
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

Architecture and Design Methodology of Self-Optimizing Mechatronic Systems 255

Architecture and Design Methodology of Self-Optimizing Mechatronic
Systems

Prof. Dr.-Ing. Jürgen Gausemeier and Dipl.-Wirt.-Ing. Sascha Kahl

X

Architecture and Design Methodology of
Self-Optimizing Mechatronic Systems

Prof. Dr.-Ing. Jürgen Gausemeier

Dipl.-Wirt.-Ing. Sascha Kahl
Heinz Nixdorf Institute

Fürstenallee 11, D-33102 Paderborn

Abstract
The conceivable development of information and communication technology will enable
mechatronic systems with inherent partial intelligence. We refer to this by using the term
“self-optimization”. Self-Optimizing systems react autonomously and flexibly on changing
operation conditions. They are able to learn and optimize their behavior at runtime. The de-
velopment of mechatronic and especially self-optimizing systems is still a challenge. A sig-
nificant milestone within the development is the principle solution. It determines the basic
structure as well as the operation mode of the system and is the result of the conceptual de-
sign. Additionally it is the basis for the concretization of the system which involves experts
from several domains, such as mechanics, electrical engineering/electronics, control engi-
neering and software engineering. This contribution presents a new specification technique
for the conceptual design of mechatronic and self-optimizing systems. It also uses the rail-
way technology as a complex example, to demonstrate how to use this specification tech-
nique and in which way it profits for the development of future mechanical engineering sys-
tems.
Keywords
Design Methodology, Mechatronics, Self-Optimization, Principle Solution, Conceptual De-
sign, Domain-Spanning Specification

1. Introduction

The products of mechanical engineering and related industrial sectors, such as the automo-
bile industry, are increasingly based on the close interaction of mechanics, electronics and
software engineering, which is aptly expressed by the term mechatronics. The conceivable
development of communication and information technology opens up more and more fas-
cinating perspectives, which move far beyond current standards of mechatronics: mecha-
tronic systems having an inherent partial intelligence. We call these systems “self-
optimizing systems”. Self-Optimization of a technical system is the endogenous adaptation
of the systems’ objectives as a reaction to changing influences and the resulting autonomous
adjustment of parameters or structure and consequently of the systems’ behavior [ADG+08].

14

www.intechopen.com

Mechatronic Systems, Simulation, Modelling and Control256

According to this self-optimizing systems have the ability to react autonomously and flexi-
bly on changing operation conditions. Thereby self-optimization goes far beyond conven-
tional control and adaptation strategies.
To develop mechatronic and especially self-optimizing systems, still is a challenge. The es-
tablished design methodologies of the conventional engineering domains are no longer ade-
quate. This particularly applies to the early design phase “conceptual design” which results
in the so-called “principle solution”. The principle solution represents a significant miles-
tone because it determines the basic structure and the operation mode of the systems and,
subsequently, it is the basis for further concretization. This need for action was the starting
point for the collaborative research centre (CRC) 614 “Self-Optimizing Concepts and Struc-
tures in Mechanical Engineering” at the University of Paderborn funded by the German Re-
search Foundation (DFG).
This contribution presents the essential results of the Collaborative Research Center 614. It
first explains the paradigm of self-optimization and the key aspects of such systems. After-
wards it describes in detail the three actions of self-optimization, the so called Self-
Optimization Process. For the realization of complex, mechatronic systems with inherent
partial intelligence an adequate concept of structure as well as architecture for the informa-
tion processing is needed. Hence the new concept of the Operator-Controller-Module
(OCM) has been developed. This concept is also presented in detail. A new and powerful
paradigm, such as self-optimization, naturally calls for new development methods as well
as development tools. Therefore a new design methodology for self-optimizing and thus for
mechatronic systems is introduced. It divides the development process into two main phas-
es – the “conceptual design” and the “concretization”. The main emphasis is on a holistic in-
tegrative specification of the principle solution. Therefore a new domain-spanning specifica-
tion technique is presented. Within the “conceptual design” the specification of the principle
solution forms the basis for all the experts’ communication and cooperation. It will be de-
scribed in which way the development activities of the subsequent “concretization”, that
take place in parallel, are going to be structured, coordinated and how the consistency of
these activities is ensured on the basis of the principle solution.
All the works by the CRC 614 use the “Neue Bahntechnik Paderborn/RailCab” as a demon-
strator. All examples throughout this contribution refer to that project. RailCab is an innova-
tive railway system which is realized on a test track at a scale of 1:2.5. Autonomous vehicles
(RailCabs) that supply transport for both passengers and cargo, establish the core of the sys-
tem (figure 1). They drive on demand and not by schedule. The RailCabs act in a pro-active
way, e.g. in order to reduce the required energy by forming convoys. The actuation is rea-
lized by a contact-free dual-feed electromagnetic linear drive [ZS05], [ZBS+05]. The stator of
the linear drive is situated between the track and the rotor within the shuttle. The three-
phase winding in the stator forms a magnetic field which moves asynchronous along the
tracks and propels the vehicle with it. By the magnetic dynamic effects between the stator
and rotor magnetic fields´, the vehicle is accelerated and also slowed down. The dual feed
allows variable adjustment of the vehicle’s magnetic field. Consequently, several RailCabs
can be operated on the same stator section with different velocities. The linear drive allows
power to be supplied to the vehicle without overhead lines or contact rails. The supporting
and guiding of the shuttle take place by using wheel/track contact that allows the usage of
already existing railway tracks. With an active tracking module, based on an independent
axle chassis with loose wheels, the choice of direction by passing over a switch can now take

place vehicle-sided. In that case, the switches work in a passive way, in contrast to the con-
ventional rail. An active spring technology with an additional tilt technology results in a
high travelling comfort. The RailCab’s basic technology is placed in the plain-built under-
carriage on which the chassis for passengers or cargo will be set upon.

Demand- an not Schedule-Driven
Autonomous Vehicles (RailCabs) for
Passenger and Cargo

Standardized Vehicles that
can be Customized Individually

Passenger RailCab Comfort Version

Cargo RailCab Local Traffic VersionConvoy Formation
Fig. 1. RailCabs of the project „Neue Bahntechnik Paderborn/RailCab“

2. Self-Optimization

All future intelligent systems of mechanical engineering, regarded in this contribution, rely
on mechatronics. The CRC 614 took up the hierarchical structure of complex mechatronic
systems suggested by LÜCKEL and added the aspect of self-optimization (figure 2) [LHL01].
The basis consists of so-called mechatronic function modules (MFM) that comprise a me-
chanical basic structure, sensors, actors and a local information processing, which contains
the controller. MFMs that are connected by information technology and/or mechanical ele-
ments result in autonomous mechatronic systems (AMS). They also feature information
processing. Within this information processing, superior tasks are being realized, such as
monitoring, fault diagnosis and maintenance decisions. Additionally targets for the local in-
formation processing of the MFM are generated. AMS form the so-called networked mecha-
tronic systems (NMS). NMS are produced just by connecting the AMS parts via information
processing. Similar to the AMS, the information processing of the NMS is realizing superior
tasks. If the terms are to be transferred in the vehicle engineering, the spring and tilt module
would be considered to be a MFM, the RailCab itself with an active chassis an AMS and a
convoy a NMS.

www.intechopen.com

Architecture and Design Methodology of Self-Optimizing Mechatronic Systems 257

According to this self-optimizing systems have the ability to react autonomously and flexi-
bly on changing operation conditions. Thereby self-optimization goes far beyond conven-
tional control and adaptation strategies.
To develop mechatronic and especially self-optimizing systems, still is a challenge. The es-
tablished design methodologies of the conventional engineering domains are no longer ade-
quate. This particularly applies to the early design phase “conceptual design” which results
in the so-called “principle solution”. The principle solution represents a significant miles-
tone because it determines the basic structure and the operation mode of the systems and,
subsequently, it is the basis for further concretization. This need for action was the starting
point for the collaborative research centre (CRC) 614 “Self-Optimizing Concepts and Struc-
tures in Mechanical Engineering” at the University of Paderborn funded by the German Re-
search Foundation (DFG).
This contribution presents the essential results of the Collaborative Research Center 614. It
first explains the paradigm of self-optimization and the key aspects of such systems. After-
wards it describes in detail the three actions of self-optimization, the so called Self-
Optimization Process. For the realization of complex, mechatronic systems with inherent
partial intelligence an adequate concept of structure as well as architecture for the informa-
tion processing is needed. Hence the new concept of the Operator-Controller-Module
(OCM) has been developed. This concept is also presented in detail. A new and powerful
paradigm, such as self-optimization, naturally calls for new development methods as well
as development tools. Therefore a new design methodology for self-optimizing and thus for
mechatronic systems is introduced. It divides the development process into two main phas-
es – the “conceptual design” and the “concretization”. The main emphasis is on a holistic in-
tegrative specification of the principle solution. Therefore a new domain-spanning specifica-
tion technique is presented. Within the “conceptual design” the specification of the principle
solution forms the basis for all the experts’ communication and cooperation. It will be de-
scribed in which way the development activities of the subsequent “concretization”, that
take place in parallel, are going to be structured, coordinated and how the consistency of
these activities is ensured on the basis of the principle solution.
All the works by the CRC 614 use the “Neue Bahntechnik Paderborn/RailCab” as a demon-
strator. All examples throughout this contribution refer to that project. RailCab is an innova-
tive railway system which is realized on a test track at a scale of 1:2.5. Autonomous vehicles
(RailCabs) that supply transport for both passengers and cargo, establish the core of the sys-
tem (figure 1). They drive on demand and not by schedule. The RailCabs act in a pro-active
way, e.g. in order to reduce the required energy by forming convoys. The actuation is rea-
lized by a contact-free dual-feed electromagnetic linear drive [ZS05], [ZBS+05]. The stator of
the linear drive is situated between the track and the rotor within the shuttle. The three-
phase winding in the stator forms a magnetic field which moves asynchronous along the
tracks and propels the vehicle with it. By the magnetic dynamic effects between the stator
and rotor magnetic fields´, the vehicle is accelerated and also slowed down. The dual feed
allows variable adjustment of the vehicle’s magnetic field. Consequently, several RailCabs
can be operated on the same stator section with different velocities. The linear drive allows
power to be supplied to the vehicle without overhead lines or contact rails. The supporting
and guiding of the shuttle take place by using wheel/track contact that allows the usage of
already existing railway tracks. With an active tracking module, based on an independent
axle chassis with loose wheels, the choice of direction by passing over a switch can now take

place vehicle-sided. In that case, the switches work in a passive way, in contrast to the con-
ventional rail. An active spring technology with an additional tilt technology results in a
high travelling comfort. The RailCab’s basic technology is placed in the plain-built under-
carriage on which the chassis for passengers or cargo will be set upon.

