ∗, µ̂∗) = ĉ(Ẑ∗) + ∑
K
k=1 µ̂∗

k

(
ê(k)(Ẑ∗)− γ(k)

)
. To assess the quality of

the supervised rules a criterion, proposed in Grall-Maës et al. (2006b) is used. It is given by

L(Ẑ∗,µ∗) = c(Ẑ∗) + ∑
K
k=1 µ∗

k

(
e(k)(Ẑ∗)− γ(k)

)
. It has to be estimated on the true optimal

lagrange multipliers µ
∗ and an infinite test set (theoretical densities) in order to get the the-

oretical performance of the rule. The learning-testing procedures of the GMM and Parzen
Windows estimator algorithm are as follow:

1. For each class wj, estimating the GMM or the Parzen Windows distributions P̂(x/wj)
using a training set and a validation set.

2. Learning the decision rule by solving the optimization problem (3) with the estimated

P̂(x/wj), namely, finding the optimal supervised rule Ẑ∗ and the optimal µ̂∗.

3. Assessing the quality of the rule by computing the Lagrangian L̂(Ẑ∗,µ)∗ of the super-

vised rule Ẑ∗ on an infinite test set using theoretical µ∗.

In a supervised framework, µ∗ and the infinite test set are unknown. A supervised procedure
to compute this criterion was proposed in Jrad, Grall & Beauseroy (2008) and tested experi-
mentally to show the validity and the relevance of this criterion.
To sum up, we frame the problem of classification with rejection option subject to constraints
as a Bayesian inference problem. We formulate a model of how patterns are generated and
then derive an algorithm for making optimal inferences under this model.

3.4 Toy problem
To evaluate the performances of the proposed supervised learning approaches, two 2-D prob-
lems with three equiprobable classes and performance constraints were considered. For both
problems, GMM and PW estimators were used and compared. Synthetic data were con-
structed and used to investigate different characteristics of the methods. By using artificial
data instead of real world data, we avoid focusing on unknown and unsuspected distribu-
tions. It gives the opportunity to just focus on some important aspects of data distributions.
Experimental results are presented and discussed below.
The first problem is defined by three classes, each one is a 3-gaussian component distribution
with unbalanced weights, leading to a trimodal distribution. The aim of this experiment is
to study the case where the distributions correspond to the hypothesis of GMM. The second
problem is given by three bivariate gamma distributions in order to study the case where
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3.3 Supervised decision rule

3.4 Toy problem
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Fig. 1. 3-gaussian component problem: density probabilities and the corresponding partition.
From left to right: Theoretical case (left) and an example of estimators in the case of Parzen
(middle) and GMM (right)
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Fig. 2. Bivariate gamma problem: density probabilities and the corresponding partition. From
left to right: Theoretical case (left) and an example of estimators in the case of Parzen (middle)
and GMM (right)

the hypothesis of GMM is not fulfilled by data distributions. The corresponding theoretical
densities are represented using isodensity curves in figures 1 (left) and 2 (left).
For both problems, the decision options are given by: ψ1 = {1}, ψ2 = {2}, ψ3 = {3}, ψ4 =
{1, 2}, ψ5 = {1; 3}, ψ6 = {2; 3} and ψ7 = {1; 2; 3}. The constraints are defined by PE ≤ 0.05
and PI ≤ 0.1 for the first problem and PE ≤ 0.1 and PI ≤ 0.15 for the second one. PE is the
probability of error and PI is the probability of indistinctness, namely, the probability to assign
a pattern x of wj to a subset of classes ψi that contains more than one class of which one is wj.
The average loss is defined by c(Z) = PE + 0.5PI + P(D7) where P(D7) corresponds to no
decision. Theoretical decision rules are given by the partitions reported in figures 1 (left) and
2 (left).
For both experiments, the influence of the sample size is investigated by proceeding the
learning-testing algorithm described above for three sets with different sizes (50, 100 and 200
observations per class). These sets were randomly drawn from the theoretical distributions.
Experiments were repeated 40 times for the first set, 20 times for the second and 10 times for
the third in order to study the bias and the variance of the results.

3.5 Experimental results and discussions
For both problems, PE, PI , c(Z∗) and L(Z∗,µ∗) were computed for the optimal rule. Besides,

their estimated values P̂E, P̂I , ĉ(Ẑ∗) and L̂(Ẑ∗,µ∗) were computed on supervised partitions
using an infinite test set and the theoretical µ∗ as mentioned previously. Their mean and
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GMM Parzen Theo.

50 obs 100 obs 200 obs 50 obs 100 obs 200 obs

P̂E 0.084±0.023 0.060±0.011 0.053±0.006 0.033±0.015 0.034±0.010 0.030±0.008 0.050

P̂I 0.082±0.027 0.094±0.016 0.098±0.006 0.090±0.011 0.087±0.008 0.085±0.006 0.100

ĉ 0.161±0.040 0.133±0.017 0.136±0.018 0.248±0.039 0.212±0.028 0.207±0.029 0.131

L̂ 0.205±0.033 0.147±0.012 0.140±0.011 0.224±0.024 0.189±0.015 0.177±0.017 0.132

Table 1. Values of the theoretical and estimated P̂E, P̂I , ĉ(Ẑ∗) and L̂(Ẑ∗,µ∗) using GMM and
Parzen estimators for the 3-gaussian component problem

GMM Parzen Theo.

