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1. Introduction 
 

A machining manipulator is subject to mechanical interaction with the object being 
processed. The robot performs the task in constrained work space. In constrained tasks, one 
is concerned with not only the position of the robot end-point, but also the contact forces, 
which are desired to be accommodated rather than resisted. Therefore, interaction force 
needs to be considered in designing and controlling deburring tools.  
Many researchers have proposed automated systems for grinding dies, deburring casting, 
removing weld beans, etc [Bopp, 1983; Gustaffson, 1983]. Usually, a deburring tool is 
mounted on a NC machining center or a robot manipulator. Several control laws have been 
developed for simultaneous control of both motion and force [Whitney, 1987; Hogan, 1984] 
of robotic manipulators. Despite the diversity of approaches, it is possible to classify most of 
the control methods into two major approaches: impedance control [Wang & Cheah, 1996; 
Carelli & Kelly, 1991] and hybrid position/force control [Raibert & Craig, 1981; Yoshikawa 
et al., 1988].  However, these methods require an accurate model of force interaction 
between the manipulator and the environment and are difficult to implement on typical 
industrial manipulators that are designed for position control.  
An active feedback control scheme was developed in order to supply compliance for robotic 
deburring as a means to accommodate the interaction force due to contact motion. Kuntze 
[Kuntze, 1984] suggested an active control scheme, in which the actuators are commanded 
to increase torques in the opposite direction of the deflections. Paul [Paul et al., 1982] 
applied an active isolator to a chipping robot, where the isolator attached to the arm tip 
reduces the vibration seen by the robot. Sharon and Hardt [Sharon and Hardt, 1984] 
developed a multi-axis local actuator, which compensates for positioning errors at the end 
point, in a limited range.  
Asada [Asada & Sawada, 1984] developed passive tool support mechanisms, which couple 
the arm tip to the workpiece surface and bear large vibratory loads.  These mechanisms 
allow the robot to compensate for the excessive deflection when the robot contacts the 
workpiece. These methods reduce dynamic deflection in a certain frequency range. 
However, it is difficult for these control schemes, which are employed for a robot with a 
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passive tool, to perform well over a wide frequency band because they must drive the entire, 
massive robot arm. In addition, unknown compliance from a passive tool makes it difficult 
to control the deburring robot.  
In this paper, a robotic deburring method is developed based on an integrated pneumatic 
actuation system (IPAS), which considers the interaction among the tool, the manipulator, 
and the workpiece and couples the tool dynamics and a control design that explicitly 
considers deburring process information. A new active tool is developed based on two 
pneumatic actuators, which utilizes double cutting action – initial cut followed by fine cut. 
Then, a coordination based control method is developed for the robotic deburring system 
based on the active pneumatic deburring tool. The developed control method employs a 
hierarchical control structure based on a coordination scheme. Robust feedback linearization 
is utilized to minimize the restrained elements of the precision deburring such as static and 
Coulomb friction and nonlinear compliance of the pneumatic cylinder stemming from the 
compressibility of air. 

 
2. Modeling of the Deburring Robot 
 

In this section, a dynamic model of a robotic arm with the new deburring tool or IPAS is 
developed as a robotic deburring system as shown in Fig. 2. Fig. 1 shows the integrated 
cylinder, which is comprised of three chambers and actuated by a single valve connected to 
Chamber 3. Note that the IPAS is a single input system with two pistons. The pistons are not 
directly connected to the inner pistons, 3tM  and 4tM , which create a unique configuration 
of three chambers connected in series. This configuration allows the chambers adjacent to 
the active chamber to act as vibration isolators. This feature enables the IPAS to damp out 
the chatter caused by external loads and air compressibility. Therefore, a double cutting 
action and chattering reduction can be achieved simultaneously. 
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Fig. 1. Integrated double cylinder system 

The dynamics of the chambers can be written as [Sorli et al., 1999] 
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where 3G  is the entering air flow, 3  the air density and 3V the volume of Chamber 3. It is 
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where the subscript j  indicates the initial conditions and n  is the air transformation ratio. 
Now, 3V   is derived as 
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where 3A  denotes the area of Piston 3, and tiX  ( i =4,3) is the position of Piston i . L  
denotes the length of Chamber 3 as shown in Fig. 3. By combining Eqs. (2) and (3) and their 
time derivatives in Eq. (1), the following expression is be obtained: 
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Then, the pressure gradient is be written as  
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The dynamic equations are written as  
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where K and C are the stiffness and damping coefficients of the system, respectively, tiX  

and tiX  represent the velocity and the acceleration of each piston ( )4,3,2,1i . fiF  denotes 
the viscous friction force of the piston rod ( )4,3,2,1i , eiF  is the external force )2,1( i , iP  
and iA  )3,2,1( i  denote the air pressure and the area of the piston, respectively, and 1tM  
and 2tM  are the masses of each position rod. 