Demand- an not Schedule-Driven
Autonomous Vehicles (RailCabs) for
Passenger and Cargo

Standardized Vehicles that
can be Customized Individually

Passenger RailCab Comfort Version

Cargo RailCab Local Traffic VersionConvoy Formation
Fig. 1. RailCabs of the project „Neue Bahntechnik Paderborn/RailCab“

2. Self-Optimization

All future intelligent systems of mechanical engineering, regarded in this contribution, rely
on mechatronics. The CRC 614 took up the hierarchical structure of complex mechatronic
systems suggested by LÜCKEL and added the aspect of self-optimization (figure 2) [LHL01].
The basis consists of so-called mechatronic function modules (MFM) that comprise a me-
chanical basic structure, sensors, actors and a local information processing, which contains
the controller. MFMs that are connected by information technology and/or mechanical ele-
ments result in autonomous mechatronic systems (AMS). They also feature information
processing. Within this information processing, superior tasks are being realized, such as
monitoring, fault diagnosis and maintenance decisions. Additionally targets for the local in-
formation processing of the MFM are generated. AMS form the so-called networked mecha-
tronic systems (NMS). NMS are produced just by connecting the AMS parts via information
processing. Similar to the AMS, the information processing of the NMS is realizing superior
tasks. If the terms are to be transferred in the vehicle engineering, the spring and tilt module
would be considered to be a MFM, the RailCab itself with an active chassis an AMS and a
convoy a NMS.

www.intechopen.com

Mechatronic Systems, Simulation, Modelling and Control258

Fig. 2. Structure of a complex mechatronic system with inherent partial intelligence

On every level of this structure it is possible, to add the functionality of self-optimization to
the controller. By this, the regarded system’s elements (MFM, AMS, NMS) gain inherent
partial intelligence. The behavior of the whole system is formed by the communication and
cooperation of the intelligent system’s elements. From an information processing point of
view we consider these distributed systems to be multi-agent-systems.
Against this backdrop, we understand a system’s self-optimization as endogenous adapta-
tion on changing operating conditions, as well as a resulting objective-oriented adaptation of
the parameters and, if necessary, of the structure and therefore the behavior of the system
[ADG+08]. Thus self-optimization enables systems that have inherent “intelligence”. They
have the ability to react autonomously and flexibly on changing operating conditions.
The key aspects and the operation mode of a self-optimizing system are depicted in figure 3.
Using the influences as a basis, the self-optimizing system determines the internal objectives
that have to be pursued actively. These internal objectives are based on external ones, whe-
reas those are set from the outside, e.g. by the user or other systems, and also on inherent
objectives that reflect the design purpose of the system. Inherent objectives of a driving
module can be for example: saving of the driving functions and a high efficiency. If we be-
low talk about objectives, we refer to the internal ones, because those are part of the optimi-
zation. Low energy demand, high travelling comfort and low noise emission belong to in-
ternal objectives of a RailCab. The adaptation of objectives means, for instance, that the
relative weighting of the objectives is modified, new objectives are added or existing objec-
tives are discarded and no longer pursued.
Thus, the adaptation of the objectives leads to an adaptation of the system’s behavior. The
behavior’s adaptation is achieved by an adaptation of the parameters and, if necessary, of

the structure. An adaptation of the parameters means an adaptation of the system’s parame-
ters, e.g. the adaptation of a controller parameter.
Adapting the structure, concerns the arrangement and relations of the system’s elements.
We differentiate between reconfiguration and compositional adaptation. Reconfiguration is
the change of the relations of a fixed quantity of elements. Compositional adaptation means
the integration of new elements in the already existing structure or the subtraction of ele-
ments from the structure. Self-Optimization takes place as a process that consists of the three
following actions, called the Self-Optimization Process:
1. Analyzing the current situation: The regarded current situation includes the current state
of the system as well as all observations of the environment that have been carried out. Ob-
servations can also be made indirectly by communication with other systems. Furthermore,
a system’s state contains possible previous observations that are saved. One basic aspect of
this first step is the analysis of the fulfillment of the objectives.
2. Determining the system’s objectives: The system’s objectives can be extracted from
choice, adjustment and generation. By choice we understand the selection of one alternative
out of predetermined, discrete, finite quantity of possible objectives; whereas the adjustment
of objectives means the gradual modification of existing objectives respectively of their rela-
tive weighting. We talk about generation, if new objectives are being created that are inde-
pendent from the existing ones.

Fig. 3. Aspects of a self-optimizing system – influences on the system result in an adaptation
of the objectives and an according adaptation of the system’s behaviour

www.intechopen.com

Architecture and Design Methodology of Self-Optimizing Mechatronic Systems 259

Fig. 2. Structure of a complex mechatronic system with inherent partial intelligence

On every level of this structure it is possible, to add the functionality of self-optimization to
the controller. By this, the regarded system’s elements (MFM, AMS, NMS) gain inherent
partial intelligence. The behavior of the whole system is formed by the communication and
cooperation of the intelligent system’s elements. From an information processing point of
view we consider these distributed systems to be multi-agent-systems.
Against this backdrop, we understand a system’s self-optimization as endogenous adapta-
tion on changing operating conditions, as well as a resulting objective-oriented adaptation of
the parameters and, if necessary, of the structure and therefore the behavior of the system
[ADG+08]. Thus self-optimization enables systems that have inherent “intelligence”. They
have the ability to react autonomously and flexibly on changing operating conditions.
The key aspects and the operation mode of a self-optimizing system are depicted in figure 3.
Using the influences as a basis, the self-optimizing system determines the internal objectives
that have to be pursued actively. These internal objectives are based on external ones, whe-
reas those are set from the outside, e.g. by the user or other systems, and also on inherent
objectives that reflect the design purpose of the system. Inherent objectives of a driving
module can be for example: saving of the driving functions and a high efficiency. If we be-
low talk about objectives, we refer to the internal ones, because those are part of the optimi-
zation. Low energy demand, high travelling comfort and low noise emission belong to in-
ternal objectives of a RailCab. The adaptation of objectives means, for instance, that the
relative weighting of the objectives is modified, new objectives are added or existing objec-
tives are discarded and no longer pursued.
Thus, the adaptation of the objectives leads to an adaptation of the system’s behavior. The
behavior’s adaptation is achieved by an adaptation of the parameters and, if necessary, of

the structure. An adaptation of the parameters means an adaptation of the system’s parame-
ters, e.g. the adaptation of a controller parameter.
Adapting the structure, concerns the arrangement and relations of the system’s elements.
We differentiate between reconfiguration and compositional adaptation. Reconfiguration is
the change of the relations of a fixed quantity of elements. Compositional adaptation means
the integration of new elements in the already existing structure or the subtraction of ele-
ments from the structure. Self-Optimization takes place as a process that consists of the three
following actions, called the Self-Optimization Process:
1. Analyzing the current situation: The regarded current situation includes the current state
of the system as well as all observations of the environment that have been carried out. Ob-
servations can also be made indirectly by communication with other systems. Furthermore,
a system’s state contains possible previous observations that are saved. One basic aspect of
this first step is the analysis of the fulfillment of the objectives.
2. Determining the system’s objectives: The system’s objectives can be extracted from
choice, adjustment and generation. By choice we understand the selection of one alternative
out of predetermined, discrete, finite quantity of possible objectives; whereas the adjustment
of objectives means the gradual modification of existing objectives respectively of their rela-
tive weighting. We talk about generation, if new objectives are being created that are inde-
pendent from the existing ones.

Fig. 3. Aspects of a self-optimizing system – influences on the system result in an adaptation
of the objectives and an according adaptation of the system’s behaviour

www.intechopen.com

Mechatronic Systems, Simulation, Modelling and Control260

3. Adapting the system’s behavior: The changed system of objectives demands an adapta-
tion of the behavior of the system. As mentioned before this can be realized by adapting the
parameters and, if required, by adapting the structure of the system. This action finally
closes the loop of the self-optimization by adapting the system’s behavior.
The self-optimizing process leads, according to changing influences, to a new state. Thus a
state transition takes place. The Self-Optimizing Process describes the system’s adaptation
behavior. This can occur on every hierarchy level of a self-optimizing system shown in fig-
ure 2. The realization of mechatronic systems with inherent partial intelligence requires an
adequate concept of structure as well as an architecture for the information processing. To
make this possible, the new concept of the Operator-Controller-Module (OCM) has been
developed: [ADG+08]. From an information processing point of view, it corresponds to an
agent. Figure 4 shows its architecture. As a result, an OCM can be structured into three le-
vels (Controller, Reflective Operator and Cognitive Operator) which will be examined in de-
tail below.

controlled system

Fig. 4. Architecture of the Operator-Controller-Module (OCM)

 The Controller level stands for the control loop with direct access to the technical sys-
tem. The software at this level operates continuously under hard real-time conditions.
The controller itself can be made up of a number of controller configurations with the
possibility of switching between them. The changeover takes one step; necessary cross-
fading mechanisms and the like are summarized, in turn, into one controlling element.

 The Reflective Operator supervises and regulates the controller. It does not access di-
rectly the actuators of the system but it modifies the controller by initiating parameter
changes or changes of the structure. If changes of the structure do appear (e.g. as in re-
configurations), not just the controllers will be replaced but also corresponding control
and signal flows will be switched within the controller itself. Combinations that consist
of controllers, circuit elements and corresponding control or signal flows are described
as controller-configurations. Figure 4 shows possible controller-configurations, exem-
plified by the blocks A, B and C. The controlling of the configurations, realized by a
state machine, defines which state of the system uses which kind of configuration. It
also determines under which circumstances it is necessary to switch between the con-
figurations. The reflecting operator mostly works event-oriented. The close connection
with the controller requires a mode of operation in so-called hard real-time. The re-
flecting operator offers an interface (working as a conjunctional element to the cogni-
tive level of the OCM) between the elements operating not in real-time or soft real-time
and the controller. It filters the arriving signals and takes them to the levels under-
neath. Moreover, the reflecting operator is responsible for the real-time communication
between the OCM, which together constitute a composed self-optimizing system.

 The Cognitive Operator is the highest level of the OCM-architecture. Here the system
uses knowledge on itself as well as on its environment in order to improve its own be-
havior by using varied methods (such as learning methods and model-based optimiza-
tion). The main emphasis is put on the cognitive abilities for carrying out of the self-
optimizing process. Model-based processes allow a predictable optimization that is, to
a large extent, decoupled from the underlying levels while the system is in operation.

Based on the OCM-architecture, the actions of the Self-Optimizing Process (1. analyzing the
current situation, 2. determining the system’s objectives and 3. adapting the system’s beha-
vior) can be realized in various ways. When the self-optimizing adaptation needs to fulfill
real-time requirements all three actions are carried out in the reflective operator. Systems
that do not have to run the self-optimization in real time can use more elaborate methods,
which are settled within the cognitive operator. In that case, the behavior’s adaptation is car-
ried out indirectly, relayed by the reflective operator, which needs to synchronize the in-
structions of the behavior’s adaptation with the controller’s real-time course. In addition,
there might occur mixtures within one single OCM. There are also hybrid forms that occur
within a single OCM, when the two described forms of self-optimization take place simulta-
neously and asynchronously.

