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1. Introduction 

This paper presents a method to perform global localization in urban environments using 
segment-based maps in combination with particle filters. In the proposed approach the 
likelihood function is generated as a grid, derived from segment-based maps. The scheme 
can efficiently assign weights to the particles in real time, with minimum memory 
requirements and without any additional pre-filtering procedure. Multi-hypothesis cases are 
handled transparently by the filter. A local history-based observation model is formulated 
as an extension to deal with ‘out-of-map navigation cases. This feature is highly desirable 
since the map can be incomplete, or the vehicle can be actually located outside the 
boundaries of the provided map. The system behaves like a global localizer for urban 
environments, without using an actual GPS. Experimental results show the performance of 
the proposed method in large scale urban environments using route network description 
(RNDF) segment-based maps. 
Accurate localization is a fundamental task in order to achieve high levels of autonomy in 
robot navigation and robustness in vehicle positioning. Localization systems often depend 
on GPS due to its affordability and convenience. However, it is well known that GPS is not 
fully reliable, since satellite positioning is not available anytime, anywhere. This is the case 
of extreme scenarios such as underwater or underground navigation, for instance. In the 
context of urban navigation, GPS signals are often affected by buildings (‘urban canyon’ 
effect) blocking the reception or generating undesirable jumps due to multi-path effects. 
Fortunately, the use of a priori maps can help in the localization process. 
There are maps already available for certain environments, such as the digital maps used for 
road positioning. Moreover, accurate maps can be built using GIS tools for many 
environments, not only urban, but also off-road settings, mining areas, and others. 
Usually the vehicle position is evaluated by combining absolute information such as GPS 
with onboard sensors such as encoders and IMUs. Since GPS information is not 
permanently available, significant work has been carried out in order to integrate external 
sensors such as laser and sonar in the localization process such as in (Leonard & Durrant-
Whyte, 1991), (Guivant & Nebot, 2001). 
A priori information, such as digital maps, has been used to obtain accurate global 
localization, usually fusing information into Bayesian filters (Fox et al., 2001). Maps of the 
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environment are used in (Dellaert et al., 1999) in order to differentiate between obstacles and 
free space, and to bias the distribution of particles. In (Oh et al., 2004) map-based priors are 
incorporated into the motion model, and in (Liao et al., 2003) the localization is performed 
using particles constrained to a Voronoi map. Segment-based maps are often used in driving 
assistance systems for urban vehicle navigation. In this context, maps are usually defined as 
graphs that represent the road network connectivity. (Najjar et al., 2005) proposes a method 
that uses segment-based maps and Kalman filtering to perform an accurate localization 
constrained to the map. The scheme relies on the selection of the appropriate candidate 
segment from the dataset, considering multiple criteria and the estimated location of the 
vehicle. A similar approach has been presented in (Taylor & Blewitt, 2000). 
In this paper we present a method to perform global localization in urban environments 
using segment-based maps in combination with particle filters. The contributions of the 
proposed architecture are two. Firstly, the likelihood function is generated as a grid, based 
on the segment-based map. In this way the scheme can efficiently assign weights to the 
particles in real time, with minimum memory requirements and without any additional pre-
filtering procedure. Multiple hypotheses are handled transparently by the filter. The second 
contribution is an extension to the observation model, called local history-based observation. 
Hereby, the filter is able to deal with ‘out-of-map’ navigation cases, a feature that is highly 
desirable since the map can be incomplete or the vehicle can be actually located outside the 
boundaries of the map. 
This paper is organized as follows: Bayesian methods are briefly introduced in Section 2, 
with particular emphasis on localization using particle filters. Section 3 describes our 
proposed approach to perform vehicle localization using particle filters and route network 
description (RNDF) segment-based a priori maps. The likelihood generation scheme is 
shown and an extension to the observation model, the local history-based observation, is 
introduced. Results illustrating the performance of the system in experiments undertaken in 
a large urban environment are provided and detailed in Section 4. Conclusions and future 
work are finally discussed in Section 5. 