50 obs 100 obs 200 obs 50 obs 100 obs 200 obs

P̂E 0.114±0.021 0.110±0.010 0.109±0.008 0.083±0.028 0.079±0.018 0.086±0.010 0.100

P̂I 0.143±0.023 0.143±0.011 0.143±0.012 0.147±0.019 0.148±0.012 0.147±0.010 0.150

ĉ 0.235±0.022 0.239±0.012 0.234±0.009 0.304±0.044 0.290±0.030 0.268±0.016 0.229

L̂ 0.251±0.021 0.249±0.008 0.247±0.006 0.280±0.025 0.260±0.010 0.248±0.003 0.229

Table 2. Values of the theoretical and estimated P̂E, P̂I , ĉ(Ẑ∗) and L̂(Ẑ∗,µ∗) using GMM and
Parzen estimators for the gamma distributions problem

their standard deviations are reported in tables 1 and 2. An example of optimal rules built
with GMM and Parzen densities using 200 observations per class set are shown in figures 1
(middle) and 1 (right) (for the 3-gaussian component distributions problem) and 2 (middle)
and 2 (right) (for the gamma distributions problem).
Results show that decision rules built with GMM and Parzen estimates are relevant. Their
accuracy increases as long as the learning set size increases. Furthermore, GMM can be con-
sidered as a good family of non-symmetrical density estimators. They achieve results superior
to Parzen estimators in term of losses, especially when the learning set size decreases. These
results can be explained by several reasons:

i Parzen estimators converge asymptotically to the real densities.

ii Parzen density estimates have not a compact form; they are sums of as many local
windows as the size of learning set, while the GMM estimates are compact functions
parameterized according to a global search over all the learning set. Thus, the local
nature of the Parzen estimator can lead to overfitting.

Moreover, for the first problem, the errors, as the function of the number of observations, of
the GMM decrease faster than those of Parzen. It is an expected result since the distributions
corresponds to the GMM hypothesis and GMM are more accurate fitting a multimodal distri-
bution. Thus the choice of the estimator is a crucial point for class-modeling approaches. The
estimator must fit the data pretty well to get good results. The performances of the classifica-
tion rule are strictly related to those of the density estimator.
To sum up, we can note that when the sample size is sufficiently large and a flexible den-
sity model is used, this approach should work very well if the probability density estimator
in use is convergent. Unfortunately, as the dimension of the representation space increases,
it requires an exponentially increasing number of training samples to overcome the curse of
dimensionality Duda & Hart (1973). Finding the right estimator to describe the dataset distri-
bution and the given sample size is a typical incarnation of the bias-variance dilemma.

4. Boundary approach

4.1 - -SVM
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When a good probability model is assumed (one for which the bias is small) and the sam-
ple size is sufficient, this approach has some advantages. Since probability estimates of the
patterns are computed explicitly, integration with other potential classes or constraints, not
necessarily considered at design time, is facilitated. Besides, progress towards more compli-
cated applications like solving classification problems with time-evolutionary constraints Jrad
et al. (2009a) can be also facilitated.

4. Boundary approach

Vapnik argued in Vapnik (1998) that when just a limited amount of data is available, one
should avoid solving a more general problem as an intermediate step to solve the original
problem. To solve this more general problem more data might be required than for the orig-
inal problem. In a bayesian framework minimizing the error rate loss, estimating a complete
data density for each of the N classes might be too demanding when only the data bound-
ary is required. Therefore, only a boundary between or around the dataset is determined. In
the general framework of classe-selective rejection with constraints, a complete data density
estimation is also not required. However, one should take into consideration the conditional
probabilities estimation in order to evaluate the performance.
In this work, ν-1-SVM will be used. The proposed method is based on the "decomposition-
reconstruction" approach. It decomposes the initial problem into N problems and trains one
ν-1-SVM Scholkopf et al. (2001); Scholkopf & Smola (2001); Tax (2001) coupled with the regu-
larization path of each class Hastie et al. (2004); Rakotomamonjy & Davy (2007). A reconstruc-
tion step is required to decide the winning decision and consequently to derive a decision rule
that satisfy the constraints. It uses weighted distance measure between objects and classes.
In the coming subsections we will present the ν-1-SVM concept and explains briefly the
derivation of the entire regularization path which enables to get rapidly all ν-1-SVM mod-
els for a wide range of values of ν. The proposed method is described and validated on two
artificial datasets.