3. Challenges during the development of self-optimizing systems

A new and powerful paradigm, such as self-optimization, naturally calls for new develop-
ment methods as well as development tools. Because of the high complexity and the partici-
pation of a multitude of different engineering domains the development of self-optimizing
systems is still a challenge.

www.intechopen.com

Architecture and Design Methodology of Self-Optimizing Mechatronic Systems 261

3. Adapting the system’s behavior: The changed system of objectives demands an adapta-
tion of the behavior of the system. As mentioned before this can be realized by adapting the
parameters and, if required, by adapting the structure of the system. This action finally
closes the loop of the self-optimization by adapting the system’s behavior.
The self-optimizing process leads, according to changing influences, to a new state. Thus a
state transition takes place. The Self-Optimizing Process describes the system’s adaptation
behavior. This can occur on every hierarchy level of a self-optimizing system shown in fig-
ure 2. The realization of mechatronic systems with inherent partial intelligence requires an
adequate concept of structure as well as an architecture for the information processing. To
make this possible, the new concept of the Operator-Controller-Module (OCM) has been
developed: [ADG+08]. From an information processing point of view, it corresponds to an
agent. Figure 4 shows its architecture. As a result, an OCM can be structured into three le-
vels (Controller, Reflective Operator and Cognitive Operator) which will be examined in de-
tail below.

controlled system

Fig. 4. Architecture of the Operator-Controller-Module (OCM)

 The Controller level stands for the control loop with direct access to the technical sys-
tem. The software at this level operates continuously under hard real-time conditions.
The controller itself can be made up of a number of controller configurations with the
possibility of switching between them. The changeover takes one step; necessary cross-
fading mechanisms and the like are summarized, in turn, into one controlling element.

 The Reflective Operator supervises and regulates the controller. It does not access di-
rectly the actuators of the system but it modifies the controller by initiating parameter
changes or changes of the structure. If changes of the structure do appear (e.g. as in re-
configurations), not just the controllers will be replaced but also corresponding control
and signal flows will be switched within the controller itself. Combinations that consist
of controllers, circuit elements and corresponding control or signal flows are described
as controller-configurations. Figure 4 shows possible controller-configurations, exem-
plified by the blocks A, B and C. The controlling of the configurations, realized by a
state machine, defines which state of the system uses which kind of configuration. It
also determines under which circumstances it is necessary to switch between the con-
figurations. The reflecting operator mostly works event-oriented. The close connection
with the controller requires a mode of operation in so-called hard real-time. The re-
flecting operator offers an interface (working as a conjunctional element to the cogni-
tive level of the OCM) between the elements operating not in real-time or soft real-time
and the controller. It filters the arriving signals and takes them to the levels under-
neath. Moreover, the reflecting operator is responsible for the real-time communication
between the OCM, which together constitute a composed self-optimizing system.

 The Cognitive Operator is the highest level of the OCM-architecture. Here the system
uses knowledge on itself as well as on its environment in order to improve its own be-
havior by using varied methods (such as learning methods and model-based optimiza-
tion). The main emphasis is put on the cognitive abilities for carrying out of the self-
optimizing process. Model-based processes allow a predictable optimization that is, to
a large extent, decoupled from the underlying levels while the system is in operation.

Based on the OCM-architecture, the actions of the Self-Optimizing Process (1. analyzing the
current situation, 2. determining the system’s objectives and 3. adapting the system’s beha-
vior) can be realized in various ways. When the self-optimizing adaptation needs to fulfill
real-time requirements all three actions are carried out in the reflective operator. Systems
that do not have to run the self-optimization in real time can use more elaborate methods,
which are settled within the cognitive operator. In that case, the behavior’s adaptation is car-
ried out indirectly, relayed by the reflective operator, which needs to synchronize the in-
structions of the behavior’s adaptation with the controller’s real-time course. In addition,
there might occur mixtures within one single OCM. There are also hybrid forms that occur
within a single OCM, when the two described forms of self-optimization take place simulta-
neously and asynchronously.

3. Challenges during the development of self-optimizing systems

A new and powerful paradigm, such as self-optimization, naturally calls for new develop-
ment methods as well as development tools. Because of the high complexity and the partici-
pation of a multitude of different engineering domains the development of self-optimizing
systems is still a challenge.

www.intechopen.com

Mechatronic Systems, Simulation, Modelling and Control262

By the activities of the Heinz Nixdorf Institute of the University of Paderborn a practical
guideline for the development of mechatronic systems was established – the VDI-guideline
2206 „Design methodology for mechatronic systems“ (figure 5). The guideline is based on
the so called V model of the domain software engineering.

modeling and model analysis

mechanical engineering
domain-specific design

requirements product

verification

electrical eng./electronics
software engineering

Fig. 5. V model of the VDI-guideline 2206 „Design methodology for mechatronic systems”
[VDI04]

Starting point for the system design are the requirements. During the system design the ba-
sic structure and the main physical and logical operating characteristics of the system are
described in a domain-spanning product concept (synonymous: principle solution). The
principle solution forms the basis for the subsequent domain-specific concretization. The
term “concretization” describes thereby the domain-specific design of a technical system.
During the concretization the participating domains specify the system by using domain-
specific procedure models, methodologies and tools. Afterwards the integration of the re-
sults from the individual domains into an overall system allows to investigate the character-
istics of the system. During the different development steps the reliability and safety of the
characteristics is analyzed by computer models. The result of one cycle of the V model is a
product of a specific stage of maturity (e.g. functional model, prototype, pre-production
model and repetition part). For the development of a product of a high stage of maturity a
number of cycles are required. The presented model is a first step on the way to a holistic
design methodology for mechatronic systems.

The holistic domain-spanning system design – thus the left bough of the V model – still
bears the major challenge in the development of mechatronic systems. There is a gap be-
tween the normally used list of requirements, which is more or less a rough specification of
the total system and, hence, leaves much space for interpretation, and well-established spe-
cification techniques of the involved domains used within the domain-specific concretiza-
tion. This gap is the reason, why the engineers run in deep trouble when they have to inte-
grate their results in the system integration in the right bough of the V model. This applies
to mechatronic as well as to self-optimizing systems. It is the question, how established de-
sign methodologies can be extended to face these challenge. For the system design we be-
came aware, that the basic structure of the conceptual design in classical mechanical engi-
neering design methodology (formulation of the requirements, definition of the functions
and searching for active principles for the realization of the tasks [PBF+07]) is also valid for
mechatronic and self-optimizing systems. By looking into this more deeply, it became clear
that an extension of the design methodology was urgently necessary. This appears, for in-
stance, in the use of solution patterns as well as in the necessity of modeling the environ-
ment, application scenarios and the system of objectives. Therewith a holistic approach for
the conceptual design of self-optimizing systems, comprising of an integrative specification
of the description of the principle solution and a holistic procedure model, is the main need
for action on the way to a design methodology for self-optimizing systems (compare figure
6). Both elements are presented in the following chapters.

?
field of activity

cross-domain specification of
the principle solution

b 1435 mmD
height hges: <2855 mmD
length lges: <6600 mmD
boundary UIC 505-1D
geometry

requirementsD/W

in
cr

ea
si

ng
 c

on
cr

et
iz

at
io

n

of
 th

e
pr

od
uc

t s
pe

ci
fic

at
io

n

integration

co
nc

ep
tu

al
de

si
gn

co
nc

re
tiz

at
io

n
sy

st
em

in
te

gr
at

io
n

Fig. 6. Central challenge: a new specification technique for the description of the principle
solution of a mechatronic respectively self-optimizing system

www.intechopen.com

Architecture and Design Methodology of Self-Optimizing Mechatronic Systems 263

By the activities of the Heinz Nixdorf Institute of the University of Paderborn a practical
guideline for the development of mechatronic systems was established – the VDI-guideline
2206 „Design methodology for mechatronic systems“ (figure 5). The guideline is based on
the so called V model of the domain software engineering.

modeling and model analysis

mechanical engineering
domain-specific design

requirements product

verification

electrical eng./electronics
software engineering

Fig. 5. V model of the VDI-guideline 2206 „Design methodology for mechatronic systems”
[VDI04]

Starting point for the system design are the requirements. During the system design the ba-
sic structure and the main physical and logical operating characteristics of the system are
described in a domain-spanning product concept (synonymous: principle solution). The
principle solution forms the basis for the subsequent domain-specific concretization. The
term “concretization” describes thereby the domain-specific design of a technical system.
During the concretization the participating domains specify the system by using domain-
specific procedure models, methodologies and tools. Afterwards the integration of the re-
sults from the individual domains into an overall system allows to investigate the character-
istics of the system. During the different development steps the reliability and safety of the
characteristics is analyzed by computer models. The result of one cycle of the V model is a
product of a specific stage of maturity (e.g. functional model, prototype, pre-production
model and repetition part). For the development of a product of a high stage of maturity a
number of cycles are required. The presented model is a first step on the way to a holistic
design methodology for mechatronic systems.

The holistic domain-spanning system design – thus the left bough of the V model – still
bears the major challenge in the development of mechatronic systems. There is a gap be-
tween the normally used list of requirements, which is more or less a rough specification of
the total system and, hence, leaves much space for interpretation, and well-established spe-
cification techniques of the involved domains used within the domain-specific concretiza-
tion. This gap is the reason, why the engineers run in deep trouble when they have to inte-
grate their results in the system integration in the right bough of the V model. This applies
to mechatronic as well as to self-optimizing systems. It is the question, how established de-
sign methodologies can be extended to face these challenge. For the system design we be-
came aware, that the basic structure of the conceptual design in classical mechanical engi-
neering design methodology (formulation of the requirements, definition of the functions
and searching for active principles for the realization of the tasks [PBF+07]) is also valid for
mechatronic and self-optimizing systems. By looking into this more deeply, it became clear
that an extension of the design methodology was urgently necessary. This appears, for in-
stance, in the use of solution patterns as well as in the necessity of modeling the environ-
ment, application scenarios and the system of objectives. Therewith a holistic approach for
the conceptual design of self-optimizing systems, comprising of an integrative specification
of the description of the principle solution and a holistic procedure model, is the main need
for action on the way to a design methodology for self-optimizing systems (compare figure
6). Both elements are presented in the following chapters.

?
field of activity

cross-domain specification of
the principle solution

b 1435 mmD
height hges: <2855 mmD
length lges: <6600 mmD
boundary UIC 505-1D
geometry

requirementsD/W
in

cr
ea

si
ng

 c
on

cr
et

iz
at

io
n

of
 th

e
pr

od
uc

t s
pe

ci
fic

at
io

n

integration

co
nc

ep
tu

al
de

si
gn

co
nc

re
tiz

at
io

n
sy

st
em

in
te

gr
at

io
n

Fig. 6. Central challenge: a new specification technique for the description of the principle
solution of a mechatronic respectively self-optimizing system

www.intechopen.com

Mechatronic Systems, Simulation, Modelling and Control264

4. Specification of the principle solution

In the following, we present a specification technique for the description of the principle so-
lution of a self-optimizing system. It is also applicable for mechatronic systems. The specifi-
cation technique is based on the research of FRANK, GAUSEMEIER and KALLMEYER [GFD+08],
[GEK01]. It became clear that a comprehensive description of the principle solution of a
highly complex system needs to be divided into aspects. Those aspects are, according to fig-
ure 7: requirements, environment, system of objectives, application scenarios, functions, ac-
tive structure, shape and behavior. The behavior consists of a whole group because there are
different kinds of behavior, e.g. the logic behavior, the dynamic behavior of multi-body sys-
tems, the cooperative behavior of system components etc. The mentioned aspects are
represented by partial models. The principle solution consists of a coherent system of partial
models because the aspects are in relationship with each other and ought to form a coherent
system. It is necessary to work alternately on the aspects and the according partial models.
Nevertheles there is a certain order.