 
2. Bayesian Localization 

Bayesian methods (Arulampalam et al., 2002) provide a rigorous general framework for 
dynamic state estimation problems. Bayesian approaches aim at building the probability 
density function (PDF) of the state vector based on all the available information. Vehicle 
localization can be understood as a Bayesian estimation problem. If the robot's location at 
time k is expressed as the vector  
 
  , , T

k k k kX x y  , (1) 
 
then the localization problem implies the recursive estimation of the PDF  
 
  

  |
|k

k

k
kX z

p X z  (2) 

where  kz  is the sequence of all the available sensor measurements until time k.  

 

In the rest of this paper we will express the probability functions without the sub indices, i.e. 
any expression such as  p   will mean  p  . 

If we suppose that the posterior   1
1 | k

kp X z 
  at time 1k   is available, then the prior at 

time k (due to a prediction step) is: 
 
        1 1
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k k k k kp X z p X X p X z dX 

      (3) 

 
where  1|k kp X X   is the process model for the system, i.e. the motion model of the vehicle. 
At time k a set of measurements kz become available allowing the synthesis of a posterior 
that is obtained through a Bayesian update stage as: 
 
        1| | |k k

k k k kp X z C p X z p z X    (4) 

 
where the constant C is a normalization factor, and  |k kp z X  is the likelihood function for 
the related observation kz z  at state kX , i.e. it is the observation model. 
For the linear Gaussian estimation problem, the required PDF remains Gaussian on every 
iteration of the filter. Kalman Filter relations propagate and update the mean and covariance 
of the distribution. For a nonlinear non-Gaussian problem, there is in general no analytic 
expression for the required PDF. A particle filter can estimate parameters with non-
Gaussian and potentially multimodal probability density functions. The PDF is represented 
as a set of random samples with associated weights, and the estimates are computed based 
on these samples and weights. 

For a set of N particles at time k , denoted as  
1

,
Ni i

k k i
X w


, the approximated posterior is: 

 

    ( )

1
|

N
k i i

k k k k
i

p X z w X X


    (5) 

  
where  z a   is the Dirac delta function which is   if z a  and zero otherwise. The 

weights are normalized such that
1

1
N

i
k

i
w



  to guarantee  ( )| 1k
k kp X z dX  . 

Using the approximated posterior, the prior at time k (after a prediction stage) becomes: 
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where  1 1| i
k k kp X X X   is the process model applied to each sample 1

i
kX  . 

This density is then used as the proposal distribution  kq X  from which samples are 

drawn, i.e.  i
k kX q X . 

The update equation for the weights is: 
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The posterior is again approximated as: 
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    (9) 

 
There are several details and issues before expression (8) is achieved, however those are not 
discussed in this paper. Several remarkable papers discuss details about the Monte Carlo 
approach applied to localization problems, e.g. (Dellaert et al., 1999).  

 
3. Constrained Localization in Segment-Based Maps 

The sole use of GPS can be insufficient to obtain an accurate estimation of the vehicle’s 
location in urban navigation, as can be seen in the experiments presented in Figure 1. Figure 
1a shows the trajectory reported by the GPS in an urban environment in Sydney, Australia. 
GPS inconsistencies such as jumps and discontinuities are shown in the close-up image in 
Figure 1b. In both images GPS points are shown with blue crosses, while the cyan dashed 
lines indicate the reported sequence and clearly show the undesirable behavior. 
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Fig. 1. GPS samples acquired during a trip in a urban context. GPS was not available in 
many parts of the test. The blue points show the GPS measurements and the cyan broken 
line indicates the sequence of measurements. Cyan segments (without superimposed blue 
points) mean that there was an interruption in the GPS measurements or that there was a 
sudden discontinuity in the measured positions. 
 