4.1 ν-1-SVM
Considering a set of n vectors X = {x1, x2, . . . , xn} drawn from an input space X , ν-1-SVM
computes a function f λ

X(.) and a real number bλ in order to determine the region Rλ in X

such that:
{

f λ
X(x)− bλ ≥ 0 if x ∈ Rλ

f λ
X(x)− bλ

< 0 otherwise

The function f λ
X(.) is designed by minimizing the volume of Rλ under the constraint that all

the vectors of X, except a portion λ, must lie in Rλ. This portion corresponds to the outliers

and parameterizes the function f λ
X(.). An alternative parameter can be refereed to ν = λ

n . It
corresponds to the fraction of outliers with 0 ≤ ν ≤ 1.
In order to determine Rλ, the space of possible functions f λ

X(.) is reduced to a Reproducing
Kernel Hilbert Space (RKHS) with kernel function K(., .). Let φ : X → H be the mapping
defined over the input space X . Let < ., . >H be a dot product defined in H. The kernel K(., .)
over X ×X is defined by:

∀(xp , xq) ∈ X ×X K(xp, xq) =< φ(xp), φ(xq) >H

Without loss of generality, K(., .) is supposed normalized such that for any x ∈ X , K(x, x) = 1.
Thus, all the mapped vectors φ(xp), p = 1, . . . , n are in a subset of a hypersphere with radius
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wλ

O

R = 1 θ
λ

bλ

‖wλ‖H

Non-Margin SV

Margin SV

Non-SVs

Sλ

Wλ

Fig. 3. Training data mapped into the feature space on a portion Sλ of a hypersphere.

one and center O. Provided K(., .) is always positive, φ(X) is a subset of the positive orthant
of the hypersphere. A common choice of K(., .) is the Gaussian Radial Basis Function (RBF)
kernel K(xp, xq) = exp[ −1

2σ2 ‖ xp − xq ‖2
X ] with σ the parameter of the Gaussian RBF kernel.

ν-1-SVM consists of separating the training vectors in H from the center O with a hyperplane

Wλ while maximizing the margin bλ

‖wλ‖H
with wλ the normal vector of Wλ. The solution will

be given by the function f λ
X(.) such that f λ

X(x)− bλ =< wλ, φ(x) >H −bλ ≥ 0 for the (1− ν)n
mapped training vectors.
This yields f λ

X(.) as the solution of the following convex quadratic optimization problem:

min
wλ ,bλ,ξp

n

∑
p=1

ξp − λbλ +
λ

2
‖ wλ ‖2

H

subject to < wλ, φ(xp) >H≥ bλ − ξp

and ξp ≥ 0 ∀p = 1, . . . , n (12)

where ξp are the slack variables. This optimization problem is solved by introducing Lagrange

multipliers αp . As a consequence to Kuhn-Tucker conditions, wλ is given by:

wλ =
1

λ

n

∑
p=1

αpφ(xp)

which results in:

f λ
X(.)− bλ =

1

λ

n

∑
p=1

αpK(xp, .)− bλ.

The dual formulation of (12) is obtained by introducing Lagrange multipliers as:

min
α1,...,αn

1

2λ

n

∑
p=1

n

∑
q=1

αλ
p αλ

q K(xp, xq) (13)

with
n

∑
p=1

αλ
p = λ and 0 ≤ αλ

p ≤ 1 ∀p = 1, . . . , n

A geometrical interpretation of the solution in the RKHS is given by figure 3. The function
f λ
X(.) and the number bλ define a hyperplane Wλ orthogonal to wλ. The hyperplane Wλ

4.2 Regularization Path

4.3 Supervised decision rule
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separates the φ(xp)s from the sphere center, while having bλ

‖wλ‖H
maximum which is equiv-

alent to minimize the portion Sλ of the hypersphere bounded by Wλ that contains the set
{φ(x) s.t. x ∈ Rλ}.

4.2 Regularization Path
Regularization path was first introduced by Hastie et al. (2004) for a binary SVM. Later, Rako-
tomamonjy & Davy (2007) developed the entire regularization path for a ν-1-SVM. The ba-
sic idea of the ν-1-SVM regularization path is that the Lagrange multipliers of a ν-1-SVM
is a piecewise linear function of λ. Thus the principle of the method is to start with large
λ (ie. λ = n − ǫ) and decrease it towards zero, keeping track of breaks that occur as λ
varies.
As λ decreases ‖ wλ ‖H increases and hence the distance between the sphere center and Wλ

decreases. Points move from being outside (Non-Margin SVs with αλ
p = 1 in figure 3) to inside

the portion Sλ (Non-SVs with αλ
p = 0). By continuity, points must linger on the hyperplane

Wλ (Margin SVs with 0 < αλ
p < 1) while their αλ

ps decrease from 1 to 0. Break points occur

when a point moves from a position to another one. Since αλ
p is piecewise-linear in λ, f λ(.) and

bλ are also piecewise-linear in λ. Thus, after initializing the regularization path (computing αλ
p

by solving (13) for λ = n − ǫ), almost all the αλ
ps are computed by solving linear systems. Only

for some few integer values of λ smaller than n, αλ
ps are computed by solving (13) according

to Rakotomamonjy & Davy (2007).
Using simple linear interpolation, this algorithm enables to determine very rapidly the ν-1-
SVM corresponding to any value of λ.