 
2.3 Robotic Deburring System 
Fig. 2 illustrates a multi-link rigid robot with the pneumatic deburring tool described earlier. 
Using the well-known Lagrangian equations, the following equations of motion of the 
deburring robot can be obtained:   
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The dynamics of the chambers can be written as [Sorli et al., 1999] 
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where K and C are the stiffness and damping coefficients of the system, respectively, tiX  

and tiX  represent the velocity and the acceleration of each piston ( )4,3,2,1i . fiF  denotes 
the viscous friction force of the piston rod ( )4,3,2,1i , eiF  is the external force )2,1( i , iP  
and iA  )3,2,1( i  denote the air pressure and the area of the piston, respectively, and 1tM  
and 2tM  are the masses of each position rod. 

 
2.3 Robotic Deburring System 
Fig. 2 illustrates a multi-link rigid robot with the pneumatic deburring tool described earlier. 
Using the well-known Lagrangian equations, the following equations of motion of the 
deburring robot can be obtained:   
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Fig. 2. Deburring robot with pneumatic tool 
 
where qqq  ,,  are the joint angle, the joint angular velocity, and the joint angular acceleration, 
respectively, )(qm  is the 33 symmetric positive-definite inertia matrix, qqqc ),(  is the 31 
vector of Coriolis and centrifugal torques, )(qg  is the 31 gravitational torques, and  is 
the 31 vector of the joint torques.  
The mass of the links and pneumatic cylinder are considered as if they were rigidly attached. 
The relationship between the joint and the tip velocities can be written as 
 

             qqJx  )(                                                                         (8) 
where )(qJ  is the geometric Jacobian of the manipulator. By differentiating Eq. (8), the 
Cartesian acceleration term can be found as  
 

        qJqqJx   )(                                                                   (9) 
Then, the equations of motion of the robot are obtained as following:  
 

                           fxgxxcxxm  )(),()(                                                      (10) 

where 1)(  TJf  is input expressed in task space and )(xm  is the inertia matrix, ),( xxc  is  
Coriolis and centrifugal forces, and )(xg  is gravitational forces. 
    Let the dynamic equation of the robot manipulator in the constraint coordinates be 
represented as 

rfffxgxxxcxxm  )(),()(                                             (11) 
 
where f  denotes the input force and rff  is the resultant force of the normal force nf  and 
the tangential force tf  exerted on the tool tip. The tangential force [18] can be represented as 
 

t

mt
t V

ebdvf                                                                   (12) 

where tV  is the spindle speed of deburring tool; b  is the tool width; d is the depth of cut; 

tv  is the feed rate (or the traveling speed of the end effector along the surface of the 
workpiece); me  is the material-stiffness of the workpiece. The normal force nf  is assumed to 
be proportional to the tangential force tf . Besides, the force angle of the deburring tool 
affects the tangential force. Although the value of the angle may vary substantially 
depending on the nature of the material flow at the tool-chip interface, as approximation 0.3 
was used in these calculations [Raibert & Craig, 1981]. Therefore, the normal force nf  is 
considered to be smaller than the tangential force tf  in Eq. (12), where the ratio is 

3.0/ tn ff  [Deccusse & Moog, 1985]. 