In this section we present an approach to perform global localization in urban environments 
using segment-based maps in combination with particle filters. First we formulate a 
likelihood function using segment-based maps, such as the route network description file 
(RNDF). From now on we will base our formulation on a map, defined as a segment-based 
map. We show how the proposed scheme can be used to efficiently assign weights to the 
particles without any particular segment evaluation or candidate pre-selection procedure, 
and how multiple hypotheses can be handled automatically by the localization filter. We 
then introduce an extension to the observation model in order to deal with ‘out-of-map’ 
localization.  

 
3.1. Likelihood Generation 
In the context of this paper there are two definitions of likelihood functions; those are the 
Base Likelihood and the Path Likelihood. The Base Likelihood is intended to model the 
likelihood of a point, i.e. the likelihood of that point being located on a valid road. The 
second definition, the Path Likelihood, is the likelihood of a pose (position and heading) and 
some associated path to it, of being located on a valid road. Both likelihood definitions are 
based on the road map. 

  
3.1.1. Road Map Definition 
The road map behaves as a permanent observation model, i.e. it defines a constraint that, in 
combination with a dead-reckoning process, makes the pose states observable. The route 
network description file (RNDF) is, in the context of the Darpa Urban Challenge (Darpa, 
2006), a topological map that provides a priori information about the urban environment. It 
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Fig. 1. GPS samples acquired during a trip in a urban context. GPS was not available in 
many parts of the test. The blue points show the GPS measurements and the cyan broken 
line indicates the sequence of measurements. Cyan segments (without superimposed blue 
points) mean that there was an interruption in the GPS measurements or that there was a 
sudden discontinuity in the measured positions. 
 
In this section we present an approach to perform global localization in urban environments 
using segment-based maps in combination with particle filters. First we formulate a 
likelihood function using segment-based maps, such as the route network description file 
(RNDF). From now on we will base our formulation on a map, defined as a segment-based 
map. We show how the proposed scheme can be used to efficiently assign weights to the 
particles without any particular segment evaluation or candidate pre-selection procedure, 
and how multiple hypotheses can be handled automatically by the localization filter. We 
then introduce an extension to the observation model in order to deal with ‘out-of-map’ 
localization.  
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In the context of this paper there are two definitions of likelihood functions; those are the 
Base Likelihood and the Path Likelihood. The Base Likelihood is intended to model the 
likelihood of a point, i.e. the likelihood of that point being located on a valid road. The 
second definition, the Path Likelihood, is the likelihood of a pose (position and heading) and 
some associated path to it, of being located on a valid road. Both likelihood definitions are 
based on the road map. 

  
3.1.1. Road Map Definition 
The road map behaves as a permanent observation model, i.e. it defines a constraint that, in 
combination with a dead-reckoning process, makes the pose states observable. The route 
network description file (RNDF) is, in the context of the Darpa Urban Challenge (Darpa, 
2006), a topological map that provides a priori information about the urban environment. It 
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includes GPS coordinates for the location of road segments, waypoints, stop signs and 
checkpoints, as well as lane widths. Fig. 2 shows a sample of a road map. 
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Fig. 2 Road map defined by a set of segments (continuous blue lines). The segments are 
defined by points expressed in a global coordinate frame (red points). 
 
One of the key ideas in the presented approach is the synthesis of a local grid representation 
of the segment based map to compute the likelihood function. The advantage of this local 
grid-based formulation is that it can efficiently generate the likelihood function for the 
particles in real time and with minimal memory requirements. It can also select the possible 
roads (segments in the RNDF map) that can be used to perform the observation for each of 
the particles, without additional high-level evaluation of the potential candidate segments. 

 
3.1.2 Base Likelihood 

For a set of N particles at time k,  
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we calculate the likelihood  | i

k kp z X   based on a 

given segment based map as:  
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where  
1

N
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is the set of all segments that define the road map (centers of roads) and 

jC denotes the properties of segment jS  (width, lanes, lane directions etc.). The function 

 .f  is function of the distance of the position component of the state X with respect to the 

center of the segment jS . Function  .f  is also dependent on each segment’s properties such 
as its width and directions of its lanes.  
A simplified version of (10) is 
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where the region k is just a convex hull that contains all the particles  
1

Nj
k j
X


. 