4.3 Supervised decision rule
Given N classes and N trained ν-1-SVMs, one should design a supervised decision rule Z that
minimizes the loss function (2) and satisfies the constraints (1). The reconstruction step con-
sists of moving from unary to multiclass classifier by assigning samples to a decision option.
The assignment condition (6) can not be used since the distributions P(x/wj) are unknown.
The reconstruction step relies on a distance of an unlabelled pattern x to each of the training
class set wj (j = 1, . . . , N), using the ν-1-SVM parameterized by λj, is defined as follows:

dλj (x) =
cos( ̂wλj , φ(x))

cos(θλj )
=

‖ wλj ‖H
bλj

cos( ̂wλj , φ(x)) (14)

where θλj is the angle delimited by wλj and the support vector as shown in figure 3, cos(θλj )
is a normalizing factor which is used to normalize all the dλ

j (x).

Using ‖ φ(x) ‖= 1 in (14) leads to the following:

dλj (x) =
< wλj , φ(x) >H

bλj
=

1
λj

∑
nj

p=1 α
λj
p K(xp, x)

bλj
(15)

Since the lagrange multipliers α
λj
p are obtained by the regularization path for any value of λj,

computing dλj is considered as an easy-fast task. The distance measure dλj (x) is inspired from

Davy et al. (2006). When data are distributed in a unimodal form, the dλj (x) is a decreasing
function with respect to the distance between a sample x and the data mean. The probability
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density function is also a decreasing function with respect to the distance from the mean.

Thus, dλj (x) preserves distribution order relations. In such case, and under optimality of the

ν-1-SVM classifier, the use of dλj (x) should reach the same performances as the one obtained
using the distribution.
In the simplest case of multiclass problems where the loss function is defined as the error

probability, a sample x is assigned to the class maximizing dλj (x) as follows:

x ∈ arg max
j=1...N

dλj (x).

To extend the multiclass prediction process to the class-selective scheme, a weighted form of

the distance measure is proposed. A weight βj is associated to the distance dλj to pull the
location of a pattern toward the class for which a wrong decision costs the most. Thus, in-
troducing weights performs a distance adjustment and helps solving problems with different
costs cij on the classification decisions. The decision rule is defined as:

Ẑ(x) = i if
N

∑
j=1

cij P̂jβjd
λj (x) ≤

N

∑
j=1

cl jP̂jβjd
λj (x), ∀i, l = 1, . . . , I, l �= i.

where P̂j is the empirical estimators of Pj.
The decision rule depends on the RBF vector parameter σ, λ and β vectors of σj, λj and βj

for j = 1, . . . , N. Tuning λj is the most time expensive task since changing λj leads to solve
the optimization problem formulated in (13). Moreover, tuning λj is a crucial point, it enables
to control the boundary around data. In fact, it was shown in Scholkopf et al. (2001) that this
regularization parameter is an upper bound on the fraction of outliers and a lower bound on
the fraction of the SVs. In Husband & Lin (2002); Yang et al. (2007) a smooth grid search was
supplied in order to choose the optimal values of λ. The N values λjs were chosen equal
to reduce the computational costs. However, this assumption reduces the search space of
parameters too. To avoid this restriction, the proposed approach optimizes all the λj with
j = 1, . . . , N corresponding to the N ν-1-SVMs using regularization path and consequently
explores the entire parameters space. Thus the tuned λj are most likely to be the optimal ones.
The parameter σ are set equals σ1 = σ2 = . . . = σN .
In the general framework of class-selective rejection subject to constraints, the decision rule
for a given µ is given by:

̂̃Zµ(x) = i if (16)

N

∑
j=1

(
ci,j +

K

∑
k=1

µkα
(k)
i,j

)
P̂jβjd

λj (x) ≤
N

∑
j=1

(
cl,j +

K

∑
k=1

µkα
(k)
l,j

)
P̂jβjd

λj (x), ∀i, l = 1, . . . , I, l �= i.

Since the problem is described by a sample set, an estimate L̂(Ẑ, µ̂) of L(Z,µ) given by (1) is
used:

L̂(Ẑ, µ̂) =
I

∑
i=1

N

∑
j=1

(
ci,j +

K

∑
k=1

µ̂kα
(k)
i,j

)
P̂jP̂(Di/wj)− µ̂Tγ (17)

where P̂(Di/wj) is the empirical estimators of P(Di/wj).

The parameters λj, βj, σj and µk are optimized so that the estimated Lagrange function L̂(Ẑ, µ̂)
is optimum on a validation set. This is accomplished by employing an iterative search over
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Fig. 4. 3-gaussian component (left) and Bivariate gamma (right) problems: supervised parti-
tions and theoretical density probabilities.

