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Nowadays, neural networks (NNs) are widely applied in the solution of several real world
problems. They have been successfully used in many fields such as chemistry, physics, en-
gineering, and bio-informatics among others. However, their use often relies on some hand-
crafted settings, such as the number of layers and neurons. This chapter will discuss the
Structural Risk Minimization (SRM) problem using some multiobjective optimization con-
cepts. Both are closely related to the classical Tikhonov’s regularization scheme, and, it is also
exploited in this work.
A neural network is a learning machine capable to describe, to the input x, the set of functions
F = { f (x,w) : x ∈ X, w ∈ W}, where W is the space of possible weights. Given a supervisor
which defines an output vector y ∈ Y (desired output), for a given input x, according to the
conditional distribution F(y|x), the ultimate goal in the learning problem is to find w ∈ W that
best approximates the supervisor answer given some measure. To some loss function L(.), the
expected risk (error) can be defined as, Vapnik (1998):

R(w) =
∫

L (y, f (x,w))dF(x,y). (1)

Therefore, the learning problem can be understood as finding f (x,w0) : w0 ∈ W, such that
R(w) is minimal. Nevertheless, the function F(x,y) is unknown, thus, it is impossible to direct
evaluate R(w). The only available information about the supervisor is contained in the train-
ing set T = {(x1, ỹ1), ..., (xt, ỹt)}. Where ỹ is y plus some uncertainty, as noise. For instance,
for regression and prediction problems y ∈ R

t, and for binary classification y ∈ {−1,1}t.
In the early years of NN research, it was believed that decreasing the training error (empirical
risk) was a sufficient condition to approximate the supervisor answer. This problem was
stated as

w∗ = arg min
w∈W

J(T,w) =
1

t

t

∑
i=1

L(ỹi, f (xi,w)). (2)

This approach was considered self-evident for many years and the main milestone was to
find better algorithms to solve (2). However, the non self-evident overfitting phenomenon
has appeared. This would imply that w∗ �= w0. One way to characterize it is by the bias and
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variance dilemma, S. Geman & Doursat (1992). The expected mean-squared error between
f (·) and the expected value of y given x, E[y|x], can be written as:

ET [( f (x;T)− E[y|x])2] = (ET [ f (x;T)]− E[y|x])2

+ET [( f (x;T)− ET [ f (x;T)])2],
(3)

where ET [.] is the expected value given a set T. The first term in the right hand side of (3) is
known as bias, and the second one as variance. The variance term measures the sensibility
of the approximating function given a data set T. To control the variance, models with less
complexity should be generated, i.e., they cannot change too much to a given data T. On the
other hand, some bias is inserted in the problem when the complexity is limited, thus, this
should be controlled.
This chapter is organized as follows. First, the regularization theory from Tikhonov (1963), a
well-known technique to solve linear ill-posed problems, will be introduced together with the
residual method from Phillips (1962) and the quasi-solutions from Ivanov (1962; 1976). It is
shown, using Singular Value Decomposition (SVD), the relationship between these methods
and the Wiener’s filter. After that, the Structural Risk Minimization (SRM), and the multiob-
jective learning will be discussed. These methods are closely related, and, some of their main
aspects will be discussed. Inspired on the Tikhonov’s regularization it will be discussed the
well-known weight decay (WD) method for NNs, Hinton (1989). However, it will be clarified
that this method is not consistent if the functions are not convex, which is usually the case. To
overcome that, it is introduced the generalized Tikhonov’s regularization based on a Q-norm
for Parallel Layers Perceptrons (PLPs). Finally, some results are presented.

1. Linear ill-posed problems

Given the linear mapping A : W �→ Y, the equation

Aw = y, A ∈ R
t×n, w ∈ R

n and y ∈ R
t, (4)

is well-posed provided that: (i) for each y ∈ Y, ∃w ∈ W such that Aw = y (existence); (ii)
Aw1 = Aw2 ⇔ w1 = w2 (uniqueness); (iii) A−1 is continuous (stability). Thus, a problem is
called well-posed if its solution exists, is unique and stable. Unfortunately, inverse problems,
such as the ones to select a model based on the data, are usually ill-posed, i.e., it violates at
least one of the aforementioned conditions. In applied sciences and engineering the right-
hand side vector y can be contaminated by noise, ξ ∈ R, thus, instead of y only ỹ is available
and

‖y − ỹ‖2 � ξ. (5)