The region  ,map kL RNDF  defines the roads as bands using the segment’s locations and 
their widths provided in the RNDF. This computation is performed only in the area covered 
by the particles, i.e. k . Through the local computation of small windows of interest, the 
likelihood function can be evaluated for all of the particles in real time.  
Another advantageous capability of this local grid-based formulation for the likelihood 
function is in terms of multi-hypothesis handling. The localization filter can deal with multi-
hypothesis cases without any additional procedure in this regard.  Since the selection of the 
local window is spanned by the area covered by the set of current particles, k , the filter can 
inherently perform observations for all the hypothetical vehicle locations. 

 
3.1.3. Path Likelihood  
If the observation model is directly implemented by just applying the base likelihood 
function on the current instances of particles, then the system will not be able to deal with 
out-of-map localization cases. The term out-of-map means that the vehicle is allowed to travel 
through unknown sections of the map (i.e. sections not included in the a priori road map). 
Since the particles will be biased by areas of high base likelihood, the population will tend to 
cluster towards those regions that are assumed to be consistent with the map (e.g. existing 
roads on the map). This can be a desirable behavior if we assume the map is complete and 
the vehicle remains on it at all times. However, if we want to cope with non-existent roads, 
detours or other unexpected situations not considered in the RNDF representation, then this 
policy might lead to an inconsistent localization as the applied likelihood is not consistent 
with the reality.  
In general the convergence of the localization filter can be improved by considering the 
recent history of the particles within a certain horizon of past time. 
 
Definition of the Associated Paths 
An ideal procedure would be to have particles to represent the current pose and the path of 
the vehicle. By matching that path with the map it would be possible to evaluate the 
likelihood of that hypothesis.  
One way to maintain a path would be by augmenting the state vector with delayed versions 
of the current state. However this increase in the dimensionality of the estimated state 
(already a 3 DoF one) would imply a high increase in the needed number of particles.  
Alternatively, there is a highly efficient way to synthesize and associate a path for each 
particle at time k. This path is obtained through combination of a dead-reckoning estimation 
(i.e. obtained from an independent estimation process) and the current value of the 
particle i

kX . This associated trajectory is realistic for short horizons of time as the dead 

reckoning prediction is valid just for a short term. Given a particle 
Ti i i i

k k k kX x y      we 

can apply dead-reckoning estimation in reverse in order to synthesize a hypothetical 
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includes GPS coordinates for the location of road segments, waypoints, stop signs and 
checkpoints, as well as lane widths. Fig. 2 shows a sample of a road map. 
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Fig. 2 Road map defined by a set of segments (continuous blue lines). The segments are 
defined by points expressed in a global coordinate frame (red points). 
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recent history of the particles within a certain horizon of past time. 
 
Definition of the Associated Paths 
An ideal procedure would be to have particles to represent the current pose and the path of 
the vehicle. By matching that path with the map it would be possible to evaluate the 
likelihood of that hypothesis.  
One way to maintain a path would be by augmenting the state vector with delayed versions 
of the current state. However this increase in the dimensionality of the estimated state 
(already a 3 DoF one) would imply a high increase in the needed number of particles.  
Alternatively, there is a highly efficient way to synthesize and associate a path for each 
particle at time k. This path is obtained through combination of a dead-reckoning estimation 
(i.e. obtained from an independent estimation process) and the current value of the 
particle i

kX . This associated trajectory is realistic for short horizons of time as the dead 

reckoning prediction is valid just for a short term. Given a particle 
Ti i i i

k k k kX x y      we 

can apply dead-reckoning estimation in reverse in order to synthesize a hypothetical 
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trajectory    ' , ' ,i t t k k   , where the value   defines some horizon of time. This 

trajectory ends exactly at the particle instance, i.e.  i i
kk X  .  