3-gaussian Gamma

50 obs 100 obs 200 obs 50 obs 100 obs 200 obs

P̂E 0.076±0.013 0.061±0.008 0.050±0.005 0.101±0.012 0.094±0.014 0.088±0.005

P̂I 0.138±0.005 0.121±0.002 0.107±0.001 0.176±0.027 0.179±0.033 0.173±0.013

ĉ 0.163±0.017 0.153±0.008 0.149±0.004 0.267±0.020 0.262±0.018 0.258±0.011

L̂ 0.206±0.028 0.165±0.010 0.151±0.006 0.275±0.015 0.271±0.032 0.247±0.006

Table 3. Values of the estimated P̂E, P̂I , ĉ(Ẑ∗) and L̂(Ẑ∗,µ∗) using the boundary method for
the 3-gaussian component and the gamma distributions problems

the kernel parameter and a global search over the other ones. More explicitly, the kernel
parameters are chosen from a previously defined set of real numbers [σ0, . . . , σs] with s ∈ ℵ.
For each given value of σj, a decision rule is sought by solving an alternate optimization
problem over λj, βj and µk. The optimal rule is given by the set of parameters minimizing
the Lagrange estimate on a validation set.

4.4 Toy problem
To evaluate the efficiency of the proposed boundary approach and compare it with the class-
modeling one, the same bidimensional toy problems considered in section 3 were studied
under the same constraints. The same synthetic data with the same number of repetitions
were considered. Thus theoretical densities and theoretical decision rules are those illustrated
in figures 1 (left) and 2 (left). The theoretical performances are those reported on tables 1 and
2.
Supervised decision rule is optimized according to the supervised learning algorithm defined

in the boundary scheme. The estimated values P̂E, P̂I , ĉ(Ẑ∗) and L̂(Ẑ∗,µ∗) were computed on
supervised partitions using an infinite test set and the theoretical µ∗ as mentioned previously.
Their mean and their standard deviations are reported in tables 3. An example of optimal
rules learned with 200 observations per class set are shown in figures 4 (left) for the 3-gaussian
distribution problem and 4 (right) for the gamma distribution problem.
Experimental results show that the proposed boundary method or MSVM is relevant. It
achieves good results on some complex distributions like multimodal and non-symmetrical
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Dataset LEUKEMIA72 OVARIAN NCI LUNG CANCER LYMPHOMA

# Gene 6817 7129 9703 918 4026

# Sample 72 39 60 73 96

# Class 3 3 9 7 9

Table 4. Multiclass gene expression datasets

distributions. For both problems under study, standard deviations are relatively small. The
boundary approach is less sensitive to the variation of the dataset representativity. For the 3-
gaussian component problem, MSVM performs as good as the GMM based method and better
than PW based method. For the gamma distribution problem, MSVM, PW and GMM based
methods show similar accuracy for sufficiency large data sets, while GMM based method out-
performs PW and MSVM in term of losses for moderated or small amount of data.

5. Cancer diagnosis

To illustrate the proposed approach a biomedical application dealing with cancer tumors is
presented using the boundary method. Recently, cancer diagnosis based on gene profiles has
received more attention. Since cancer diagnosis problems are usually described by a small
set of samples with a large number of genes, feature or gene selection was considered as an
important issue in analyzing multiclass microarray data.
In this section, five well-known gene expression datasets are considered. Two experiments
based on the boundary approach are presented. The first considers the five cancer diagno-
sis problems in the classical framework to make results comparable with those of Chen et al.
(2005). The second experiment considers the LUNG CANCER problem in the general frame-
work of class-selective rejection and performance constraints.

5.1 Problem description
In this chapter, five multiclass gene expression datasets are studied: LEUKEMIA72 Golub
et al. (1999), OVARIAN Welsh et al. (2001), NCI Ross et al. (2000); Scherf et al. (2000), LUNG
CANCER Garber et al. (2001) and LYMPHOMA Alizadeh et al. (2000). Table 4 describes the
five genes datasets.
Given these microarray datas with N tumor classes, a small amount n of tumor samples and a
large number g of genes per sample, one should identify a small subset of d informative genes
that contribute most to the prediction task before solving this task. Various feature selection
methods exist in literature. One way pointed in Chen et al. (2005) is to use test statistics.
For each dataset, six test statistics are evoked as a first process in a gene-based cancer diagno-
sis: ANOVA F or F Kutner et al. (2005), Brown-Forsythe test or B Brown & Forsythe (1974),
Welch test WELCH (1951) or W, Adjusted Welch test or W∗ Hartung & Makambi (2002),
Cochran test Cochran (1937) or C and Kruskal-Wallis test or H Daniel (1999). For each test
statistics, 50 and 100 informative genes were selected.
The second step is a classification step which is performed, in the classical framework, accord-
ing to the proposed boundary approach and five existing ones: Naive Bayes, Nearest Neigh-
bor, Linear Perceptron, Multilayer Perceptron Neural Network. The classification step is also
studied in the general framework of class-selective rejection and performance constraints ac-
cording to the proposed boundary approach.