The problem is said to be stable if small variations in the right-hand side implies small changes
in the solution

‖w − w̃‖2 � δ(ξ). (6)

The existence can be imposed by considering the minimal Euclidian norm

w∗ = arg min
w∈W

J(w) = ‖Aw − ỹ‖2
2 = (Aw − ỹ)T(Aw − ỹ). (7)
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Making ∂J/∂w = 01,

w∗ := (AT A)−1 AT ỹ := A† ỹ, (8)

where A† is the pseudo inverse. Considering w0 the desired solution of (4) and w∗ the solution
of (7), due to the error in y and the ill-conditioning in A, the following relation is usually true

‖w∗‖ ≫ ‖w0‖, (9)

which is not a meaningful approximation of w0. In the early 60’s, Tikhonov proposed the reg-
ularization method to solve this problem, Tikhonov (1963). The Tikhonov’s method considers
the solution of the following auxiliary problem:

wλ = arg min
w∈W

Jλ = ‖Aw − ỹ‖2
2 + λΩ(w), (10)

where λ > 0 is a pre-defined constant known as regularization parameter. The regularization
function Ω(w) is defined as semi-continuous, positive and compact in the space of functions
defined by w, i.e., Ω(w) ≤ c, c > 0. To guarantee the uniqueness of the solution the following
properties are required: (i) Ω(w) is a non-negative convex function; (ii) Ω(0) = 0 holds true;
and (iii) the r(ρ) = Ω(ρw) is strictly growing function. This method is usually written as

wλ = arg min
w∈W

Jλ = ‖Aw − ỹ‖2
2 + λ‖w‖2

2

= (Aw − ỹ)T(Aw − ỹ) + λxT Ix
. (11)

For each positive parameter λ, considering the complexity Ω = wT Iw = ‖w‖2
2, where I is the

identity matrix, (10) has a unique solution of the following form:

wλ := (AT A + λI)−1 AT ỹ. (12)

This result was fundamental to the popularization of the Tikhonov’s technique, since it has a
simple closed-form solution. In statistics it is also known as ridge regression. In fact, Tikhonov
& Arsenin (1977) proved that wλ converges to w0 as ξ → 0 if

lim
ξ→0

λ(ξ) = 0, (13)

lim
ξ→0

ξ2

λ(ξ)
= 0. (14)

Consider the set Wk = {w : Ω(w)≤ ck}, ck > 0. Since Ω defines a compact subset the following
holds true

W1 ⊆ W2 ⊆ ... ⊆ Wi, ... ⇒ c1 < c2 < ... < ci, ... (15)

Define wk∗ as
wk∗ = arg min

w∈Wk

‖Aw − ỹ‖. (16)

1 Using:

∂(ỹTw)

∂w
= ỹ,

∂(wT AT Aw)

∂w
= (AT A + AT A)w
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For some general conditions, Ivanov (1962; 1976) proved that the sequence w1∗, ...,wk∗ con-
verges to w0, the desired solution. This is called quasi-solutions method and can be written,
for some ǫ > 0, as

wǫ = arg min
w∈W

‖Aw − ỹ‖2
2

subject to: ‖w‖2
2 ≤ ǫ

(17)

In the same period Phillips (1962) proposed the residual method

wǫ = arg min
w∈W

‖w‖2
2

subject to: ‖Aw − ỹ‖2
2 ≤ ǫ

. (18)

In Vasin (1970) it is shown that the Regularization, Residual and Quasi-solutions methods are
equivalent, i.e., they can generate the same set of solutions, given the linear problem stated
in (4), and the distance measured using the Euclidian norm. Consider the problem stated in
Alavetti & Eichel (2004)

w∆ = arg min
w∈W

‖Aw − ỹ‖2
2

subject to: ‖w‖2
2 = ∆

. (19)

Assuming that ‖w0‖ > ∆, this constrained minimization problem has a unique solution wλ,∆

of the form (12). The value of λ is positive such that ‖wλ‖ = ∆ Alavetti & Eichel (2004).
Assume that A† ỹ �= 0, the function

ϕ(λ) := ‖w‖2, λ ≥ 0, (20)

can be expressed as

ϕ(λ) := ỹA(AT A + λI)−2 AT ỹ, λ > 0, (21)

which shows that ϕ(λ) is strictly decreasing and convex for any λ > 0, and that, ϕ(λ) = ∆ has
a unique solution λ, such that 0 < λ < ∞, for any ∆ that satisfies 0 < ∆ < ‖A† ỹ‖2, Alavetti &
Eichel (2004).
Even though all the results considered so far used the Euclidian norm ‖.‖2 to define the com-
plexity Ω, the more general p-norm