Fig. 7. Partial models for the domain-spanning description of the principle solution of self-
optimizing systems

The description of the environment, the application scenarios and requirement serve as the
starting point. They are usually followed by the system of objectives, the function hierarchy
and the active structure. The active structure represents the core of the principle solution in

conventional mechanical engineering. The modeling of states and the state transitions as
well as the impacts on the active structure play a decisive role in the specification of a self-
optimizing system. This kind of modeling takes place within the group of behavior models.
An example is given in subchapter 3.3. The following subchapters explain the partial mod-
els, the relationships between the partial models and the specific characteristic of the specifi-
cation of self-optimizing systems.

4.1 Partial models
Environment: This model describes the environment of the system that has to be developed
and its embedding into the environment. Relevant spheres of influence (such as weather,
mechanical load, superior systems) and influences (such as thermal radiation, wind energy,
information) will be identified.

0..*

E 1

0..2

I 1

E 1
tr

ac
k

se
t

er
ro

r

E1abrasion E 1
tr

ac
k

se
t

er
ro

r

E1I2

E 4I 4

E1I3

E1I2
0..*

0..* 0..*

0..*

0, 1

0, 1

0, 1

0.
.*

0..*

0..*

0,
 1

0,
 1

0.
.1

0

RailCab

switchtrack
sectionenvironment

cargo

user

2 km/h> 50 km/hwind2

unter-
stü tzend,
stö rend,
neutral

Auftret-
enshäu
figkeit

Toleranz-
bereich

Aus-
pr gungMerkmal

Einflussfaktor
(Bezeichnung, evtl. Nr.

medium0,30 %> 5 %inclinationterrain1

medium0,1 l/min1 l/minliters per minuterain3

4 cm20 cmsnow4

rare3<< 1ice5
2 cm> 10 cm6

rare2 mm> 8 mmthickness on rail7

often2 km/h> 50 km/hvelocity2

frequency
of

 appearance

range of
tolerancecharacteristicattribute

influence
(denotation and
short description)

No.

0,30 %> 5 %1

0,1 l/min1 l/min3

4 cm20 cmdepth of snow4

3<< 1adhesion5
2 cm> 10 cmlevel above trackflood6

2 mm> 8 mmleaves7

rare

rare

kind of
influence:

supporting,
disturbing,

neutral
disturbing

disturbing
disturbing

disturbing
disturbing
disturbing

disturbing

amount of
system
elements

disturbing influence

legend

disturbance
relation

x..y multiplicity

Fig. 8. Modeling of the RailCab’s environment (cut-out)

www.intechopen.com

Architecture and Design Methodology of Self-Optimizing Mechatronic Systems 265

4. Specification of the principle solution

In the following, we present a specification technique for the description of the principle so-
lution of a self-optimizing system. It is also applicable for mechatronic systems. The specifi-
cation technique is based on the research of FRANK, GAUSEMEIER and KALLMEYER [GFD+08],
[GEK01]. It became clear that a comprehensive description of the principle solution of a
highly complex system needs to be divided into aspects. Those aspects are, according to fig-
ure 7: requirements, environment, system of objectives, application scenarios, functions, ac-
tive structure, shape and behavior. The behavior consists of a whole group because there are
different kinds of behavior, e.g. the logic behavior, the dynamic behavior of multi-body sys-
tems, the cooperative behavior of system components etc. The mentioned aspects are
represented by partial models. The principle solution consists of a coherent system of partial
models because the aspects are in relationship with each other and ought to form a coherent
system. It is necessary to work alternately on the aspects and the according partial models.
Nevertheles there is a certain order.

Fig. 7. Partial models for the domain-spanning description of the principle solution of self-
optimizing systems

The description of the environment, the application scenarios and requirement serve as the
starting point. They are usually followed by the system of objectives, the function hierarchy
and the active structure. The active structure represents the core of the principle solution in

conventional mechanical engineering. The modeling of states and the state transitions as
well as the impacts on the active structure play a decisive role in the specification of a self-
optimizing system. This kind of modeling takes place within the group of behavior models.
An example is given in subchapter 3.3. The following subchapters explain the partial mod-
els, the relationships between the partial models and the specific characteristic of the specifi-
cation of self-optimizing systems.

4.1 Partial models
Environment: This model describes the environment of the system that has to be developed
and its embedding into the environment. Relevant spheres of influence (such as weather,
mechanical load, superior systems) and influences (such as thermal radiation, wind energy,
information) will be identified.

0..*

E 1

0..2

I 1

E 1
tr

ac
k

se
t

er
ro

r

E1abrasion E 1
tr

ac
k

se
t

er
ro

r

E1I2

E 4I 4

E1I3

E1I2
0..*

0..* 0..*

0..*

0, 1

0, 1

0, 1

0.
.*

0..*

0..*

0,
 1

0,
 1

0.
.1

0

RailCab

switchtrack
sectionenvironment

cargo

user

2 km/h> 50 km/hwind2

unter-
stü tzend,
stö rend,
neutral

Auftret-
enshäu
figkeit

Toleranz-
bereich

Aus-
pr gungMerkmal

Einflussfaktor
(Bezeichnung, evtl. Nr.

medium0,30 %> 5 %inclinationterrain1

medium0,1 l/min1 l/minliters per minuterain3

4 cm20 cmsnow4

rare3<< 1ice5
2 cm> 10 cm6

rare2 mm> 8 mmthickness on rail7

often2 km/h> 50 km/hvelocity2

frequency
of

 appearance

range of
tolerancecharacteristicattribute

influence
(denotation and
short description)

No.

0,30 %> 5 %1

0,1 l/min1 l/min3

4 cm20 cmdepth of snow4

3<< 1adhesion5
2 cm> 10 cmlevel above trackflood6

2 mm> 8 mmleaves7

rare

rare

kind of
influence:

supporting,
disturbing,

neutral
disturbing

disturbing
disturbing

disturbing
disturbing
disturbing

disturbing

amount of
system
elements

disturbing influence

legend

disturbance
relation

x..y multiplicity

Fig. 8. Modeling of the RailCab’s environment (cut-out)

www.intechopen.com

Mechatronic Systems, Simulation, Modelling and Control266

Disturbing influences on the system’s purpose will be marked as disturbance variables. Fur-
thermore, the interplays between the influences will be examined. We consider a situation to
be one consistent amount of collectively occurring influences, in which the system has to
work properly. We mark influences that cause a state transition of the system as events. Ca-
talogues, that imply spheres of influences and influences, support the creation of environ-
ment models. Figure 8 shows, in detail, the specification of the RailCab’s environment. The
users and the cargo affect the driving behavior of a RailCab, e.g. by their weight. Influences
of the environment, such as wind, snow, ice and leaves, affect both, the RailCab’s driving
behavior as well as the state of the track sections and switches. Track set errors of track sec-
tions also influence the RailCab’s driving behavior as well as the abrasion of the RailCab it-
self. The example concretizes the amount of influences I2 in the influence table (figure 8).

Fig. 9. Application scenario for the example “optimizing the efficiency” [GFP+08]

Application scenario: Application scenarios form first concretizations of the system. They con-
cretize the system’s behavior in a special state and a special situation and furthermore, what
kinds of events initiate a state transitions. Application scenarios characterize a problem, which
needs to be solved in special cases, and also roughly describe the possible solution. One applica-
tion scenario of the RailCab “optimizing the efficiency” is shown in figure 9.

Requirements: This aspect considers the computer-intern representation of the require-
ments. The list of requirements sets up its basis. It presents an organized collection of re-
quirements that need to be fulfilled during the product development (such as overall size,
performance data). Requirements are separated into demands and wishes [PBF+07]. Every
requirement is verbally described and, if possible, concretized by attributes and their charac-
teristics. Several checklists assist the setting up of requirements; see for example [PBF+07],
[Rot00], [Ehr03].
System of objectives: This aspect includes the representation of external, inherent and in-
ternal objectives and their connections (see chapter 2). A cut-out of the system of objectives
of the RailCab is shown in figure 10. The external and inherent objectives are represented as
a hierarchical tree. The hierarchy relations are specified by logical relations with declara-
tions of the hierarchy criterion “is part-objective of”. The potential internal objectives derive
from the external and inherent objectives. The impact between the objectives will be ex-
pressed by an assisting influence matrix. The matrix shows if the objectives work in mutual
support, if they influence each other negatively or if they are in a neutral relationship. The
system is able to follow such systems simultaneously and without any problems, which
work mutually and also those systems that have neutral relations. But if the systems influ-
ence each other in a negative way, this is an indication for the need of optimization. Instead
of an influence matrix, graphs that model objectives and their interplays can be used.
Functions: This aspect concerns the hierarchical subdivision of the functionality. A function
is the general and required coherence between input and output parameters, aiming at ful-
filling a task. For the setting up of function hierarchies, there is a catalogue with functions
which is based on BIRKHOFER [Bir80] and LANGLOTZ [Lan00]. This catalogue has been ex-
tended by functions, which especially describe self-optimizing functionality. Functions are
realized by solution patterns and their concretizations. A subdivision into sub functions is
taking place until useful solution patterns have been found for the functions.

www.intechopen.com

Architecture and Design Methodology of Self-Optimizing Mechatronic Systems 267

Disturbing influences on the system’s purpose will be marked as disturbance variables. Fur-
thermore, the interplays between the influences will be examined. We consider a situation to
be one consistent amount of collectively occurring influences, in which the system has to
work properly. We mark influences that cause a state transition of the system as events. Ca-
talogues, that imply spheres of influences and influences, support the creation of environ-
ment models. Figure 8 shows, in detail, the specification of the RailCab’s environment. The
users and the cargo affect the driving behavior of a RailCab, e.g. by their weight. Influences
of the environment, such as wind, snow, ice and leaves, affect both, the RailCab’s driving
behavior as well as the state of the track sections and switches. Track set errors of track sec-
tions also influence the RailCab’s driving behavior as well as the abrasion of the RailCab it-
self. The example concretizes the amount of influences I2 in the influence table (figure 8).

Fig. 9. Application scenario for the example “optimizing the efficiency” [GFP+08]

Application scenario: Application scenarios form first concretizations of the system. They con-
cretize the system’s behavior in a special state and a special situation and furthermore, what
kinds of events initiate a state transitions. Application scenarios characterize a problem, which
needs to be solved in special cases, and also roughly describe the possible solution. One applica-
tion scenario of the RailCab “optimizing the efficiency” is shown in figure 9.