 
3.  Control Design 
 

The IPAS based deburring robot can be treated as a system that consists of two primary 
subsystems; the arm and the IPAS. The two subsystems differ substantially in their task 
assignments, dynamic characteristics and controller requirements. This physical 
interpretation provides an efficient approach to the control of the robotic deburring system. 
The control strategy for the deburring robot is illustrated in Fig. 3. The arm is commanded 
to follow the desired trajectory in task space, which is modified based on the position of the 
second piston due to varying length of the tool. In other words, the primary cutter at the 
front side cuts the burr first and the second cutter then attempts to eliminate the remaining 
burr. In case that the burr is not removed completely, the uncut depth is incorporated into 
the desired trajectory for compensation. 
The developed control design is a decentralized control [Deccusse & Moog, 1985; Isidori, 
1985], which consists of two independent controllers interacting based on the coordination 
scheme aforementioned for the manipulator and the IPAS, respectively. Constraint 
equations are derived in terms of position variables and are differentiated twice to lead to a 
relationship in terms accelerations, which integrate the separate controllers for stability 
proof. Feedback linearization is employed to design a coordination based controller. In what 
follows, it is shown that use of a nonlinear dynamic feedback achieves exact linearization 
and input-output decoupling for the robotic deburring system. However, pneumatic 
actuators typically have a limited bandwidth restricting the high gains which can be applied. 
Combined with their limited damping and low stiffness properties, which arise from the 
compressibility of air, the accuracy and repeatability of the performance can be limited 
under variable payload and supply pressure. Therefore, robust feedback linearization is 
employed to reduce the undesirable effect of nonlinear compliance of the pneumatic 
cylinder. The coordination control method is developed first and then its efficiency will be 
compared with the hybrid control method through simulation study.  

 
3.1 Coordination Control 
Shown in Fig. 3 is the control design for the deburring robot with the active pneumatic tool. 
Note that tX  denotes the position of the piston, respectively relative to their origins as 

described in Section 2.1. The desired trajectories of the robot wrist, denoted as d
r

d
r

d
r xxx  ,, , are 

modified to compensate the uncut depth based on the position of the second piston due to 
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the varying length of the tool. Additionally, d
t

d
t XX , , and d

tX denote the desired trajectories 
for the IPAS. Feedback linearization [Isidori, 1985] is employed to design a coordination 
based controller. In what follows, it is shown that the use of a nonlinear dynamic feedback 
achieves exact linearization and input-output decoupling for the robotic deburring system.  

Feedback
linearization Robot

Deburring
tool using

IPAS

Feedback
linearization

Desired
Trajectory

Desired
Trajectory

Formulation

Coordination
Scheme

rrr xxx  ,,

tX

d
r

d
r

d
r xxx  ,,

Robust
control

d
t

d
t

d
t XXX  ,,

 
Fig. 3. Block diagram for coordinated control for robotic deburring 
 
We assume that the robot has n links. The equations of motion of the arm are rewritten in a 
decentralized form as 

trrrrrrrrr XxRfxxcxxm  )(),()(                                           (13) 
where rr xx ,  and rx  denote the displacement, velocity and acceleration matrix of the tip of 
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on the piston, tR  is the inertia matrix nn  which represents the end effect of the 
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Let mRp denote the position vector of the tip of the robot in the fixed workspace 
coordinate system. The robotic deburring system is assumed to have the constraint surface 
defined in algebraic terms by  

          0
)(

)(
)(

1

1



















 p

p
p

n


                                                         (15) 

 
where p is comprised of rx and tX . Now, the constraint Eq. (15) is differentiated once as 
following: 

0)()(  qqJp c                                                           (16) 
where cJ denotes the geometric Jacobian matrix nn . The initial Lagrange coordinate 0q  

satisfies the holonomic constraint 0)( 0 p , where 0p  is the initial position of the robot. 

Then, Eq. (16) is differentiated once to produce 0 , into which the subsystems, Eqs. (13) 
and (14) are incorporated. Then, feedback linearization can be applied to cancel the coupling 
terms and to design linear controllers as the outer feedback loop.  Since the manipulator 
velocity is always in the null space of )(p , it is possible to define a vector of generalized 
velocities )(t , which is the 1n  dimensional  matrix as following: 
 

  )()( txx rr  = 

















































)(

)(

)(0

0)( 11111

nnrnn

r

rn

r

t

t

x

x

x

x



















                        (17) 

where the columns of )( rx  are in the nn  dimensional null space of )(p . Differentiating 
Eq. (15), substituting the resulting expression for rx into Eq. (13), and premultiplying Eq. 