‖w‖p =
n

∑
i=1

|wi|
p, (22)

can also be applied. This is the case of the shrinkage method called Lasso, Hastie et al. (2001)

wlasso = arg min
w∈W

‖Aw − ỹ‖2
2

subject to: ‖w‖1 ≤ ǫ
. (23)

This chapter will concentrate in the Euclidian norm based formulation due to their simplicity,
and the existence of closed form solutions. According to Hastie et al. (2001) it could be used
any p besides 1, or 2, and that, indeed, we could try to estimate it from the data, but there is
no results in this direction so far.
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1.1 Wiener’s filter interpretation

Consider the singular value decomposition (SVD) of A as

A = USVT (24)

where U and V are unitary matrices, i.e, U−1 = UT , and S = diag(s1, s2, ..., st) is a diagonal
matrix with s1 ≥ s2 ≥ ... ≥ st ≥ 0, called the singular values of A. Thus, wλ, given in (12), can
be written as:

wλ = (VSTUTUSVT + λVIVT)−1VSTUT ỹ

= V(STS + λI)−1STUT ỹ

wλ =
t

∑
i=1

s2
i

s2
i + λ

uT
i ỹ

si
vi, (25)

where λ ≥ 0 :
s2

i

s2
i +λ

≤ 1 are the Wiener’s filter weights. The SVD of the matrix A is related

to the principal component analysis. Therefore, it implies that it shrinks more the directions
with smaller variance. Next section will introduce the Weight Decay, the realization of the
ideas presented in this section to Neural Networks.

2. Structural Risk Minimization principle

The structural risk minimization (SRM) was introduced by Vapnik and Chervonenkis and a
description of it can be found Vapnik (1992), Vapnik (1998). One of the main achivements of
the SRM is the introduction of the idea of capacity of a set of functions. It is based on some
theoretical results that shows that the upper bound of the learning machine expected risk de-
pends on: (i) the training error and, (ii) the machine capacity, defined as the VC dimension and
its variations, Vapnik (2001). This inductive principle is directly applied in learning machines
as the Support Vector Machines (SVMs). Following these considerations the SRM principle
considers the minimization of two factors: the training error and the VC dimension.
Consider the function J(·, ·) : Z × W �→ R, in which Z and W are arbitrary spaces. Taking
its second argument w ∈ W as a parameter constrained to a set Wk ⊂ W, a set J of functions
J(·,w) : Z �→ R becomes defined for w ∈ Wk. This set can be structured as a sequence of nested
subsets Jk = {J(·,w), w ∈ Wk}, such that

W1 ⊂ W2 ⊂ ... ⊂ Wi... ⇒ J1 ⊆ J2 ⊆ ... ⊆ Ji... (26)

The sequence (26) should fulfill the following conditions: (i) the VC dimension, hk, of each set
Jk is finite, and (ii)

h1 ≤ h2 ≤ ... ≤ hi... . (27)

For any positive integer k, there is a finite positive scalar Bk such that J(z,w) ≤ Bk, ∀ w ∈ Wk

and z ∈ Z. The principle of SRM is oriented to find the values of w and k such that w ∈
Wk, making the function J(·,w) minimize the empirical risk, while the set Wk minimizes the
structural risk.
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2.1 Multiobjective Learning

The SRM can be interpreted as a bi-objective optimization problem, which considers the min-
imization of the empirical risk and the machine capacity. Instead of the integer index k, a
straightforward generalization is to consider that the set W is parameterized by a continuous
parameter ζ . Given a training set T, the SRM problem for this set can be written as:

(SRM): min
ζ,w

{

J(ζ,w)
Ω(ζ,w)

. (28)

in which J represents some empirical risk function, and Ω the complexity of the learning
machine, for instance the fat-shattering dimension, Shawe-Taylor & Bartlett (1998).
Usually, it is not possible to minimize J and Ω simultaneously, because the optimum to one
function hardly ever is the optimum to the other one. Thus, there is not a single optimum, but
a set of them, when a multiobjective formulation is considered. In order to state the solutions
of the SRM, the following definitions are required:

(i) Dominance: A pair (ζa,wa) dominates another pair (ζb,wb), which is denoted by (ζa,wa)≺
(ζb,wb), if J((ζa,wa)) ≤ J((ζb,wb)) and Ω((ζa,wa)) ≤ Ω((ζb,wb)), with the strict in-
equality valid for at least one of the functions.