Requirements: This aspect considers the computer-intern representation of the require-
ments. The list of requirements sets up its basis. It presents an organized collection of re-
quirements that need to be fulfilled during the product development (such as overall size,
performance data). Requirements are separated into demands and wishes [PBF+07]. Every
requirement is verbally described and, if possible, concretized by attributes and their charac-
teristics. Several checklists assist the setting up of requirements; see for example [PBF+07],
[Rot00], [Ehr03].
System of objectives: This aspect includes the representation of external, inherent and in-
ternal objectives and their connections (see chapter 2). A cut-out of the system of objectives
of the RailCab is shown in figure 10. The external and inherent objectives are represented as
a hierarchical tree. The hierarchy relations are specified by logical relations with declara-
tions of the hierarchy criterion “is part-objective of”. The potential internal objectives derive
from the external and inherent objectives. The impact between the objectives will be ex-
pressed by an assisting influence matrix. The matrix shows if the objectives work in mutual
support, if they influence each other negatively or if they are in a neutral relationship. The
system is able to follow such systems simultaneously and without any problems, which
work mutually and also those systems that have neutral relations. But if the systems influ-
ence each other in a negative way, this is an indication for the need of optimization. Instead
of an influence matrix, graphs that model objectives and their interplays can be used.
Functions: This aspect concerns the hierarchical subdivision of the functionality. A function
is the general and required coherence between input and output parameters, aiming at ful-
filling a task. For the setting up of function hierarchies, there is a catalogue with functions
which is based on BIRKHOFER [Bir80] and LANGLOTZ [Lan00]. This catalogue has been ex-
tended by functions, which especially describe self-optimizing functionality. Functions are
realized by solution patterns and their concretizations. A subdivision into sub functions is
taking place until useful solution patterns have been found for the functions.

www.intechopen.com

Mechatronic Systems, Simulation, Modelling and Control268

Fig. 10. The RailCab’s system of objectives (cut-out)

Active structure: The active structure describes the system elements, their attributes as well
as the relation of the system elements. It is the target to define the basic structure of a self-
optimizing system, including all system configurations which can be thought anticipated.
Figure 11 visualizes a cut-out of a shuttle’s active structure. The active structure consists of
system elements, such as drive and break modules, air gap adjustment, operating point con-
trol, tracking modules, spring- and tilt modules, energy management and their relations.
Furthermore, incoming parameters are described, such as comfort, costs and time, which are
external objectives of the user. The system is structured by logic groups in order to improve
the necessary clearness. In this case, for example, the system elements of a driving module
are combined. The system elements, which deal with the determination of system objectives
of the self-optimization process, are marked by a slanting arrow (here: operating point con-
trol and air gap adjustment).

Fig. 11. Active structure of a shuttle (cut-out)

www.intechopen.com

Architecture and Design Methodology of Self-Optimizing Mechatronic Systems 269

Fig. 10. The RailCab’s system of objectives (cut-out)

Active structure: The active structure describes the system elements, their attributes as well
as the relation of the system elements. It is the target to define the basic structure of a self-
optimizing system, including all system configurations which can be thought anticipated.
Figure 11 visualizes a cut-out of a shuttle’s active structure. The active structure consists of
system elements, such as drive and break modules, air gap adjustment, operating point con-
trol, tracking modules, spring- and tilt modules, energy management and their relations.
Furthermore, incoming parameters are described, such as comfort, costs and time, which are
external objectives of the user. The system is structured by logic groups in order to improve
the necessary clearness. In this case, for example, the system elements of a driving module
are combined. The system elements, which deal with the determination of system objectives
of the self-optimization process, are marked by a slanting arrow (here: operating point con-
trol and air gap adjustment).

Fig. 11. Active structure of a shuttle (cut-out)

www.intechopen.com

Mechatronic Systems, Simulation, Modelling and Control270

Shape: This aspect needs to be modeled because first definitions of the system’s shape have
to be carried out already in the phase of the conceptual design. This especially concerns
working surfaces, working places, surfaces and frames. The computer-aided modeling takes
place by using 3D CAD systems.
Behavior: This group of partial models comprises several kinds of behavior. Basically, what
is needed to be modeled are the system’s states with the connected operation processes and
the state transitions with the adaptation processes. The adaptation processes represent the
definite realization of the self-optimizing process. If there are several systems taking part in
the self-optimizing process, the interplay of these systems needs to be described. Depending
on the development task, more kinds of behavior, such as kinematics, dynamics or electro-
magnetic compatibility of the system’s components need to be specified.

 The partial model Behavior – States defines the states and state transitions of a sys-
tem. All of the system’s states and state transitions, which can be thought ahead
and thus, need to be considered, as well as the events initiating a state transition
need to be described. Events can be characteristic influences on the system or al-
ready finished activities.

 The partial model Behavior – Activities describes the mentioned operation
processes, that take place in a system’s state, and the adaptation processes, which
have the typical features of self-optimization. All in all, the processes are modeled
by activities. “Determine fulfillment of current objectives” or “select adequate pa-
rameters and configuration” etc. are examples of such activities. Figure 12 intro-
duces a cut-out of the self-optimizing process of the application scenario “optimiz-
ing the efficiency”. The self-optimizing process is structured by logic groups in the
analysis of the situation, the determination of objectives and the behavior adapta-
tion. Within the analysis of the situation, the track data, the RailCab inputs (such as
force, efficiency and safety) and information of the energy management module are
being interrogated. Furthermore a continuous determination of the degree of ful-
fillment of the current objectives takes place. The analysis of the situation happens
in soft real time. Based on certain information, the air gap adjustment forms a new
system of objectives within the determination of the objectives themselves. Right at
the beginning of the behavior’s adaptation, the identification of the air gap’s course
concerning the track section takes place. Out of that air gap’s course, useful para-
meters and accordingly configurations (for the self-optimizing air gap adjustment)
are chosen in connection with the new system of objectives. Those parameters do
not just find their use as an optimization result in the RailCab. Because they can be
sent back to the RailCab’s according track section control, they will be reused for
future RailCabs when they pass over a track section.

Fig. 12. Behavior – Activities for the application scenario „otimizing the efficiency (cut-out)“

www.intechopen.com

Architecture and Design Methodology of Self-Optimizing Mechatronic Systems 271

Shape: This aspect needs to be modeled because first definitions of the system’s shape have
to be carried out already in the phase of the conceptual design. This especially concerns
working surfaces, working places, surfaces and frames. The computer-aided modeling takes
place by using 3D CAD systems.
Behavior: This group of partial models comprises several kinds of behavior. Basically, what
is needed to be modeled are the system’s states with the connected operation processes and
the state transitions with the adaptation processes. The adaptation processes represent the
definite realization of the self-optimizing process. If there are several systems taking part in
the self-optimizing process, the interplay of these systems needs to be described. Depending
on the development task, more kinds of behavior, such as kinematics, dynamics or electro-
magnetic compatibility of the system’s components need to be specified.

 The partial model Behavior – States defines the states and state transitions of a sys-
tem. All of the system’s states and state transitions, which can be thought ahead
and thus, need to be considered, as well as the events initiating a state transition
need to be described. Events can be characteristic influences on the system or al-
ready finished activities.

 The partial model Behavior – Activities describes the mentioned operation
processes, that take place in a system’s state, and the adaptation processes, which
have the typical features of self-optimization. All in all, the processes are modeled
by activities. “Determine fulfillment of current objectives” or “select adequate pa-
rameters and configuration” etc. are examples of such activities. Figure 12 intro-
duces a cut-out of the self-optimizing process of the application scenario “optimiz-
ing the efficiency”. The self-optimizing process is structured by logic groups in the
analysis of the situation, the determination of objectives and the behavior adapta-
tion. Within the analysis of the situation, the track data, the RailCab inputs (such as
force, efficiency and safety) and information of the energy management module are
being interrogated. Furthermore a continuous determination of the degree of ful-
fillment of the current objectives takes place. The analysis of the situation happens
in soft real time. Based on certain information, the air gap adjustment forms a new
system of objectives within the determination of the objectives themselves. Right at
the beginning of the behavior’s adaptation, the identification of the air gap’s course
concerning the track section takes place. Out of that air gap’s course, useful para-
meters and accordingly configurations (for the self-optimizing air gap adjustment)
are chosen in connection with the new system of objectives. Those parameters do
not just find their use as an optimization result in the RailCab. Because they can be
sent back to the RailCab’s according track section control, they will be reused for
future RailCabs when they pass over a track section.

Fig. 12. Behavior – Activities for the application scenario „otimizing the efficiency (cut-out)“

www.intechopen.com

Mechatronic Systems, Simulation, Modelling and Control272

 The partial model Behavior – Sequence describes the interaction of several system
elements. The activities, being carried out during the interaction of the system ele-
ments, and the inter-changed information, are modeled in a chronological order.

4.2 Interrelations between the partial models
The partial models represent the different aspects of the principle solution of a self-
optimizing system. The interrelations between the partial models which describe the cohe-
rence of the partial models are of high importance. Those interrelations are built up between
the constructs of the relating partial models. There are, for example, functions (construct of
the partial model functions) that are realized by system elements (construct of the partial
model active structure). These system elements perform activities (construct of the partial
model behavior – activities), whereas the activities might result out of the functions of the par-
tial model functions. There could also be the achieving of a certain temperature (construct in-
fluence of the partial model environment) as an event (construct of the partial model behavior –
states) that causes the activation of a new state (construct of the partial model behavior –
states) and other activities. Table 1 shows a couple of interrelations between the partial mod-
els. The interrelations are shown directed to the right, i.e. in the table’s left side there are the
constructs which cause correlation, on the table’s right side there are the constructs affecting
the connections (an example in the 3rd line, table 1).

activates

activates

results from

decides

sets boundaries for

results from

has (opt.)

persuades (opt.)

takes

performs

realizes

kind of
interrelation

environment

environment

functions

requirements

requirements

behavior – activities

active structure

active structure

active structure

active structure

active structure

partial model

…

behavior – activitiesactivityinfluence/event

behavior – statestateinfluence/event

requirementsrequirementfunction

functionsfunctionrequirement

shapevolumesrequirement

functionsfunctionactivity

shapevolumessystem element

system of objectivesobjectivesystem element

behavior – statestatesystem element

behavior – activitiesactivitysystem element

functionsfunctionsystem element

partial modelconstructconstruct

activates

activates

results from

decides

sets boundaries for

results from

has (opt.)

persuades (opt.)

takes

performs

realizes

kind of
interrelation

environment

environment

functions

requirements

requirements

behavior – activities

active structure

active structure

active structure

active structure

active structure

partial model

…

behavior – activitiesactivityinfluence/event

behavior – statestateinfluence/event

requirementsrequirementfunction

functionsfunctionrequirement

shapevolumesrequirement

functionsfunctionactivity

shapevolumessystem element

system of objectivesobjectivesystem element

behavior – statestatesystem element

behavior – activitiesactivitysystem element

functionsfunctionsystem element

partial modelconstructconstruct

Table 1. Interrelations between the partial models (cut-out)

A system element within the partial model active structure takes up a state in the partial
model behavior – states. Optional interrelations are marked by (opt.). Taking the information

in table 1 as a basis, a so-called integration model is created, which complements all the al-
ready described partial models.