The estimated dead-reckoning trajectory is usually defined in a different coordinate system 
as it is the result of an independent process. The important aspect of the dead-reckoning 
estimate is that its path has good quality in relative terms, i.e. locally. Its shape is, after 
proper rotation and translation, similar to the real path of the vehicle expressed in a 
different coordinate frame.  
If the dead-reckoning estimate is expressed as the path         ' ' , ' , 'i t x t y t t     then the 
process to associate it to an individual particle and to express it in the global coordinate 
frame is performed according to: 
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where:               ' , ' ' , ' ,x yt t x t y t x k y k       ,    i
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rotation matrix for a yaw angle  .The angle i
k  is the heading of the particle i

kX  and  k  
is the heading of the dead-reckoning path at time k. 
Clearly, at time 't k  the difference     ' , 'x yt t   must be  0,0 , and    
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Fig. 3 (left) shows a dead-reckoning path and how it would be used to define the associated 
paths of two hypothetical particles. The associated paths Fig. 3 (right) are just versions of the 
original path adequately translated and rotated to match the particles’ positions and 
headings. 
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Fig. 3. The left picture shows a dead-reckoning path, expressed in a coordinate frame 
defined by the position and heading of the last point (red square). The right picture shows 
the same path associated to two arbitrary particles, expressed in a common coordinate frame 

 

The new likelihood of a particle is now evaluated through the likelihood of its associated 
path with respect to the road map: 
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where  |kp z   is the base likelihood of the point  , i.e. likelihood of point   being on the 
RNDF map (as defined in (11)). 
In order to avoid the effect of time scale (i.e. speed) on the path likelihood, we focus the 
evaluation of the likelihood on the intrinsic parameter of the path, integrating over the path 
in space and not in time: 
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where  i s  is the path expressed in function of its intrinsic parameter s  and sl  is the length 
of integration over the path. The integration of the hypothetical path can be well 
approximated by a discrete summation  
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where the samples of the intrinsic parameter js are homogeneously spaced (although that is 
not strictly relevant). 
Some additional refinements can be considered for the definition of (13), for instance by 
considering the direction of the road. This means that the base likelihood would not be just a 
function of the position, it would depend on the heading at the points of the path . A path’s 
segment that crosses a road would add to the likelihood if where it invades the road it has a 
consistent direction (e.g. not a perpendicular one). 
Fig. 4 shows an example of a base likelihood (shown as a grayscale image) and particles that 
represent the pose of the vehicle and their associated paths (in cyan). The particles’ positions 
and headings are represented blue arrows. The red arrow and the red path correspond to 
one of most likely hypotheses. 
By applying observations that consider the hypothetical past path of the particle, the out-of-
map problem is mitigated (although not solved completely) for transition situations. The 
transition between being on the known map and going completely out of it (i.e. current pose 
and recent path are out of the map) can be performed safely by considering an approach 
based on hysteresis. 
The approach is summarized as follows: If the maximum individual path likelihood (the 
likelihood of the particle with maximum likelihood) is higher than HK  then the process 
keeps all particles with likelihood LK . These thresholds are defined 
by100% 0%H LK K   . If the maximum likelihood is HK  then the process keeps all the 
particles and continues the processing in pure prediction mode. Usual values for these 
thresholds are 70%, 60%H LK K  . 
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Fig. 3. The left picture shows a dead-reckoning path, expressed in a coordinate frame 
defined by the position and heading of the last point (red square). The right picture shows 
the same path associated to two arbitrary particles, expressed in a common coordinate frame 
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transition between being on the known map and going completely out of it (i.e. current pose 
and recent path are out of the map) can be performed safely by considering an approach 
based on hysteresis. 
The approach is summarized as follows: If the maximum individual path likelihood (the 
likelihood of the particle with maximum likelihood) is higher than HK  then the process 
keeps all particles with likelihood LK . These thresholds are defined 
by100% 0%H LK K   . If the maximum likelihood is HK  then the process keeps all the 
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Fig. 4. A synthetic example. This region of interest (ROI) is a rectangle of 200 meters by 200 
meters. A set of particles and their associated paths are superimposed to an image of base 
likelihood. 
 