(13) by T , we obtain 
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Note that 0TT . Similarly substituting rx into Eq. (14), we have 
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the following expression is obtained:  
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The system is input-output linearizable by using the following nonlinear feedback: 
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which results in simpler state equations as following: 
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To derive the decoupling matrix, each component of the output equations is differentiated 
until the input appears explicitly in the derivative. In this case, the output equation is 
differentiated twice as following: 
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where )( is the decoupling matrix of the system given by 
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Applying the following nonlinear state feedback 
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the input-output relationship is decoupled because each component of the auxiliary input, 
 , controls one and only one component of the output, y . It is noted that the existence of 
the nonlinear feedback require the inverse of the decoupling matrix )( . To complete the 
controller design, it is necessary to stabilize each of the above subsystem with constant state 
feedback. Then, the stability of the system is guaranteed by selecting appropriate constant 
feedback gains for the linearized system. 
Now, robust feedback linearization is employed to minimize the undesirable effect of 
external disturbances such as static and Coulomb friction and nonlinear compliance of the 
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the following expression is obtained:  
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The system is input-output linearizable by using the following nonlinear feedback: 
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which results in simpler state equations as following: 
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To derive the decoupling matrix, each component of the output equations is differentiated 
until the input appears explicitly in the derivative. In this case, the output equation is 
differentiated twice as following: 
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where )( is the decoupling matrix of the system given by 
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Applying the following nonlinear state feedback 
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the input-output relationship is decoupled because each component of the auxiliary input, 
 , controls one and only one component of the output, y . It is noted that the existence of 
the nonlinear feedback require the inverse of the decoupling matrix )( . To complete the 
controller design, it is necessary to stabilize each of the above subsystem with constant state 
feedback. Then, the stability of the system is guaranteed by selecting appropriate constant 
feedback gains for the linearized system. 
Now, robust feedback linearization is employed to minimize the undesirable effect of 
external disturbances such as static and Coulomb friction and nonlinear compliance of the 
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pneumatic cylinder stemming from the compressibility of air as appeared in Eq. (14). Let the 
tracking error be defined d

ttt XXe  . From Eq. (14) the following expression can be 
obtained: one obtains 
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Then, the following error dynamics is employed:   
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Now, the feedback linearizing control flP is chosen to be   
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where d
t

d
t

d
t XXX  ,,  are the desired position, velocity, and acceleration and 1  and 2 are the 

control gains. In addition,Eq. (31) is uncertainty in the system, an auxiliary control input w  
can be injected as follows 

w
A

MPP t
flfl                                                             (32) 

Using flP Eq. (32) yields the error dynamics 
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where )(  is lumped uncertainty originating from the bounded uncertainties in the plant. 
Here, a layer of sliding manifold and a switching law on the reduced order manifold are 
defined so as to compensate for the bounded lumped uncertainty stemming from the 
difference between the actual and the nominal plant parameters [Acarman et al., 2001]. 
Therefore the layer of sliding manifold can be defined as   
 

twtw eCeS                                                                 (34) 

where te and te  denotes d
tt XX    and d

tt XX  , respectively. It is noted that 0wC . Now, 
let 
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where )(~ N . Then,  wS  is expressed as  
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Therefore, 0 ww SS  is achieved.  In summary, the deburring system of interest is 
considered to have two subsystems as described. The interactive dynamics of the 
subsystems are decoupled in feedback sense by feedback linearization or Eq. (28) and 
suitable controllers are designed for the subsystems based on the motion coordination 
scheme as described. Then, a robust controller is designed for the tool subsystem to 
minimize the harmful effect of static and Coulomb frictions and nonlinear compliance of the 

pneumatic cylinder due to air compressibility. Therefore, the stability of the overall system 
can be achieved by properly selecting the feedback gains of each subsystem together with 
proper gains of the robust feedback for the tool as shown in Eqs. (33) – (36).  

 
4. Simulation 
 

Simulation study was performed to investigate the performance of the controllers developed 
for the robotic deburring systems with different tools: (1) the hybrid controller  [12, 13, 20, 21, 
22, 23, 24, 28, 39] for the rigid tool based system (2) the coordination controller for the single 
active pneumatic cylinder tool (3) the coordination controller for the double active 
pneumatic tool based system. Note that the mathematical models for the rigid and the single 
active pneumatic cylinder tools are not shown due to their nature of being a subset of the 
IPAS. 
Fig. 4 shows the simulation results for the hybrid control system. The following parameters 
were used in simulation: 

1m =16kg, 2m =12kg, 1l =0.5m, and 2l =0.7m 

where 1m  and  2m  are the masses of each link of the 2 DOF manipulator, 1l  and  2l  are 
the lengths of each link. The feedback gains of the controller were chosen as following: 