4.3 Particularities within the specification of self-optimizing systems
Chapter 1 already pointed out that the self-optimizing process initiates a new state of the
system. The system is transformed from one configuration into another. The partial model
behavior – states displays all relevant states of the system. It also contains all the events in-
itiating a state transition. The configuration of a system in a specific state is described by its
active structure. That means, the active structure can be differently shaped in different
states, for example, if different elements of the system (controllers, sensors) are used for the
execution of the self-optimizing process. A system’s behavior in a certain state is described
by its operation process. Operation processes are for example the acquisition of information
about the environment, the derivation of adequate control interactions, and the controlling
itself. State transitions are realized by adaptation processes, i.e. by self-optimizing processes.
The operation and adaptation processes are modeled in the partial model behavior – activities.
In order to describe the self-optimizing process, all of the three partial models need to be
considered simultaneously (figure 13). Every state of the partial models behavior – states is
assigned to an operation process of the partial model behavior – activities, which is operating
actively in that state. Moreover, every state is related to a configuration of the active struc-
ture, which also actively operates. One example: The state S5, the respective operation
process and the configuration of the active structure are emphasized by light grey colored,
logical groups. The operation process takes place in a periodic way.

active structure

behavior –
activities

SE 1 SE 2

SE 4

SE 3

SE 7 SE 8

SE10

SE 5 SE 6

SE 9

S

O,B

A 10A 9

A 6
A 1

A 4

A 2

A 7

A 8

A 5S

A 3
O B

legend
S
O
B

system element

activity
state

event analyzing the current situation
determining the systems‘s objectives
adapting the system‘s behaviorlogical group

relation

is assigned to
alternative

S1 S2

S3

behavior –
states

S6

S5

S4

E 1

E 5

E 4

E 7

E 6

E 3E 2

E 8

ESE

A

S
Fig. 13.Cooperation of the partial models active structure, behavior – states and behavior –
activities in order to describe the self-optimization (simplified visualization of the principle)

www.intechopen.com

Architecture and Design Methodology of Self-Optimizing Mechatronic Systems 273

 The partial model Behavior – Sequence describes the interaction of several system
elements. The activities, being carried out during the interaction of the system ele-
ments, and the inter-changed information, are modeled in a chronological order.

4.2 Interrelations between the partial models
The partial models represent the different aspects of the principle solution of a self-
optimizing system. The interrelations between the partial models which describe the cohe-
rence of the partial models are of high importance. Those interrelations are built up between
the constructs of the relating partial models. There are, for example, functions (construct of
the partial model functions) that are realized by system elements (construct of the partial
model active structure). These system elements perform activities (construct of the partial
model behavior – activities), whereas the activities might result out of the functions of the par-
tial model functions. There could also be the achieving of a certain temperature (construct in-
fluence of the partial model environment) as an event (construct of the partial model behavior –
states) that causes the activation of a new state (construct of the partial model behavior –
states) and other activities. Table 1 shows a couple of interrelations between the partial mod-
els. The interrelations are shown directed to the right, i.e. in the table’s left side there are the
constructs which cause correlation, on the table’s right side there are the constructs affecting
the connections (an example in the 3rd line, table 1).

activates

activates

results from

decides

sets boundaries for

results from

has (opt.)

persuades (opt.)

takes

performs

realizes

kind of
interrelation

environment

environment

functions

requirements

requirements

behavior – activities

active structure

active structure

active structure

active structure

active structure

partial model

…

behavior – activitiesactivityinfluence/event

behavior – statestateinfluence/event

requirementsrequirementfunction

functionsfunctionrequirement

shapevolumesrequirement

functionsfunctionactivity

shapevolumessystem element

system of objectivesobjectivesystem element

behavior – statestatesystem element

behavior – activitiesactivitysystem element

functionsfunctionsystem element

partial modelconstructconstruct

activates

activates

results from

decides

sets boundaries for

results from

has (opt.)

persuades (opt.)

takes

performs

realizes

kind of
interrelation

environment

environment

functions

requirements

requirements

behavior – activities

active structure

active structure

active structure

active structure

active structure

partial model

…

behavior – activitiesactivityinfluence/event

behavior – statestateinfluence/event

requirementsrequirementfunction

functionsfunctionrequirement

shapevolumesrequirement

functionsfunctionactivity

shapevolumessystem element

system of objectivesobjectivesystem element

behavior – statestatesystem element

behavior – activitiesactivitysystem element

functionsfunctionsystem element

partial modelconstructconstruct

Table 1. Interrelations between the partial models (cut-out)

A system element within the partial model active structure takes up a state in the partial
model behavior – states. Optional interrelations are marked by (opt.). Taking the information

in table 1 as a basis, a so-called integration model is created, which complements all the al-
ready described partial models.

4.3 Particularities within the specification of self-optimizing systems
Chapter 1 already pointed out that the self-optimizing process initiates a new state of the
system. The system is transformed from one configuration into another. The partial model
behavior – states displays all relevant states of the system. It also contains all the events in-
itiating a state transition. The configuration of a system in a specific state is described by its
active structure. That means, the active structure can be differently shaped in different
states, for example, if different elements of the system (controllers, sensors) are used for the
execution of the self-optimizing process. A system’s behavior in a certain state is described
by its operation process. Operation processes are for example the acquisition of information
about the environment, the derivation of adequate control interactions, and the controlling
itself. State transitions are realized by adaptation processes, i.e. by self-optimizing processes.
The operation and adaptation processes are modeled in the partial model behavior – activities.
In order to describe the self-optimizing process, all of the three partial models need to be
considered simultaneously (figure 13). Every state of the partial models behavior – states is
assigned to an operation process of the partial model behavior – activities, which is operating
actively in that state. Moreover, every state is related to a configuration of the active struc-
ture, which also actively operates. One example: The state S5, the respective operation
process and the configuration of the active structure are emphasized by light grey colored,
logical groups. The operation process takes place in a periodic way.

active structure

behavior –
activities

SE 1 SE 2

SE 4

SE 3

SE 7 SE 8

SE10

SE 5 SE 6

SE 9

S

O,B

A 10A 9

A 6
A 1

A 4

A 2

A 7

A 8

A 5S

A 3
O B

legend
S
O
B

system element

activity
state

event analyzing the current situation
determining the systems‘s objectives
adapting the system‘s behaviorlogical group

relation

is assigned to
alternative

S1 S2

S3

behavior –
states

S6

S5

S4

E 1

E 5

E 4

E 7

E 6

E 3E 2

E 8

ESE

A

S
Fig. 13.Cooperation of the partial models active structure, behavior – states and behavior –
activities in order to describe the self-optimization (simplified visualization of the principle)

www.intechopen.com

Mechatronic Systems, Simulation, Modelling and Control274

Now – when event E7 appears, an adaptation process is triggered. Therefore, the necessary
system elements are activated. Both, the adaptation process and the configuration of system
elements, are assigned to the event E7 (see medium grey background in figure 13). After
performing the adaptation process, the system takes over the new state S6. A new operation
process and a new configuration of system elements are activated. They are colored in a
dark grey within figure 13. The adaptation process and the used system elements are no
longer activated.

5. Conceptual design of self-optimizing systems

As mentioned in chapter 2, the basic construction and the operation mode of the system are
defined within the conceptual design phase. The basic procedure is divided into four sub-
phases (figure 14), which are explained in detail below. [GFD+08]

Fig. 14. Process of conceptual design of self-optimizing systems

Planning and clarifying the task
This sub-phase identifies the design task and the resulting requirements on the system is
worked out in here (figure 15). At first the task is analyzed in detail. At this the predefined
basic conditions for the product, the product program, and the product development are
taken into account. This is followed by an analysis of the operational environment which in-
vestigates the most important boundary conditions and influences on the system. The exter-
nal objectives emerge next to disturbances. Beyond that, consistent combinations of influ-
ences, so-called situations, are generated. By the combination of characteristic situations
with a first discretion of the system’s behavior, application scenarios occur. By using the
structuring procedure by STEFFEN it is possible to identify a development-oriented product
structure for the system and design rules, which guide the developers to realize this product
structure type [Ste07]. The results of this sub-phase are the list of requirements, the envi-
ronment model, the aspired product structure type and the assigned design rules as well as
the application scenarios.

Fig. 15. Conceptual design phase “planning and clarifying the task”

Conceptual design on the system’s level
Based on previously determined requirements of the system, solution variants are devel-
oped for each application scenario (figure 16). The main functions are derived from the re-
quirements and set into a function hierarchy.

solution of application scenario n
solution of application scenario 2

solution of application scenario 1

function
hierarchy

modified
function

hierarchy

active
structure

approach for
solution

S.O.-potential S.O.- concept

selected
solution elements

shape

selected
solution patterns

system
behavior

internal objectives

principle solution
on system’s level

possible solutions

draw up function
hierarchy

modifying the
functionhierarchy

identifying
solution pattern

identifying
solution elements

define
active structure

define
shape

define
behavior

identifying
internal objectives

analysing
and evaluating

creating
S.O.-concept

identifying
S.-O. potential

consolidating
of solutions

selecting
specific solution

module n

module 2

module 1

integration of
the concept

conceptual
design on the
module’s level

decomposition

conceptual
design on the
system’s level

planning and
clarifying the task

Fig. 16. Conceptual design phase “conceptual design on system’s level”

www.intechopen.com

Architecture and Design Methodology of Self-Optimizing Mechatronic Systems 275

Now – when event E7 appears, an adaptation process is triggered. Therefore, the necessary
system elements are activated. Both, the adaptation process and the configuration of system
elements, are assigned to the event E7 (see medium grey background in figure 13). After
performing the adaptation process, the system takes over the new state S6. A new operation
process and a new configuration of system elements are activated. They are colored in a
dark grey within figure 13. The adaptation process and the used system elements are no
longer activated.

5. Conceptual design of self-optimizing systems

As mentioned in chapter 2, the basic construction and the operation mode of the system are
defined within the conceptual design phase. The basic procedure is divided into four sub-
phases (figure 14), which are explained in detail below. [GFD+08]

Fig. 14. Process of conceptual design of self-optimizing systems

Planning and clarifying the task
This sub-phase identifies the design task and the resulting requirements on the system is
worked out in here (figure 15). At first the task is analyzed in detail. At this the predefined
basic conditions for the product, the product program, and the product development are
taken into account. This is followed by an analysis of the operational environment which in-
vestigates the most important boundary conditions and influences on the system. The exter-
nal objectives emerge next to disturbances. Beyond that, consistent combinations of influ-
ences, so-called situations, are generated. By the combination of characteristic situations
with a first discretion of the system’s behavior, application scenarios occur. By using the
structuring procedure by STEFFEN it is possible to identify a development-oriented product
structure for the system and design rules, which guide the developers to realize this product
structure type [Ste07]. The results of this sub-phase are the list of requirements, the envi-
ronment model, the aspired product structure type and the assigned design rules as well as
the application scenarios.