In the synthetic example shown in Fig. 4 the region of interest (ROI) is a rectangle of 200 
meters by 200 meters. This ROI is big enough to contain the current population of particles 
and their associated paths. 
Although all the particles are located on the road (high base likelihood); many of their 
associated paths abandon the zones of high base likelihood. The most likely particles are 
those that have a path mostly contained in the nominal zones. It can be seen the remarkable 
effect of a wrong heading that can rotate the associated path and make it to abandon the 
zones of high base likelihood (i.e. the road sections in gray). 
Some particles have current values that escape the dark gray region (high base likelihood 
zones) however their associated paths are mostly contained in the roads. That means the 
real vehicle could be actually abandoning the road. This situation is repeated in Fig. 5 as 
well, where all the particles are located outside of the nominal road although many of them 
have paths that match the map constraints. 
When the filter infers that the vehicle has been outside the map for sufficient time (i.e. no 
particles show relevant part of their paths consistent with the map), no updates are 
performed on the particles, i.e. the filter works in pure prediction mode.  
When the vehicle enters the known map and eventually there are some particles that 
achieve the required path likelihood, i.e. higher than HK , then the filter will start to apply 
the updates on the particles. 
However this synchronization is not immediate. There could be some delay until some 
associated paths are consistent with the map -- the fact that a particle is well inside the road 
does not mean that its likelihood is high. It needs a relevant fraction of its associated path 
history to match the road map in order to be considered “inside the map”. 

 

This policy clearly immunizes the filter from bias when incorrect particles are temporarily 
on valid roads. 
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Fig. 5. This can be the situation where a vehicle temporarily abandons the road. It can be 
seen that although all the particles would have low base likelihood many of them have high 
likelihood when their associated paths are considered. Particles outside the road (low Base 
Likelihood) but having a correct heading would have high Path Likelihood. 

 
4. Experimental Results 

Long term experiments have been performed in urban areas of Sydney. The road maps were 
created by an ad-hoc Matlab tool that allowed users to define segments on top of a satellite 
image obtained from Google Earth. These road maps were low quality representations of 
the roads. This disregard for the quality of the definition of the road maps was done on 
purpose with the goal of exposing the approach to realistic and difficult conditions. Fig. 7 
and Fig. 8 show the road map used in the estimation process. Fig. 2 shows part of the used 
road map as well. 
The dead-reckoning process was based on the fusion of speed and heading rate 
measurements. The heading rate was provided by low cost three dimensional gyroscopes. A 
diversity of additional sensors were available in the platform (PAATV/UTE project) 
although those were not used in the estimation process and results presented in this paper. 
All the experiments and realistic simulations have validated the satisfactory performance of 
the approach. 
Figures 7, 8 and 9 present the position estimates as result of the estimation process. Those 
are shown in red (Figure 7) or in yellow (Figures 8 and 9) and are superimposed on the road 
map. In some parts of the test the vehicle went temporarily outside the known map. 
Although there was not a predefined map on those sections it was possible to infer that the 
estimator performed adequately. From the satellite image and the over-imposed estimated 
path, a human can realize that the estimated path is actually on a road not defined in the a 
priori map (Fig. 9). 
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Fig. 4. A synthetic example. This region of interest (ROI) is a rectangle of 200 meters by 200 
meters. A set of particles and their associated paths are superimposed to an image of base 
likelihood. 
 