Nfd 20 , 1pk diag[150, 150, 150], 1dk diag[70, 70, 70], 2pk diag [750, 750, 750], and 
2dk diag[230, 230, 230]  where df is the desired force, and pik and dik ( 2,1i ) are the 

control PD gains. 
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Fig. 4. Rigid tool (a) tracking (b) position error 
 
Fig. 4 (a) and (b) show the performance of the hybrid controller designed for the deburring 
robot with a rigid tool. In the simulation, the stiffness of the material was set to 500000 N/m 
and the desired cut depth was chosen to be 0.0002 m.  The results show large deburring 
error, which remains oscillatory after large overshoot in the transient period due to 
chattering caused by the air compressibility and the contact motion between the robot and 
the workpiece. The following parameters were used for the tangential force as: 
 

b =16 mm , tv =0.08 sm / , and tV =30,000 RPM . 
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pneumatic cylinder stemming from the compressibility of air as appeared in Eq. (14). Let the 
tracking error be defined d

ttt XXe  . From Eq. (14) the following expression can be 
obtained: one obtains 
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control gains. In addition,Eq. (31) is uncertainty in the system, an auxiliary control input w  
can be injected as follows 

w
A

MPP t
flfl                                                             (32) 

Using flP Eq. (32) yields the error dynamics 
 

0)()()()( 21  wXXXXXX d
tt

d
tt

d
tt                              (33) 

where )(  is lumped uncertainty originating from the bounded uncertainties in the plant. 
Here, a layer of sliding manifold and a switching law on the reduced order manifold are 
defined so as to compensate for the bounded lumped uncertainty stemming from the 
difference between the actual and the nominal plant parameters [Acarman et al., 2001]. 
Therefore the layer of sliding manifold can be defined as   
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Therefore, 0 ww SS  is achieved.  In summary, the deburring system of interest is 
considered to have two subsystems as described. The interactive dynamics of the 
subsystems are decoupled in feedback sense by feedback linearization or Eq. (28) and 
suitable controllers are designed for the subsystems based on the motion coordination 
scheme as described. Then, a robust controller is designed for the tool subsystem to 
minimize the harmful effect of static and Coulomb frictions and nonlinear compliance of the 

pneumatic cylinder due to air compressibility. Therefore, the stability of the overall system 
can be achieved by properly selecting the feedback gains of each subsystem together with 
proper gains of the robust feedback for the tool as shown in Eqs. (33) – (36).  

 
4. Simulation 
 

Simulation study was performed to investigate the performance of the controllers developed 
for the robotic deburring systems with different tools: (1) the hybrid controller  [12, 13, 20, 21, 
22, 23, 24, 28, 39] for the rigid tool based system (2) the coordination controller for the single 
active pneumatic cylinder tool (3) the coordination controller for the double active 
pneumatic tool based system. Note that the mathematical models for the rigid and the single 
active pneumatic cylinder tools are not shown due to their nature of being a subset of the 
IPAS. 
Fig. 4 shows the simulation results for the hybrid control system. The following parameters 
were used in simulation: 

1m =16kg, 2m =12kg, 1l =0.5m, and 2l =0.7m 

where 1m  and  2m  are the masses of each link of the 2 DOF manipulator, 1l  and  2l  are 
the lengths of each link. The feedback gains of the controller were chosen as following: 

Nfd 20 , 1pk diag[150, 150, 150], 1dk diag[70, 70, 70], 2pk diag [750, 750, 750], and 
2dk diag[230, 230, 230]  where df is the desired force, and pik and dik ( 2,1i ) are the 

control PD gains. 
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Fig. 4. Rigid tool (a) tracking (b) position error 
 
Fig. 4 (a) and (b) show the performance of the hybrid controller designed for the deburring 
robot with a rigid tool. In the simulation, the stiffness of the material was set to 500000 N/m 
and the desired cut depth was chosen to be 0.0002 m.  The results show large deburring 
error, which remains oscillatory after large overshoot in the transient period due to 
chattering caused by the air compressibility and the contact motion between the robot and 
the workpiece. The following parameters were used for the tangential force as: 
 

b =16 mm , tv =0.08 sm / , and tV =30,000 RPM . 
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Fig. 5 depicts the deburring performance of the coordination controller designed for the 
robot with a single active pneumatic cylinder tool. The following parameters were used for 
simulation:  
 Chamber pressures sP1 = sP2 = Pa5101  