Fig. 15. Conceptual design phase “planning and clarifying the task”

Conceptual design on the system’s level
Based on previously determined requirements of the system, solution variants are devel-
oped for each application scenario (figure 16). The main functions are derived from the re-
quirements and set into a function hierarchy.

solution of application scenario n
solution of application scenario 2

solution of application scenario 1

function
hierarchy

modified
function

hierarchy

active
structure

approach for
solution

S.O.-potential S.O.- concept

selected
solution elements

shape

selected
solution patterns

system
behavior

internal objectives

principle solution
on system’s level

possible solutions

draw up function
hierarchy

modifying the
functionhierarchy

identifying
solution pattern

identifying
solution elements

define
active structure

define
shape

define
behavior

identifying
internal objectives

analysing
and evaluating

creating
S.O.-concept

identifying
S.-O. potential

consolidating
of solutions

selecting
specific solution

module n

module 2

module 1

integration of
the concept

conceptual
design on the
module’s level

decomposition

conceptual
design on the
system’s level

planning and
clarifying the task

Fig. 16. Conceptual design phase “conceptual design on system’s level”

www.intechopen.com

Mechatronic Systems, Simulation, Modelling and Control276

The function hierarchy needs to be modified according to the specific application scenarios,
e.g. irrelevant functions are removed and specific sub-functions are added. Then there is a
search for “solution patterns” in order to realize the documented functions of the function
hierarchy, which will be inserted into a morphologic box.
We use “solution pattern” as a general term. A pattern describes a reoccurring problem and
also the solution’s core of the problem [AIS+77]. Taking this as a starting point, it results in
the classification shown in figure 17. We differentiate between solution patterns that rely on
physical effects and between patterns exclusively serving the data processing. The design
methodology of mechanical engineering describes the first group as active principles; they
describe the principle solution for the realization of a function. The course of development
concretizes active principles to material components and patterns of information processing
to software components. The relations between active principles and components are of the
type n:m; the characteristic depends on the basic method of embodiment design (differential
construction method and integrated construction method). Within the integral construction,
several active patterns are realized by one component; whereas in the differential construc-
tion several components fulfill one active pattern. This is exactly the same in the field of in-
formation processing. Basically, a definite modern mechanical engineering system consists
of a construction structure that means an arrangement of shape-marked components within
a space and their logic aggregation to assemblies and products, and a component structure
that means the compound of software components.

Fig. 17. classification of solution patterns

In some times, there are already existing, well-established solutions which we call “solution
elements”. If there are such solution elements, they will be chosen instead of the abstract so-
lution patterns. The search for solution patterns is supported by a solution pattern cata-
logue. We use the consistency analysis in order to determine useful combinations of solution
patterns of the morphologic box [Köc04]. As a result, there will be consistent bunches of so-
lution patterns, with a solution pattern for each function.
The consistent bunches of solution patterns form the basis for the development of the active
structure. In this step, the refinement of the solution patterns to system elements takes place
as well. System elements form an intermediate step between solution patterns on one side
and shape-marked components or rather software components on the other side. Based on
the active structure, an initial construction structure can be developed because there are
primal details on the shape within the system elements. In addition, the system’s behavior is
roughly modeled in this step. Basically, this concerns the activities, states and state transi-
tions of the system as well as the communication and cooperation with other systems and
subsystems. The analysis of the system’s behavior produces an imagination of the optimiz-
ing processes, running within the system. The external, inherent and internal objectives can
be defined.
The solutions for the application scenarios need to be combined. It is important that worka-
ble configurations are created which make a reconfiguration of the system possible. Keeping
this information in mind, it is identified if there is a containing potential of self-optimization
at all. There is a potential for self-optimization if the changing influences on the system re-
quire modifications of the pursued objectives and the system needs to adjust its behavior. If
there is potential for self-optimization, the function hierarchy needs to be complemented by
self-optimizing functions. In particular solution patterns of self-optimization are applied to
enable self-optimizing behavior. The resulting changes and extensions of system structure
and system behavior need to be included appropriately.
The best solution for each application scenario is chosen and these solutions are consoli-
dated to a principle solution on the system’s level. Afterwards, an analysis takes place
which looks for contradictions within the principle solution of the system and which con-
tradictions might be solved by self-optimization. Self-optimizing concepts for such contra-
dictions are defined, which contain the three basic steps of self-optimization. The principle
solution of a self-optimizing system on the system’s level is the result of this phase.

Conceptual design on the module’s level
The principle solution on the system’s level describes the whole system. It is necessary to
have a closer look at the solution, in order to give a statement on the technical and economi-
cal realization of the principle solution. For that purpose, the system is decomposed into
modules by using the already mentioned structuring procedure by STEFFEN. The decomposi-
tion is based on the aspired product structure [Ste07], [GSD+09]. Afterwards a principle so-
lution for each single module is developed. The development of a principle solution for each
single module corresponds to the “conceptual design on the system’s level”, starting out
with “planning and clarifying the task”. This phase results in principle solutions on the
module’s level.

www.intechopen.com

Architecture and Design Methodology of Self-Optimizing Mechatronic Systems 277

The function hierarchy needs to be modified according to the specific application scenarios,
e.g. irrelevant functions are removed and specific sub-functions are added. Then there is a
search for “solution patterns” in order to realize the documented functions of the function
hierarchy, which will be inserted into a morphologic box.
We use “solution pattern” as a general term. A pattern describes a reoccurring problem and
also the solution’s core of the problem [AIS+77]. Taking this as a starting point, it results in
the classification shown in figure 17. We differentiate between solution patterns that rely on
physical effects and between patterns exclusively serving the data processing. The design
methodology of mechanical engineering describes the first group as active principles; they
describe the principle solution for the realization of a function. The course of development
concretizes active principles to material components and patterns of information processing
to software components. The relations between active principles and components are of the
type n:m; the characteristic depends on the basic method of embodiment design (differential
construction method and integrated construction method). Within the integral construction,
several active patterns are realized by one component; whereas in the differential construc-
tion several components fulfill one active pattern. This is exactly the same in the field of in-
formation processing. Basically, a definite modern mechanical engineering system consists
of a construction structure that means an arrangement of shape-marked components within
a space and their logic aggregation to assemblies and products, and a component structure
that means the compound of software components.

Fig. 17. classification of solution patterns

In some times, there are already existing, well-established solutions which we call “solution
elements”. If there are such solution elements, they will be chosen instead of the abstract so-
lution patterns. The search for solution patterns is supported by a solution pattern cata-
logue. We use the consistency analysis in order to determine useful combinations of solution
patterns of the morphologic box [Köc04]. As a result, there will be consistent bunches of so-
lution patterns, with a solution pattern for each function.
The consistent bunches of solution patterns form the basis for the development of the active
structure. In this step, the refinement of the solution patterns to system elements takes place
as well. System elements form an intermediate step between solution patterns on one side
and shape-marked components or rather software components on the other side. Based on
the active structure, an initial construction structure can be developed because there are
primal details on the shape within the system elements. In addition, the system’s behavior is
roughly modeled in this step. Basically, this concerns the activities, states and state transi-
tions of the system as well as the communication and cooperation with other systems and
subsystems. The analysis of the system’s behavior produces an imagination of the optimiz-
ing processes, running within the system. The external, inherent and internal objectives can
be defined.
The solutions for the application scenarios need to be combined. It is important that worka-
ble configurations are created which make a reconfiguration of the system possible. Keeping
this information in mind, it is identified if there is a containing potential of self-optimization
at all. There is a potential for self-optimization if the changing influences on the system re-
quire modifications of the pursued objectives and the system needs to adjust its behavior. If
there is potential for self-optimization, the function hierarchy needs to be complemented by
self-optimizing functions. In particular solution patterns of self-optimization are applied to
enable self-optimizing behavior. The resulting changes and extensions of system structure
and system behavior need to be included appropriately.
The best solution for each application scenario is chosen and these solutions are consoli-
dated to a principle solution on the system’s level. Afterwards, an analysis takes place
which looks for contradictions within the principle solution of the system and which con-
tradictions might be solved by self-optimization. Self-optimizing concepts for such contra-
dictions are defined, which contain the three basic steps of self-optimization. The principle
solution of a self-optimizing system on the system’s level is the result of this phase.

Conceptual design on the module’s level
The principle solution on the system’s level describes the whole system. It is necessary to
have a closer look at the solution, in order to give a statement on the technical and economi-
cal realization of the principle solution. For that purpose, the system is decomposed into
modules by using the already mentioned structuring procedure by STEFFEN. The decomposi-
tion is based on the aspired product structure [Ste07], [GSD+09]. Afterwards a principle so-
lution for each single module is developed. The development of a principle solution for each
single module corresponds to the “conceptual design on the system’s level”, starting out
with “planning and clarifying the task”. This phase results in principle solutions on the
module’s level.

www.intechopen.com

Mechatronic Systems, Simulation, Modelling and Control278

Integration of the concept
The module’s principle solutions will be integrated into a detailed principle solution of the
whole system. Again there is an analysis in order to find contradictions within the principle
solutions of the modules and it is checked if these contradictions can be solved by self-
optimization. Concluding, a technical-economical evaluation of the solution takes place. The
result of this phase is a principle solution of the whole system that serves as a starting point
for the subsequent concretization.

Integration of the concept: The module’s principle solutions will be integrated into a de-
tailed principle solution of the whole system. There is an analysis in order to find contradic-
tions within the principle solutions of the modules. Again it will be checked if these contra-
dictions can be solved by self-optimization. Concluding, a technical-economical evaluation
of the solution is taking place. The result of that phase is a principle solution of the whole
system that serves as a starting point for the subsequent concretization. This concretization
is carried out parallel in the specific domains (mechanical engineering, electrical engineer-
ing, control engineering and software engineering). Chapter 7 gives further information on
this.
On the basis of an example, the phases planning and clarifying the task as well as conceptual de-
sign on the system’s level will be described into detail. There will not be any further considera-
tion of the conceptual design on the module’s level because it operates by analogy with the con-
ceptual design on the system’s level. The integration of the concept has also been explained and is
not being discussed anymore.

6. The role of the principle solution during the concretization

The communication and cooperation of the developers from the different domains through-
out the whole development process is very important for a successful and efficient devel-
opment of self-optimizing systems. The principle solution forms the basis for this communi-
cation and cooperation.
Within the conceptual design phase the domain-spanning development tasks are carried out
in a cooperative way. Within the concretization the developers work on different modules
and in different domains. Thus their specific development tasks in one domain of a module
need to be synchronized with those of other domains respectively other modules. The de-
velopment processes for the modules are synchronized by one superior process of the total
system (figure 18). Within this process comprehensive aspects of the system like the shell or
the dynamics of the whole system are developed in detail. [GRD+09]

principle solution complete
systemdesign

concretization

mechanics

software engineering
control engineering
electric/electronics

conceptual
design

m
od

ul
e

n

mechanics

software engineering
control engineering
electric/electronics

m
od

ul
e

1

synchronization

Legend

total system

Fig. 18. Basic structure of the development process [GRD+09]

Furthermore, the information, based in the principle solution, serves as a fundament for de-
ducing of domain-specific concretization tasks. In a first step, the system elements of a do-
main and their relations within the active structure will be identified. After that will be ana-
lyzed what kind of domain-specific functions are fulfilled by the system elements, which
requirements they have to comply and which behavior is appropriate in certain situations.
Following this, it will be checked if domain-specific requirements need to be added. In case
of a software engineering, the necessary software components of the component structure,
including the input- and output parameters, can be deduced by the system elements of the
active structure (figure 18) [GSD+09].