In the synthetic example shown in Fig. 4 the region of interest (ROI) is a rectangle of 200 
meters by 200 meters. This ROI is big enough to contain the current population of particles 
and their associated paths. 
Although all the particles are located on the road (high base likelihood); many of their 
associated paths abandon the zones of high base likelihood. The most likely particles are 
those that have a path mostly contained in the nominal zones. It can be seen the remarkable 
effect of a wrong heading that can rotate the associated path and make it to abandon the 
zones of high base likelihood (i.e. the road sections in gray). 
Some particles have current values that escape the dark gray region (high base likelihood 
zones) however their associated paths are mostly contained in the roads. That means the 
real vehicle could be actually abandoning the road. This situation is repeated in Fig. 5 as 
well, where all the particles are located outside of the nominal road although many of them 
have paths that match the map constraints. 
When the filter infers that the vehicle has been outside the map for sufficient time (i.e. no 
particles show relevant part of their paths consistent with the map), no updates are 
performed on the particles, i.e. the filter works in pure prediction mode.  
When the vehicle enters the known map and eventually there are some particles that 
achieve the required path likelihood, i.e. higher than HK , then the filter will start to apply 
the updates on the particles. 
However this synchronization is not immediate. There could be some delay until some 
associated paths are consistent with the map -- the fact that a particle is well inside the road 
does not mean that its likelihood is high. It needs a relevant fraction of its associated path 
history to match the road map in order to be considered “inside the map”. 

 

This policy clearly immunizes the filter from bias when incorrect particles are temporarily 
on valid roads. 
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Fig. 5. This can be the situation where a vehicle temporarily abandons the road. It can be 
seen that although all the particles would have low base likelihood many of them have high 
likelihood when their associated paths are considered. Particles outside the road (low Base 
Likelihood) but having a correct heading would have high Path Likelihood. 

 
4. Experimental Results 

Long term experiments have been performed in urban areas of Sydney. The road maps were 
created by an ad-hoc Matlab tool that allowed users to define segments on top of a satellite 
image obtained from Google Earth. These road maps were low quality representations of 
the roads. This disregard for the quality of the definition of the road maps was done on 
purpose with the goal of exposing the approach to realistic and difficult conditions. Fig. 7 
and Fig. 8 show the road map used in the estimation process. Fig. 2 shows part of the used 
road map as well. 
The dead-reckoning process was based on the fusion of speed and heading rate 
measurements. The heading rate was provided by low cost three dimensional gyroscopes. A 
diversity of additional sensors were available in the platform (PAATV/UTE project) 
although those were not used in the estimation process and results presented in this paper. 
All the experiments and realistic simulations have validated the satisfactory performance of 
the approach. 
Figures 7, 8 and 9 present the position estimates as result of the estimation process. Those 
are shown in red (Figure 7) or in yellow (Figures 8 and 9) and are superimposed on the road 
map. In some parts of the test the vehicle went temporarily outside the known map. 
Although there was not a predefined map on those sections it was possible to infer that the 
estimator performed adequately. From the satellite image and the over-imposed estimated 
path, a human can realize that the estimated path is actually on a road not defined in the a 
priori map (Fig. 9). 
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It is difficult to define a true path in order to compare it with the estimated solution. This is 
because the estimator is intended to provide permanent global localization with a quality 
usually similar to a GPS. Figures 10, 11 and 12 present the estimated positions and 
corresponding GPS estimates although those were frequently affected by multipath and 
other problems.   

 
5. Conclusions and Future Work 

This paper presented a method to perform global localization in urban environments using 
segment-based maps together with particle filters. In the proposed approach the likelihood 
function is locally generated as a grid derived from segment-based maps. The scheme can 
efficiently assign weights to the particles in real time, with minimum memory requirements 
and without any additional pre-filtering procedures. Multi-hypothesis cases are handled 
transparently by the filter. A path-based observation model is developed as an extension to 
consistently deal with out-of-map navigation cases. This feature is highly desirable since the 
map can be incomplete, or the vehicle can be actually located outside the boundaries of the 
provided map. 
The system behaves like a virtual GPS, providing accurate global localization without using 
an actual GPS. 
Experimental results have shown that the proposed architecture works robustly in urban 
environments using segment-based road maps. These particular maps provide road 
network connectivity in the context of the Darpa Urban Challenge. However, the proposed 
architecture is general and can be used with any kind of segment-based or topological a 
priori map.  
The filter is able to provide consistent localization, for extended periods of time and long 
traversed courses, using only rough dead-reckoning input (affected by considerably drift), 
and the RNDF map. 
The system performs robustly in a variety of circumstances, including extreme situations 
such as tunnels, where a GPS-based positioning would not render any solution at all. 
The continuation of this work involves different lines of research and development. One of 
them is the implementation of this approach as a robust and reliable module ready to be 
used as a localization resource by other systems. However this process should be flexible 
enough to allow the integration with other sources of observations such as biased compass 
measurements and even sporadic GPS measurements.  
Other necessary and interesting lines are related to the initialization of the estimation 
process, particularly for cases where the robot starts at a completely unknown position. 
Defining a huge local area for the definition of the likelihood (and spreading a population of 
particles in it) is not feasible in real-time. We are investigating efficient and practical 
solutions for that issue.  
Another area of relevance is the application of larger paths in the evaluation of the Path 
Likelihood. In the current implementation we consider a deterministic path, i.e. we exploit 
the fact that for short paths the dead-reckoning presents low uncertainty to the degree of 
allowing us to consider the recent path as a deterministic entity. In order to extend the path 
validity we need to model the path in a stochastic way, i.e. by a PDF. Although this concept 
is mathematically easy to define and understand it implies considerable additional 
computational cost.  