 Piston areas 1sA = 1sA = 2000256.0 m , 
 Piston mass tsM = 0.01kg 

 Chamber temperatures inin TT 21   = K293 . 
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Fig. 5. Single pneumatic tool (a) tracking (b) position error 
 
As shown in Fig. 5 (a) and (b), the transient performance is improved significantly with the 
single active pneumatic tool with the coordination controller in comparison to the previous 
case. However, the steady-state performance still remains unsatisfactory due to the chatter 
that appears in the response, which is caused by the compressibility of the air in the 
pneumatic cylinder and therefore requires repetitive deburring. Nevertheless, the 
simulation results demonstrate the potential of a pneumatic actuator as an efficient tool 
which can significantly enhance the performance of a deburring robot if the chattering effect 
can be eliminated or minimized by an improved design of the tool and/or an efficient 
control.  
Fig. 6 demonstrates the deburring performance of the robot with the IPAS as shown in Fig. 1. 
The developed coordination control method by using feedback linearization was utilized for 
the IPAS based deburring system. It is noted that the initial position of tiX ( i =1, 2, 3, 4) is 
set to zero. The following is the additional parameters used for the integrated cylinder:  
 

PaP j
5

3 101 , 2
21 000256.0 mAA  , 2

43 00055.0 mAA  , n=0.8, NFf 102,1  , NFf 154,3  , 

1tM = 2tM =0.01kg, 3tM = 4tM =0.015kg, and KT j
2933  . 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-12

-10

-8

-6

-4

-2

0

2
x 10

-4 Position error

Time (s)

P
os

iti
on

 e
rr

or
 (m

)

x position error 

y position error 

3.2 3.22 3.24 3.26 3.28 3.3 3.32 3.34 3.36 3.38 3.4

-4

-3

-2

-1

0

1

2

3

4
x 10

-5 Position error

Time (s)

P
os

iti
on

 e
rr

or
 (m

)

x position error 

y position error 

 
(a) (b) 

Fig. 6.  Integrated double pneumatic cylinder (Coordinated control without robust control) 
(a) Position error (b) Enlarged position error 
 
It is evident as shown in Fig. 6 (a) that the deburring performance of the system is greatly 
improved with the IPAS and the coordination controller. The simulation results show quick 
and smooth transient response and nearly zero steady-state error. The integrated system 
particularly improves the transient behavior in comparison to the single cylinder system. 
However, Fig. 6 (b) shows the chatter of position error of the IPAS when Fig. 6 (a) is 
enlarged. The chatter is from the compressibility and flexibility of the air. Such fluctuating 
position error can occur in harm of the system. Also, Combined with their limited damping 
and low stiffness properties, which arise from the compressibility of air, the accuracy and 
repeatability of the performance can be limited under variable payload and supply pressure. 
To eliminated and/or reduce the undesirable effect of nonlinearity, in next simulation, 
robust feedback linearization is employed.  
Fig. 7 depicts the deburring performance of the coordination controller based on robust 
feedback linearization. The following parameters were used for simulation:  
 

PaP j
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3 101 , 2
21 000256.0 mAA  , 2

43 00055.0 mAA  , n=0.8, NFf 102,1  , NFf 154,3  , 

1tM = 2tM =0.01kg, 3tM = 4tM =0.015kg, KT j
2933  , 251  , 72  , 7wC , 1~ N , and 

)( =0.5, 
 

Fig. 7 (b) shows the reduction of position error caused by the, which is caused by the 
compressibility of the air in the pneumatic cylinder. In this simulation, the oscillatory 
position errors are almost eliminated in difference with the previous results by using the 
robust feedback linearization. Through the robust feedback as shown in Fig. 3, the 
additional robust controller could soften the chatter by the air compressibility in pneumatic 
tool. The simulation results demonstrate the efficacy of the developed coordination control 
based on robust feedback linearization for the new deburring tool. 
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Fig. 5 depicts the deburring performance of the coordination controller designed for the 
robot with a single active pneumatic cylinder tool. The following parameters were used for 
simulation:  
 Chamber pressures sP1 = sP2 = Pa5101  

 Piston areas 1sA = 1sA = 2000256.0 m , 
 Piston mass tsM = 0.01kg 

 Chamber temperatures inin TT 21   = K293 . 