(ii) Pareto optimality: A pair (ζ∗,w∗) is called Pareto-Optimal (PO) if there is no other feasible
pair which dominates it.

By using these definitions, it is possible to generate the set of solutions called PO front, which
have the best trade-off between the error and the machine complexity. All such solutions are
candidate solutions for the SRM problem.
Examining (26) and (27) from the viewpoint of the Pareto Optimality of (44), it can be seen that
in the nested sequence J1 ⊂ J2 ⊂ ... ⊂ Ji... , the minimal empirical error in the set is ordered as
J1∗ ≥ J2∗ ≥ ... ≥ Ji∗, where Jk∗ := J(wk∗) and

wk∗ = argmin
w

J(w)

subject to: w ∈ Wk

(29)

The solutions wk∗ are Pareto-Optimal ones, each one associated to the corresponding sequence
set Jk. These are the solutions of the SRM problem. Any other function J(·,w) that is not
a solution of any minimization problem of this form must be dominated, and cannot be a
solution of the SRM problem. This will be the base of some novel results presented in this
chapter. Defining the complexity as Ω(ζ), it can be associated to some W(ζ) defined by

W(ζ) = {w : ‖w‖ < ζ} (30)

and
Ω(ζ) = ζ. (31)

Given ζ1 < ζ2, this choice of W(ζ) and Ω(ζ) preserves the necessary relations:

• W(ζ1) ⊂ W(ζ2);

• J(·,ζ1) ≥ J(·,ζ2);

• Ω(ζ1) < Ω(ζ2).
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As the minimization of the structural risk Ω(ζ) = ζ is equivalent to the minimization of the
norm of w, the structural risk minimization principle becomes, in this case, stated in terms of
w only:

(SRM): min
w

{

J(·,w)
Ω(w) = ‖w‖

. (32)

3. The Weight Decay for MLPs

The Multi-Layer Perceptron (MLPs) is a popular neural network which considers the neurons
(or perceptrons) in cascade. Consider the input vector x, which includes the bias term, i.e., it
is added an extra element equal to 1, the vectorial function Φ, and the weight matrix W

Φ1 = φ1(W
T
1 x)

↓
Φq = φq(WT

q Φq−1)
, (33)

then
f (x,w)MLP = Φq(Φq−1(...Φ1(.))) (34)

where q is the number of layers, and φ is an activation function as hyperbolic tangent. For a
weight matrix W and the vector wj

wT
j x =

n

∑
i=0

wjixi. (35)

Therefore, the MLPs implement a nonlinear function of the sum of nonlinear functions. With
one hidden layer, and m neurons, it can be written as:

f (x,w)MLP =
m

∑
i=1

W2iφ(W
T
1ix), (36)

where x ∈ R
n+1, x0 = 1 is the bias, W2 is a vector with m elements and W1 is a matrix

((n + 1)× m). The vector w is defined as a vector which contains all the elements of Wi.
Using the ideas from the regularization framework, the Weight Decay (WD) is a direct imple-
mentation of the Tikhonov’s model to MLPs. The WD consists in writing a weighted sum of
the Empirical risk, J(·), and the norm of the weight vector

wλ = argmin
w

JMLP
λ = J(w, x) + λ‖w‖2

2, (37)

where J(·)

J(w, x) =
1

2

t

∑
i=1

( f (xi,w)− ỹi)
2. (38)

In Bartlett (1998) it was shown that the fat-shattering dimension, which is a generalization of
the VC dimension, can be limited by limiting the weights of a given network. Limiting the
fat-shattering dimension leads to a limit in the generalization error, Vapnik (1998; 2001). This
gives support to the use of the norm of the weight vector as the complexity constraint. The
main difference between the problem stated in (10) and (37) is that in the first one the risk is
guaranteed to be convex, while in the second one it can be non-convex and even multi-modal.
Next section will show that the weighted sum approach, which is the base of the WD method,
is not consistent given non-convex problems.
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3.1 The convexity issue

The WD approach is based on the general weighted sum function

Jλ(w) = λJ1 + (1 − λ)J2, (39)

where λ = [0,1] controls the importance of the objectives. Consider the following non-convex
unimodal one-variable functions:

J1(w) = ((w − 1)2 − tanh(40w − 4))2, (40)

J2(w) = 200w2, (41)

where the factor 200 was used only to simplify presentation. Given, λ = 0.3 and λ = 0.6, the
following weighted sum functions can be written

Ja(w) = 0.3J1 + (1 − 0.3)J2, (42)

Jb(w) = 0.6J1 + (1 − 0.6)J2. (43)

The functions J1 and J2 and two possible weighted solutions, Ja and Jb are shown in Fig. 1.
Note that the weighted functions have become multimodal, although the original functions
were unimodal. The PO front for this problem is presented in Fig. 2 and it is composed of
both convex and non-convex parts.
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Fig. 1. The original functions are presented in continuous line(−). Two possible weighted
solutions for this problem, with λ = 0.3 and λ = 0.6 are shown in (−.) and (−−), respectively.

The relevant conclusion here is: if J1 and J2 are not convex functions (what is the case in most
of machine learning problems), the weighed sum approach should not be employed for trying
to find the trade-off front, as it may loose some potential solution.
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Fig. 2. The minima of J1 and J2 are marked with the •, being the PO front everything between
them. The convex part of the PO front is marked using continuous lines (-) and the non-convex
as (–). The WD method can only generate the networks which belong to the convex part.

4. The Parallel Layer Percetron

Instead of assembling the layers in cascade, in Caminhas et al. (2003) it was proposed to use
them in parallel, given birth to the Parallel Layer Percetron (PLP). Consider the input vector
x, which includes the bias term, the vector function Φ, and the weight matrix W

Φ1 = φ1(W
T
1 x)

↓

Φq = φq(WT
q x)

, (44)

then

f (x,w)PLP = φ

(

q

∏
i=1

Φi

)

, (45)

where, ∏ represents a point wise product, and w is a vector with all the weights Wi. Hence, the
PLP implements a nonlinear function of the product of nonlinear functions. This configuration
has some computational advantages as discussed in Caminhas et al. (2003). A particular case
of this topology can be written as the sum of the product of a linear layer, LT x, and a nonlinear
layer, Φ = φ(NT x), and it is given by

f (x,w)PLP = xT LΦT =
m

∑
j=1

[

n

∑
i=0

Ljixiφ(
n

∑
i=0

Njixi)

]

. (46)

Since f (x,w)PLP is a linear function of the parameters Lji, the PLP output can be written in a
matrix form. Thus, consider the vector lz = Lji, where z = (n + 1)(j − 1) + i. This vector is a
matrix transformation L to a vector with the same components, where j = 1, ...,m, i = 0, . . . ,n.
By calculating all the outputs of the nonlinear perceptrons, a matrix A, with components akz =
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xzkφ(NT
j xi), k = 1, ..., t can be constructed

A =







x01φ(b11) . . . xn1φ(bm1)
... . . .

...
x0tφ(b1t) . . . xntφ(bmt)






. (47)

Therefore, the output of the PLP network can be written as

f (x,w)PLP = A(x, N)l. (48)

Thus, the empirical risk can be written as:

JPLP(T,w) = (Al − ỹ)T(Al − ỹ). (49)

In this case the error is a quadratic function of the control variables - the vector l - while A
is a nonlinear function of N. The main idea that will follow is to find a formulation, which
resembles the Tikhonov’s least squares solution, for this topology. Even though it is clear how
to use the vector l, the nonlinear weights N brings an additional complication. To solve this
problem it is necessary to find a function Ω(l) which is capable to consider also the complexity
derived from N. For that, a generalized version of the Tikhonov’s regularization, based on a
Q-norm, can be used.

5. Generalized Tikhonov’s regularization using a Q-norm

For any norm and any bijective linear transformation D, a new norm of l can be defined to be
equal to ‖Dl‖. For instance, in 2D, with D a rotation by 45 and a suitable scaling, this changes
the 1-norm into an ∞-norm. Consider the Euclidean norm of the transformed vector

‖Dl‖2 =
√

lT DT Dl =
√

lTQl, (50)

for Q = DT D, w ∈ R
n a vector with finite dimension, and DT D = Q ∈ R

n×n a symmetric

positive definite matrix, i.e., lTQl > 0, ∀l �= 0.. The Q-norm of w is given by
√

lTQw. The
regularization function Ω can be written as a Q-norm, where the matrix Q is a function of the
nonlinear parameters N:

Ω(l, N) = lTQ(N)l. (51)

Therefore, the solution of the linear ill-posed problem can be generalized as

lQ = argmin
l∈W

Jλ = ‖Al − ỹ‖2
Q1

+ λ‖l‖2
Q2

(52)

Thus, it is need to define a matrix Q2 such that it considers the influence of the nonlinear
parameters of the PLP, while only adjusting the linear ones. This will be achieved using the
Minimum Gradient Method (MGM).
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5.1 The Minimum Gradient Method

By calculating the derivative of (46) with respect to xk, one obtains, Vieira et al. (2008):

∂ f (x,w)

∂xk
=

m

∑
j=1

[(

∂φ

∂bj
Njk

)(

n

∑
i=0

Ljixi

)

+ φ(bj)Ljk

]

. (53)

where bj = ∑
n
i=0 Njixi. For all j and z = (n + 1)(j − 1) + i the following holds true

∂ f (x,w)j

∂xk
=

[(

∂φ

∂bj
Njkxk

)

+ φ(bj)

]

lz, k = i, (54)

∂ f (x,w)j

∂xk
=

[(

∂φ

∂bj
Njkxi

)]

lz, k �= i. (55)

The derivatives in relation to the vector xk = [xk1, ..., xkh, ..., xkt]
T , where t is the number of

samples, can be written in a vector form as follows:

∂ f (x,w)

∂xk
= Dkl. (56)

To exemplify the construction of the matrix Dk, where Dk ∈ R
t×(n+1)m, consider the following

cases when the derivatives in relation to x1 and x2 are computed, for bjh, Nji, xih, where j
represents the neuron, i the input and h the sample number.

D1 =















∂φ

∂b11
N10

∂φ

∂b11
N11x11 + φ (b11) . . .

∂φ

∂bm1
Nmnxn1

...
... . . .

...
∂φ

∂b1t
N10

∂φ

∂b1t
N11x1t + φ (b1t) . . .

∂φ

∂bmt
Nmnxnt















(57)

D2 =















∂φ

∂b11
N10

∂φ

∂b11
N11x11

∂φ

∂b11
N12x21 + φ (b11) . . .

∂φ

∂bm1
Nmnxn1

...
...

... . . .
...

∂φ

∂b1t
N10

∂φ

∂b1t
N11x1t

∂φ

∂b1t
N12x2t + φ (b1t) . . .

∂φ

∂bmt
Nmnxnt















(58)

In the matrices Dk, when i = k, the columns related to the weights Ljk = lz are composed by
two terms, as can be noticed in the second column of D1 and in the third one of D2. In the other
columns just one term is used. Remembers that i = 0 represents the bias term. Therefore, the
complexity function Ω can be defined as the minimization of the norm of the output gradient

ΩPLP =
n

∑
k=1

(Dkl)T(Dkl) = lTQl, (59)
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where Q ∈ R
(n+1)m×(n+1)m = ∑

n
k=1 DT

k Dk. Clearly, lTQl ≥ 0 ∀l, noticing that the sum of sym-
metric positive-definite matrices are also symmetric positive-definite matrices. The construc-
tion of the matrix DT

k Dk is exemplified taking k = 2:

DT
2 D2 =



























t

∑
h=1

(

∂φ

∂b1h
N10

)2 t

∑
h=1

(

∂φ2

∂b1h
N10N11x1h

)

t

∑
h=1

(

∂φ2

∂b1h
N10N11x1h

) t

∑
h=1

(

∂φ

∂b1h
N11x1h

)2

... . . .
t

∑
h=1

(

∂φ

∂b1h

∂φ

∂bmh
N10Nmnxnh

) t

∑
h=1

(

∂φ

∂b1h

∂φ

∂bmh
N11Nmnx1hxnh

)

t

∑
h=1

(

∂φ

∂b1h
N10

)(

∂φ

∂b1h
N12x2h + φ (b1h)

)

. . .
t

∑
h=1

(

∂φ

∂b1h

∂φ

∂bmh
N10Nmnxnh

)

... . . .
...

t

∑
h=1

(

∂φ

∂b1h
N12x2h + φ (b1h)

)2 . . .
...