5.2 Experimental settings

5.2.1 Classical framework
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5. Cancer diagnosis

5.1 Problem description

F B W W* C H

Proposed Algorithm 4 3 5 5 3 2

LEUKEMIA Mean 3.4 2.4 2.8 2.8 3.2 3.0

Median 3 2 3 3 3 3

Proposed Algorithm 0 0 0 0 0 0

OVARIAN Mean 0.2 0.0 0.0 0.0 0.0 0.0

Median 0 0 0 0 0 0

Proposed Algorithm 31 26 27 27 27 33

NCI Mean 36.0 32.0 27.4 26.0 27.0 35.4

Median 35 29 27 27 27 35

Proposed Algorithm 14 16 16 16 16 15

LUNG CANCER Mean 17.6 17.0 17.6 17.6 18.0 18.0

Median 17 17 18 18 18 18

Proposed Algorithm 18 16 9 10 9 15

LYMPHOMA Mean 23.8 19.8 14.0 14.0 12.8 22.0

Median 23 19 12 12 13 20

Table 5. Prediction errors of the proposed classifier, mean and median values of the 5 classifiers
prediction errors according to Chen et al. (2005) with 50 informative selected genes

5.2 Experimental settings
The cancer diagnosis is accomplished using the classification algorithm introduced in section
4 in both classical and class-selective rejection subject to constraints frameworks. Results are
reported in the following sections as a prediction error. Mean and median values of the pre-
diction errors of the five classifiers mentioned above are also reported from Chen et al. (2005).
The generalization accuracy of all the classifiers was computed using Leave One Out (LOO)
resampling method. LOO divides a gene dataset of n patients into two sets, a set of n − 1
patients and a test set of 1 blinded patient. This method involves n separate runs. For each
run, the first set of n − 1 are used to learn the rule and the test set of 1 blinded sample is used
to assess the performance of the rule. The overall prediction error is the sum of the patients
misclassified on all n runs. In the following, results are explored and discussed.

5.2.1 Classical framework
First, the cancer diagnosis problem is considered in the traditional Bayesian framework with
no constraints. The decisions are given by the possible set of tumor classes and the loss func-
tion is defined as the probability of error to make results comparable with those of Chen et al.
(2005). In this case, the costs of misclassification ci,j are known, equal and there is no penalty
for a correct classification. The decision rule becomes the solution of a minimization problem
without constraints (Lagrange multipliers are null). The performance of the proposed method
was measured by evaluating its accuracy rate and it was compared to results obtained by the
five predictors evoked in Chen et al. (2005): Naive Bayes, Nearest Neighbor, Linear Percep-
tron, Multilayer Perceptron Neural Network with five nodes in the middle layer, and Support
Vector Machines with second order polynomial kernel.
The learning step of the proposed approach consists of finding the minimal value of the loss
function estimate. The n − 1 samples are divided, using 5-Cross Validation (5-CV), into a
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F B W W* C H

Proposed Algorithm 5 2 3 3 4 6

LEUKEMIA Mean 3.4 3.0 3.0 3.0 3.2 3.0

Median 3 3 4 3 3 3

Proposed Algorithm 0 0 0 0 0 0

OVARIAN Mean 0.2 0.0 0.0 0.0 0.0 0.0

Median 0 0 0 0 0 0

Proposed Algorithm 33 21 26 25 26 36

NCI Mean 33.0 22.6 23.8 25.2 25.2 31.6

Median 33 22 25 26 26 31

Proposed Algorithm 11 10 11 11 11 13

LUNG CANCER Mean 12.2 12.2 11.4 12.2 12.2 15.8

Median 12 12 11 11 11 14

Proposed Algorithm 16 16 11 10 11 17

LYMPHOMA Mean 21.8 19.2 13.0 13.8 14.4 18.2

Median 17 16 12 12 12 18

Table 6. Prediction errors of the proposed classifier, mean and median values of the 5 classifiers
prediction errors according to Chen et al. (2005) with 100 informative selected genes

training set and a validation set. N ν-1-SVMs are trained using the training set for all values
of νj . The decision is obtained by tuning the parameters βj and λj for j = 1, . . . , N for a given

kernel parameter σ and by testing different values of σ in the set [2−3, 2−2, 2−1, 20, 21, 22].
Finally, the decision rule which minimizes the loss function estimate is selected and used to
classify the blinded patient.
Table 5 reports the errors of the proposed algorithm, the average value and the median value
of the 5 classifiers prediction errors reported in Chen et al. (2005) when 50 informative genes
are used. Table 6 reports values when 100 informative genes are used. F, B, W, W∗, C and H

represent the six test statistics.
Experimental results show that, for OVARIAN, NCI, LUNG CANCER and LYMPHOMA mul-
ticlass genes problems, the prediction error is data dependent. The proposed boundary ap-
proach achieves competitive performances compared to the 5 classifiers reported in Chen et al.
(2005). For these datasets, prediction errors of the proposed approach are less than the mean
and median values of the 5 classifiers prediction errors reported in Chen et al. (2005). How-
ever, for LEUKEMIA72, the proposed algorithm performances are almost in the same range
of those provided by the 5 classifiers reported in Chen et al. (2005). The proposed approach
prediction error is equal, or in the worst case, slightly higher than the mean and median errors.
Focusing on the data nature, the five data under study, described by table 4 show that even
though data are all described by a large number of genes and small number of samples they
have different nature. Genes number varies from 918 for LUNG CANCER problem to 9703
for NCI. NCI has ten times genes more than LUNG CANCER with less number of patients
and more classes. According to the table 4, NCI is the hardest problem since it is described
by the largest number of genes with the smallest number of patients per class (60 patients for

5.2.2 Class-selective rejection framework
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Patient class

Normal SCLC LCLC SCC AC2 AC3 AC1

P
re

d
ic

te
d

d
ec

is
io

n Normal 6 0 0 0 0 0 0

SCLC 0 4 0 0 0 1 0

LCLC 0 0 3 0 0 4 1

SCC 0 0 0 16 0 3 0

AC2 0 0 0 0 4 0 0

AC3 0 1 1 0 1 4 0

AC1 0 0 1 0 2 1 20

Table 7. Confusion Matrix of 50W∗ LUNG CANCER dataset. Total of misclassified is equal to
16.