0.2 0.25 0.3 0.35 0.4 0.45
0.0201

0.0202

0.02025

0.0203

0.02035

0.0204

0.02045

0.0205
Robot with a single pneumatic tool

y 
po

si
tio

n 
(m

)

x position (m)

Desirable 
cut depth 

Desired trajectory for deburring 

Material 

 
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-12

-10

-8

-6

-4

-2

0

2
x 10

-4 Position error 

P
os

iti
on

 e
rr

or
 (m

)

Time (s)

x position error 

y position error 

 
(a) (b) 

 
Fig. 5. Single pneumatic tool (a) tracking (b) position error 
 
As shown in Fig. 5 (a) and (b), the transient performance is improved significantly with the 
single active pneumatic tool with the coordination controller in comparison to the previous 
case. However, the steady-state performance still remains unsatisfactory due to the chatter 
that appears in the response, which is caused by the compressibility of the air in the 
pneumatic cylinder and therefore requires repetitive deburring. Nevertheless, the 
simulation results demonstrate the potential of a pneumatic actuator as an efficient tool 
which can significantly enhance the performance of a deburring robot if the chattering effect 
can be eliminated or minimized by an improved design of the tool and/or an efficient 
control.  
Fig. 6 demonstrates the deburring performance of the robot with the IPAS as shown in Fig. 1. 
The developed coordination control method by using feedback linearization was utilized for 
the IPAS based deburring system. It is noted that the initial position of tiX ( i =1, 2, 3, 4) is 
set to zero. The following is the additional parameters used for the integrated cylinder:  
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Fig. 6.  Integrated double pneumatic cylinder (Coordinated control without robust control) 
(a) Position error (b) Enlarged position error 
 
It is evident as shown in Fig. 6 (a) that the deburring performance of the system is greatly 
improved with the IPAS and the coordination controller. The simulation results show quick 
and smooth transient response and nearly zero steady-state error. The integrated system 
particularly improves the transient behavior in comparison to the single cylinder system. 
However, Fig. 6 (b) shows the chatter of position error of the IPAS when Fig. 6 (a) is 
enlarged. The chatter is from the compressibility and flexibility of the air. Such fluctuating 
position error can occur in harm of the system. Also, Combined with their limited damping 
and low stiffness properties, which arise from the compressibility of air, the accuracy and 
repeatability of the performance can be limited under variable payload and supply pressure. 
To eliminated and/or reduce the undesirable effect of nonlinearity, in next simulation, 
robust feedback linearization is employed.  
Fig. 7 depicts the deburring performance of the coordination controller based on robust 
feedback linearization. The following parameters were used for simulation:  
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2933  , 251  , 72  , 7wC , 1~ N , and 
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Fig. 7 (b) shows the reduction of position error caused by the, which is caused by the 
compressibility of the air in the pneumatic cylinder. In this simulation, the oscillatory 
position errors are almost eliminated in difference with the previous results by using the 
robust feedback linearization. Through the robust feedback as shown in Fig. 3, the 
additional robust controller could soften the chatter by the air compressibility in pneumatic 
tool. The simulation results demonstrate the efficacy of the developed coordination control 
based on robust feedback linearization for the new deburring tool. 
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Fig. 7. Integrated double pneumatic cylinder (a) tracking (b) position error (Robust Feedback 
linearization) 

 
5. Conclusion 
 

High-quality robotic deburring requires efficient control of the deburring path and contact 
forces, as well as optimal selection of a suitable feed-rate and tool design. In this paper, an 
efficient robotic deburring method was developed based on a new active pneumatic tool, 
which considers the interaction among the tool, the manipulator, and the workpiece and 
couples the tool dynamics and a control design that explicitly considers deburring process 
information. A new active pneumatic tool was developed by physically integrating two 
pneumatic actuators, which implements double cutting action – initial cut followed by fine 
cut. Then, a control method was developed for the robotic deburring system based on the 
active pneumatic tool, which utilizes coordinated control based on a feedback linearization 
for the manipulator and a robust feedback linearization for the deburring tool using a 
pneumatic cylinder. From the simulation results, robust feedback linearization achieved the 
smooth transient response and nearly zero steady-state error in spite of the undesirable 
effect of external disturbances. The developed control system employs the two-level 
hierarchical control structure based on a simple coordination scheme. Simulation results 
showed that the developed system significantly reduces the chattering of the deburring 
robot and improves the deburring accuracy. Implementation of the developed method is 
intended for experimental verification in the future.  
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