. . . . . .
t

∑
h=1

(

∂φ

∂bmh
Nmnxnh

)2



























(60)

Since JPLP and ΩPLP are convex functions, the regularization based on the least-squares solu-
tion as presented in (52) does not loose any potential solution.

lλ = argmin JPLP
λ = λJPLP + (1 − λ)ΩPLP

= λ(Al − ỹ)T(Al − ỹ) + (1 − λ)lTQl.
(61)

where the optimum l, (i.e., lλ), can be calculated by making the derivative of (61) equal to
zero. The derivative of (61) in relation to l can be calculated as:

dJPLP
λ

dl
= λ(−2AT ỹ + 2AT Al) + (1 − λ)2Ql (62)

In order to find lλ, the previous relation should be made equal to zero, as given below:

λ(−2AT ỹ + 2AT Al) + (1 − λ)2Ql = 0

− 2λAT ỹ + 2λAT Al + (1 − λ)2Ql = 0

[λAT A + (1 − λ)Q]l = λAT ỹ

lλ = [λAT A + (1 − λ)Q]−1λAT ỹ, (63)

if the matrix [λAT A + (1 − λ)Q] is non-singular. The Pareto-Optimum set can be found by
varying λ between zero and one. This work applied the golden section algorithm in the val-
idation error criteria to define λ∗. The validation error for the given formulation is a convex
function of the linear parameters l.
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5.2 Generalized Singular Value Decomposition

Consider the following properties of the Generalized Singular Value Decomposition (GSVD)
Hansen (1998):

GSVD =







A = UASAVT

D = UDSDVT

ST
ASA + ST

DSD = I

, (64)

where U is a unitary matrix, i.e., U−1 = UT , and SA = diag(sA1, . . . , sA(n+1)m), SD =

diag(sD1, . . . , sD(n+1)m) such that sA1 ≥ . . . ≥ sA(n+1)m ≥ 0 and sD(n+1)m ≥ . . . ≥ sD1 ≥ 0. Ap-
plying (64) in (63) the following is obtained:

lλ =
[

λAT A + (1 − λ)Q
]−1

λAT ỹ

= λ
[

λVS2
AVT + (1 − λ)VS2

DVT
]−1

VSAUT
A ỹ

= λ
[

V(λS2
A + (1 − λ)S2

D)V
T
]−1

VSAUT
A ỹ

= λ
[

(λS2
A + (1 − λ)S2

D)V
T
]−1

V−1VSAUT
A ỹ

= λ(VT)−1
[

λS2
A + (1 − λ)S2

D

]−1
SAUT

A ỹ

(65)

where
[

λS2
A + (1 − λ)S2

D

]

is a diagonal matrix with elements
[

λs2
Ai + (1 − λ)s2

Di

]

. The unfil-
tered solution, disregarding the complexity control, i.e., λ = 1, is equal to

l∗(λ = 1) = (VT)−1S−1
A UT

A ỹ. (66)

The Wiener filter weights are evaluated comparing the unfiltered solution with the general
solution of (65). The following is obtained

Ψi =
λs2

Ai

λs2
Ai + (1 − λ)s2

Di

=
1

1 + λ′
s2

Di

s2
Ai

, (67)

where λ′ = (1 − λ)/λ, λ �= 0 and sAi
/sDi are the generalized singular values. Similarly to the

results using the simple SVD, the components with smaller singular values are filtered the
most. Differently from the traditional Wiener filter, which only considers sDi = 1, the MGM
approach computes a general sDi. It is possible to obtain sDi = 1 using a identity matrix in the
Q-norm. The Wiener filter weights define the relevance of each nonlinear neuron, filtering the
unnecessary ones.

6. Results for benchmark problems

This section presents some experimental results in benchmarking problems considering the
proposed ideas. Sigmoidal logistic functions have been used as PLP nonlinear activation
function. Data sets from Intelligent data Analysis (IDA) repository are considered here as
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presented in K. Muller & Scholkopf (2002). Table 1 summarizes the dimensionality of the in-
put space, the number of training and test samples and the number of realizations for each
data set. The results obtained by the PLP-MGM are compared with the results obtained by us-
ing the following machine learning techniques: (i) Support Vector Machine (SVM), (ii) kernel
Fisher Discriminant (KFD), and (iii) Regularized AdaBoost (ABR) extracted from Muller et al.
(2001); (iv)Leave-One-Out KFD (LKFD), and (v) Single objective Parallel Layer Perceptron
(PLP) from Caminhas et al. (2003). The results are presented in Table 2.