Patient class

Normal SCLC LCLC SCC AC2 AC3 AC1

P
re

d
ic

te
d

d
ec

is
io

n Normal 5 0 0 0 0 0 0

SCLC 0 4 0 0 0 0 0

LCLC 0 0 1 1 0 2 2

SCC 0 0 2 14 0 1 0

AC2 0 0 0 0 7 0 0

AC3 0 0 2 1 0 8 0

AC1 1 1 0 0 0 2 19

Table 8. Confusion Matrix of 50H LUNG CANCER dataset. Total of misclassified is equal to
15.

9 classes). Thus, it is expected that the gene selection task is difficult and consequently the
prediction accuracy is not high.
Moreover, it is worthy to note that these data are more or less imbalanced which makes the
discrimination step harder. For example, the ratio of the large to the small classes reaches 23
for the LYMPHOMA problem. For this problem, the proposed boundary method results are
considerably more accurate than the 5 existing ones. Thus, this approach can be considered
as an adapted method solution to solve imbalanced problems: because both minority and
majority classes are learned separately, descriptions are not dominated by the majority classes.
Finally, we can note that focusing on the test statistics comparison, experimental results con-
firm those of Chen et al. (2005). B, W and W∗ can be the most performing tests under variances
heterogeneity assumptions. For the LUNG CANCER dataset where the gene-patient ratio is
the smallest, the prediction accuracy is almost the same for all the test statistics.

5.2.2 Class-selective rejection framework
In order to illustrate the interest of considering the multiclass cancer diagnosis in class-
selective rejection scheme subject to constraints, one gene dataset is considered and studied.
In the following, we present the study of LUNG CANCER problem in the class selective-
rejection scheme subject to two constraints. Let’s start by defining the decision options. In fact,
LUNG CANCER diagnosis problem is determined by the gene expression profiles of 67 lung
tumors and 6 normal lung specimens from patients whose clinical course was followed for up
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Patient class

Normal SCLC LCLC SCC AC2 AC3 AC1

P
re

d
ic

te
d

d
ec

is
io

n

Normal 6 0 0 0 0 0 0

SCLC 0 3 0 0 0 0 0

LCLC 0 0 3 0 0 4 0

SCC 0 0 0 16 0 2 0

AC2 0 0 0 0 4 0 0

AC3 0 0 0 0 1 3 0

AC1 0 0 1 0 1 1 20

{LCLC, SCC, AC3} 0 0 1 0 0 2 0

All tumors 0 2 0 0 1 1 1

All classes 0 0 0 0 0 0 0

Table 9. Confusion matrix of the 50W∗ LUNG CANCER problem with class selective rejection.
Total of misclassified is equal to 10, total of partially and totally rejected samples is equal to 8.

to 5 years. The tumors comprised 41 Adenocarcinomas (ACs), 16 squamous cell carcinomas
(SCCs); 5 cell lung cancers (LCLCs) and 5 small cell lung cancers (SCLCs). ACs are subdivided
into three subgroups 21 AC of group 1 tumors, 7 AC of group 2 tumors and 13 AC of group 3
tumors. Thus, the multiclass diagnosis cancer consists of 7 classes.
Authors in Garber et al. (2001) observed that AC of group 3 tumors shared strong expression
of genes with LCLC and SCC tumors. Thus, poorly differentiated AC is difficult to distinguish
from LCLC or SCC. Confusion matrices (tables 7 and 8) computed in the classical framework,
with 50W∗ and 50H prove well these claims. It can be noticed that 8 of the 16 misclassified
50W∗ patients and 8 of the 15 misclassified 50H patients correspond to confusion between
these three subcategories. Therefore, one may define a new decision option as a subset of
these three classes to group these errors and set up an additional test to differentiate them.
Moreover, researches affirm that distinction between patients with nonsmall cell lung tumors
(SCC, AC and LCLC) and those with small cell tumors or SCLC is extremely important, since
they are treated very differently. Thus, a confusion or wrong decision among patients of non-
small cell lung tumors should cost less than a confusion within nonsmall cells tumors classes
or within small cells tumors classes. Besides, one may provide an extra decision option that
includes all the subcategories of tumors to avoid this kind of confusion. Finally, another nat-
ural decision option can be the set of all classes, which means that the classifier has totally
withhold taking a decision.
Given all these information, the classification problem can be defined as follows:

• Ten decision options can be defined. The possible decision options
are given by: {Normal}, {SCLC}, {LCLC}, {SCC}, {AC2}, {AC3},
{AC1}, {LCLC, SCC, AC3}, {SCLC, LCLC, SCC, AC2, AC3, AC1} and
{Normal, SCLC, LCLC, SCC, AC2, AC3, AC1}.