 

Finally, the observability of the estimation process can be increased by considering 
additional sources of observation such the detection of road intersections. These additional 
observations would improve the observability of the process particularly when the vehicle 
does not perform turning maneuvers for long periods.  
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Fig. 6. A local base likelihood automatically created. This ROI is defined to be the smallest 
rectangle that contains the hypothetical histories of all the current particles. The different 
colors mean different lanes although that property was not used in the definition of the base 
likelihood for the experiment presented in this paper. 
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Fig. 7. Field test through Sydney. The system never gets lost. Even feeding the real-time 
system lower quality measurements (by playing back data corrupted with additional noise) 
and removing sections of roads from the a-priori map) the results are satisfactory. The red 
lines are the obtained solution for a long trip. 
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Fig. 6. A local base likelihood automatically created. This ROI is defined to be the smallest 
rectangle that contains the hypothetical histories of all the current particles. The different 
colors mean different lanes although that property was not used in the definition of the base 
likelihood for the experiment presented in this paper. 
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Fig. 7. Field test through Sydney. The system never gets lost. Even feeding the real-time 
system lower quality measurements (by playing back data corrupted with additional noise) 
and removing sections of roads from the a-priori map) the results are satisfactory. The red 
lines are the obtained solution for a long trip. 
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Fig. 8. Estimated path (in yellow) for one of the experiments. The known map (cyan) and a 
satellite image of the region are included in the picture. 
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Fig. 9. A section of Fig. 8 where the solution is consistent even where the map is incomplete 
(approximately x=1850m, y=1100m).  
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Fig. 10. A comparison between the estimated solution and the available GPS measurements. 
The green dots are the estimated solution and the blue ones correspond to GPS 
measurements. The segments in cyan connect samples of GPS and their corresponding 
estimated positions (i.e. exactly for the same sample time). The blue lines are the map’s 
segments. 
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Fig. 11. A  detailed view of Figure 10. It is clear that the GPS’ measurements present jumps 
and other inconsistencies. 
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Fig. 8. Estimated path (in yellow) for one of the experiments. The known map (cyan) and a 
satellite image of the region are included in the picture. 
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Fig. 9. A section of Fig. 8 where the solution is consistent even where the map is incomplete 
(approximately x=1850m, y=1100m).  
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Fig. 10. A comparison between the estimated solution and the available GPS measurements. 
The green dots are the estimated solution and the blue ones correspond to GPS 
measurements. The segments in cyan connect samples of GPS and their corresponding 
estimated positions (i.e. exactly for the same sample time). The blue lines are the map’s 
segments. 
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Fig. 11. A  detailed view of Figure 10. It is clear that the GPS’ measurements present jumps 
and other inconsistencies. 
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Fig. 12. A close inspection shows interesting details. The estimates are provided at 
frequencies higher than the GPS (5Hz). The GPS presents jumps and the road segment 
appears as a continuous piece-wise line (in blue), both sources of information are unreliable 
if used individually.  
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