Name Dimension Train Test Realizations

Banana 2 400 4900 100
B.Cancer 9 200 77 100
Diabetes 8 468 300 100
German 20 700 300 100
Heart 13 170 100 100
Image 1300 1010 18 20
S. Flare 9 666 400 100
Thyroid 5 140 75 100
Titanic 3 150 2051 100
Twonorm 20 400 700 100

Table 1. Ida repository data set summary.

SVM KFD ABR LKFD PLP PLP-MGM

Banana 11.5±0.7 10.8±0.5 10.9±0.4 10.4±0.4 10.7±.06 10.7±0.6
B. Cancer 26±5 26±5 27 ± 5 26 ± 4 27 ± 5 25 ± 4
Diabetes 23±2 23±2 24±2 23±2 23±2 23±2
German 24±2 24±2 24±2 24±2 30±3 24±2
Heart 16±3 16±4 17±4 16±4 19±3 16±3
Image 3.0±0.6 3.3±0.6 2.7±0.6 4.0±0.6 5±4 3.3±0.7
S. Flare 32±2 33±2 34±2 34±2 37±2 33±2
Thyr. 5±2 4±2 5±2 5±2 4±2 4±2
Titanic 22±1 23±2 23±1 22±1 23±1 22±1
Twon. 3.0±0.2 2.6±0.2 2.7±0.2 2.7±0.2 2.8±0.3 2.6±0.3

Table 2. Ida repository results.

The first noticeable result of Table 2 is that the PLP-MGM has outperformed the conventional
PLP in most of the tested examples, and that PLP has never outperformed PLP-MGM. It is
clear as well that the PLP-MGM has achieved similar results compared to those produced by
the other approaches used for comparison.

7. Denoising Ground Penetrating Radar data

This section considers denoising Ground Penetrating Radar (GPR) using the PLP-MGM tech-
nique. This noise can be due to environmental conditions, geometric variations, and sen-
sors characteristics. The numerical simulation follows the results described in Travassos et al.
(2008). A block diagram of a typical GPR system to detect underground targets, is given in
Fig. 3.
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Fig. 3. The GPR problem.

The proposed configuration is tested to filter the noise of the scattered wave from a cylindrical
air inclusion buried in a non-homogenous host medium, Vieira et al. (2009). Tables 3 and 4
considers white and colored Gaussian noise respectively. As the noise is stochastic by nature
a statistical evaluation of the results is necessary. The simulations were done considering 20
different noises for each SNR, and a Neural Network trained for each of them. The results
are presented in 3 and 4 they show a considerable improvement in the SNR, showing the
effectiveness of the proposed approach.

SNR in the Filtered Wave (dB)

Noise (dB) Mean Max Min

3 14.16 14.65 13.47
6 14.69 15.07 14.14
9 16.55 17.67 15.65
10 20.47 21.35 18.67

Table 3. SNR considering the GPR processed wave (filtered) by the proposed approach cor-
rupted by White Gaussian Noise.

SNR in the Filtered Wave (dB)

Noise (dB) Mean Max Min

3 12.76 13.22 11.96
6 15.30 16.21 14.17
9 20.36 20.73 19.96
10 20.58 20.93 20.09

Table 4. SNR considering the GPR wave processed (filtered) by the proposed approach cor-
rupted by Colored Gaussian Noise.

8. Final Comments

This chapter described the use of the multiobjective optimization framework to train the Par-
allel Layer Perceptron network. This is based on the general concept that learning depends
on two functions: the empirical risk and the network complexity. A formulation based on
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the Tikhonov’s regularization was proposed using a Q-norm as a complexity measure. This
has a least-squares like closed form solution; therefore, it relies on simple computational al-
gorithms. Moreover, it bores the good aspects of the Tikhonov’s method. It opens discussions
about other possible definitions of the matrix Q, different configurations of the PLP layers
among others.
The results presented proved the effectiveness of the proposed approach. A wide comparison
considering several benchmarking problems and algorithms were presented. Also a complex
engineering problem was successfully solved using the proposed approach.
The relationships between the classical regularization, the structural risk minimization and
the multiobjective formulation were also explored. These help the understanding concerning
the nature of learning and their possibilities. It shows that the convexity is an important issue
to the use of the WD method to MLPs. This is indeed a wide subject, and, due to space
constraints, this chapter discussed a rather biased point-of-view on those subjects.
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