• The chosen comprimised is given by PE ≤ 0.15 and PI ≤ 0.1 where PE is the probability
of error and PI is the probability of indistinctness.

6. Discussions and conclusion
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• The loss function defined by (2) with the costs ci,j given by:

ci,j =















1, wj /∈ ψi;

|ψi|−1
N−1 , wj ∈ ψi et |ψi| > 1;

0, ψi = {wj}.

Solving this problem with 50W
∗ LUNG CANCER problem leads to the confusion matrix pre-

sented in table 9. As a comparison with table 7, one may mainly note that the number of
misclassified patients decreases from 16 to 10 and 8 withhold decisions or rejected patients.
The probability of error has decreased from 0.219 to 0.136 with a probability of ambiguity
equal to 0.109. This partial rejection contributes to avoid confusion between nonsmall and
small lung cells tumors and reduces errors due to indistinctness among LCLC, SCC and AC3.
Besides, according to the example under study, no patient is totally rejected. It is an expected
result since initially (table 7) there exists no confusion between normal and tumor samples.
To take a decision concerning the rejected patients, we may refer to clinical analysis. It is worth
to note that for partially rejected patients, clinical analysis is less expensive in terms of time
and money than those on completely blinded patients. Moreover, a supervised solution can
be also proposed. It aims to use genes selected from another test statistic in order to assign
rejected patients to one of the possible classes Jrad et al. (2009b;d). Many factors play an
important role in the cascade classifiers system such as the choice of test statistics, the number
of classifiers in a cascade system,... Such concerns are under study.

6. Discussions and conclusion

This chapter presents the multiclass decision problem in a new framework where the per-
formances of the decision rule must satisfy some constraints. A general formulation of the
problem with class-selective rejection subject to performance constraints was expounded. The
definition of the problem takes into account three kinds of criteria: the label sets, the perfor-
mance constraints, and the average expected loss. The solution of the stated problem was
given within the statistical decision theory framework. Some supervised learning strategies
were presented. Two approaches are proposed; a class-modeling approach and a boundary
based approach. The first named class-modeling approach is defined within the statistical
community. Class-modeling approaches are generally characterized by having an explicit un-
derlying probability model, which provides a probability of being in each class rather than
simply a classification. The second is defined in the Support Vector Machines community. It
focuses on the boundary of the data. It avoids the estimation of the complete density of the
data, which might be difficult using small sample sizes.
Experimental results on artificial datasets show that, on the first hand, class-modeling ap-
proaches require big amounts of data because it is based on a complete density estimate.
Furthermore, the performances of the classifier is conditioned by the choice of a good con-
vergent estimator. As a comparison between GMM and PW algorithms, it is worthy to note
that even though PW is widely used, for some complex distributions like multimodal distribu-
tions, GMM fitting can be a better model yielding to an accurate decision rule. GMM produce
not only memory and computational advantages, but also superior results in terms of solving
the under vs. overfitting compromise. When a large sample of typical data is available, the
density method is expected to work well.
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On the second hand, MSVM methods based on ν-1-SVM methods is a relatively new approach
that avoids the estimation of the complete probability density. This not only gives an advan-
tage when just a limited sample is available, it is even possible to learn from data when the
density distribution is difficult to estimate (representation space of high dimension).
Experimental results on real datasets show that, in the particular case where decisions are
given by the possible classes and the loss function is set equal to the error rate, the proposed
boundary approach, compared with the state of art multiclass algorithms, can be considered
as a competitive one. Moreover, this method seems to be an interesting solution to solve
imbalanced problems. Because both minority and majority classes are learned separately,
descriptions are not dominated by the majority classes. Consequently, the performance of the
learning procedure is supposed to outperform multiclass rules learned from imbalanced data
sets. In the class-selective rejection scheme with constraints, the proposed classifier ensures
higher reliability and reduces time and expense costs by introducing partial and total rejection
and restricting the misclassified the ambiguously classified samples.
Finally, we can say that the expounded approaches are a new way to learn accurate multiclass
decision rules satisfying users requirements on the global performances of the classification
system. To avoid too demanding constrains like PE < ǫ and PI < ǫ

′ which lead most of the
time to very large total rejection (total rejection should not be subject to constraint otherwise
the problem may have no solution), we advocate to choose reasonable constraints as an initial
target and then to tune the value of the obtained Lagrange multipliers to select a satisfactory
compromise. The main interest of the proposed method is to provide a nice initial starting
point for the decision rule design and also to avoid costs adjustments which may be difficult
to achieve when the number of decision options and consequently the number of costs is
large. In the proposed approach only Lagrangian multipliers need final adjustments. Since
the number of the Lagrangian multipliers is equal to the number of monitored performance
constraints which is generally limited, the choice of a good trade-off among the performances
constraints is not too difficult to achieve.
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