RailCab

Configuration
Control

Hazard
Detection

d*

convoy
statedetected

hazards

xleader, vleader

xRailCab, vRailCab

Distance
Sensor

dSafe

Velocity
Control

Operating
Point

Controller

F*

SE

SE

SE

SE

RailCab

Configuration
Control

Velocity
Control

Hazard
Detection

Configuration
Control

RailCabTo
RailCab

Communication
Module

xRailCab,
vRailCab

xRailCab,
vRailCab

F*

d*
convoy

state

xleader,
vleader

detected
Hazards

dSafe

DistanceSensor

xRailCab,
vRailCab

SE

xleader,vleader

xRailCab,vRailCab

distance to
object distance to

object

1 initial
transformation

2
adding the
distance
sensor

3

updating the
principle solution

Fig. 19. The transformation from the active structure into a component diagram (software
engineering) [GSD+09]

In case of changes occur during the domain-specific concretization, which affect other do-
mains have to be transferred back into the principle solution. This happens for example if

www.intechopen.com

Architecture and Design Methodology of Self-Optimizing Mechatronic Systems 279

Integration of the concept
The module’s principle solutions will be integrated into a detailed principle solution of the
whole system. Again there is an analysis in order to find contradictions within the principle
solutions of the modules and it is checked if these contradictions can be solved by self-
optimization. Concluding, a technical-economical evaluation of the solution takes place. The
result of this phase is a principle solution of the whole system that serves as a starting point
for the subsequent concretization.

Integration of the concept: The module’s principle solutions will be integrated into a de-
tailed principle solution of the whole system. There is an analysis in order to find contradic-
tions within the principle solutions of the modules. Again it will be checked if these contra-
dictions can be solved by self-optimization. Concluding, a technical-economical evaluation
of the solution is taking place. The result of that phase is a principle solution of the whole
system that serves as a starting point for the subsequent concretization. This concretization
is carried out parallel in the specific domains (mechanical engineering, electrical engineer-
ing, control engineering and software engineering). Chapter 7 gives further information on
this.
On the basis of an example, the phases planning and clarifying the task as well as conceptual de-
sign on the system’s level will be described into detail. There will not be any further considera-
tion of the conceptual design on the module’s level because it operates by analogy with the con-
ceptual design on the system’s level. The integration of the concept has also been explained and is
not being discussed anymore.

6. The role of the principle solution during the concretization

The communication and cooperation of the developers from the different domains through-
out the whole development process is very important for a successful and efficient devel-
opment of self-optimizing systems. The principle solution forms the basis for this communi-
cation and cooperation.
Within the conceptual design phase the domain-spanning development tasks are carried out
in a cooperative way. Within the concretization the developers work on different modules
and in different domains. Thus their specific development tasks in one domain of a module
need to be synchronized with those of other domains respectively other modules. The de-
velopment processes for the modules are synchronized by one superior process of the total
system (figure 18). Within this process comprehensive aspects of the system like the shell or
the dynamics of the whole system are developed in detail. [GRD+09]

principle solution complete
systemdesign

concretization

mechanics

software engineering
control engineering
electric/electronics

conceptual
design

m
od

ul
e

n
mechanics

software engineering
control engineering
electric/electronics

m
od

ul
e

1

synchronization

Legend

total system

Fig. 18. Basic structure of the development process [GRD+09]

Furthermore, the information, based in the principle solution, serves as a fundament for de-
ducing of domain-specific concretization tasks. In a first step, the system elements of a do-
main and their relations within the active structure will be identified. After that will be ana-
lyzed what kind of domain-specific functions are fulfilled by the system elements, which
requirements they have to comply and which behavior is appropriate in certain situations.
Following this, it will be checked if domain-specific requirements need to be added. In case
of a software engineering, the necessary software components of the component structure,
including the input- and output parameters, can be deduced by the system elements of the
active structure (figure 18) [GSD+09].

RailCab

Configuration
Control

Hazard
Detection

d*

convoy
statedetected

hazards

xleader, vleader

xRailCab, vRailCab

Distance
Sensor

dSafe

Velocity
Control

Operating
Point

Controller

F*

SE

SE

SE

SE

RailCab

Configuration
Control

Velocity
Control

Hazard
Detection

Configuration
Control

RailCabTo
RailCab

Communication
Module

xRailCab,
vRailCab

xRailCab,
vRailCab

F*

d*
convoy

state

xleader,
vleader

detected
Hazards

dSafe

DistanceSensor

xRailCab,
vRailCab

SE

xleader,vleader

xRailCab,vRailCab

distance to
object distance to

object

1 initial
transformation

2
adding the
distance
sensor

3

updating the
principle solution

Fig. 19. The transformation from the active structure into a component diagram (software
engineering) [GSD+09]

In case of changes occur during the domain-specific concretization, which affect other do-
mains have to be transferred back into the principle solution. This happens for example if

www.intechopen.com

Mechatronic Systems, Simulation, Modelling and Control280

there will be identified additional internal objectives during the course of concretization of a
self-optimization process (in the frame of the determination of objectives). Thus the prin-
ciple solution becomes a domain-spanning system model for the concretization. The aim is
to keep this domain-spanning system model and the domain-specific models consistently.
Figure 20 schematically shows the versions of the domain-spanning system specification
and the different domain-specific models that are created in the course of the concretization.
The shown change scenario can be realized by the use of automated model transformations
[GSD+09].

v1.0ME

v1.1ME

v1.2ME

v1.1CE

v1.2CE

v1.0EE

v1.1EE

v1.2EE

v1.0SE

v1.1SE

v1.2SE

v0.2

v0.3

v1.0

v0.1

System Integration

v1.1

v1.2

C
on

cr
et

iz
at

io
n

C
on

ce
pt

ua
l D

es
ig

n
Tr

an
si

tio
n

v1.0CE

Initial transformation and mapping
of corresponding design artifacts

Domain-spanning relevant change
(Insertion of a distance sensor component)

Update of the system specification
through existing correspondences

Update of domain-specific models
through existing correspondences

Domain-spanning relevant change
(Refinement of distance sensor to laser unit)

Update of the system specification
through existing correspondences

Update of domain-specific models
through existing correspondences

1

2

3

4

5

6

7

v1.1SE

v1.1CE

v1.1EE

v1.1ME

Software Engineering Models

Control Engineering Models

Electrical Engineering Models

Mechanical Eng. Models

v1.1 Domain-Spanning Models

Fig. 20. Propagation of relevant changes between the domain-specific models and the do-
main-spanning system specification [GSD+09]

7. Conclusion

The paradigm of self-optimization will enable fascinating perspectives for the future devel-
opment of mechanical engineering systems. These systems rely on the close interaction of
mechanics, electrical engineering/electronics, control engineering and software engineering,
which is aptly expressed by the term mechatronics. At present there is no established meth-
odology for the conceptual design of mechatronic systems, let alone for self-optimizing sys-
tems. Concerning the conceptual design of such systems, the main challenge consists in the
specification of a domain-spanning principle solution, which describes the basic construc-
tion as well as the mode of operation in a domain-spanning way. The presented specifica-
tion technique offers the possibility to create a principle solution for advanced mechatronic
systems, with regard to self-optimizing aspects, such as “application scenarios” and “system

of objectives”. Simultaneously it outperforms classic specification techniques by appropri-
ately encouraging the conceptual design process. It is fundamental to the communication
and cooperation of the participating specialists and enables them to avoid design mistakes,
which base on misunderstandings between them. It has been described in what way the ac-
cording concretization, which takes place parallel to the participating domains, is going to
be structured and coordinated on the basis of the principle solution. The practicability of the
specification technique and the appropriate methodology was demonstrated by the example
of a complex railway vehicle.

8. Acknowledgement
This contribution was developed and published in the course of the Collaborative Research
Center 614 “Self-Optimizing Concepts and Structures in Mechanical Engineering” funded
by the German Research Foundation (DFG) under grant number SFB 614.

9. References
[ADG+08] ADELT, P.; DONOTH, J.; GAUSEMEIER, J.; GEISLER, J.; HENKLER, S.; KAHL,

S.; KLÖPPER, B.; KRUPP, A.; MÜNCH, E.; OBERTHÜR, S.; PAIZ, C.; PODLOGAR,
H.; PORRMANN, M.; RADKOWSKI, R.; ROMAUS, C.; SCHMIDT, A.; SCHULZ,
B.; VÖCKING, H.; WITKOWSKI, U.; WITTING, K.; ZNAMENSHCHYKOV, O.:
Selbstoptimierende Systeme des Maschinenbaus – Definitionen, Anwendungen,
Konzepte. HNI-Verlagsschriftenreihe, Band 234, Paderborn, 2008

[AIS+77] Alexander, C.; Ishikawa, S.; Silverstein, M.; Jacobson, M.; Fiksdahl-King, I.; Angel,
A.: A Pattern Language. Oxford University Press, New York, 1977

[Bir80]Birkhofer, H.: Analyse und Synthese der Funktionen technischer Produkte. Disserta-
tion, Technische Universität Braunschweig, 1980

[Ehr03]Ehrlenspiel, K.: Integrierte Produktentwicklung. Carl Hanser Verlag, München, 2003
[GEK01]Gausemeier, J.; Ebbesmeyer, P.; Kallmeyer, F.: Produktinnovation - Strategische

Planung und Entwicklung der Produkte von morgen. Carl Hanser Verlag, Mün-
chen, 2001

[GFD+08]Gausemeier J., Frank U., Donoth J. and Kahl S. Spezifikationstechnik zur Beschrei-
bung der Prinziplösung selbstoptimierender Systeme des Maschinenbaus – Teil
1/2. Konstruktion, Vol. 7/8 and 9, July/August and September 2008, pp. 59-66/
pp. 91-108 (Springer-VDI-Verlag, Düsseldorf).

[GRD+09]Geiger, C.; Reckter, H.; Dumitrescu, R.; Kahl, S.; Berssenbrügge, J.: A Zoomable
User Interface for Presenting Hierarchical Diagrams on Large Screens. In: 13th In-
ternational Conference on Human-Computer Interaction (HCI International 2009),
July 19-24, 2009, San Diego, CA, USA, 2009

[GSD+09]Gausemeier, J.; Steffen, D.; Donoth, J.; Kahl, S.: Conceptual Design of Modularized
Advanced Mechatronic Systems. In: 17th International Conference on Engineering
Design (ICED`09), August 24-27, 2009, Stanford, CA, USA, 2009

[GSG+09]Gausemeier, J.; Schäfer, W.; Greenyer, J.; Kahl, S.; Pook, S.; Rieke, J.: Management
of Cross-Domain Model Consistency during the Development of Advanced Mecha-
tronic Systems. In: 17th International Conference on Engineering Design (ICED`09),
August 24-27, 2009, Stanford, CA, USA, 2009

www.intechopen.com

Architecture and Design Methodology of Self-Optimizing Mechatronic Systems 281

there will be identified additional internal objectives during the course of concretization of a
self-optimization process (in the frame of the determination of objectives). Thus the prin-
ciple solution becomes a domain-spanning system model for the concretization. The aim is
to keep this domain-spanning system model and the domain-specific models consistently.
Figure 20 schematically shows the versions of the domain-spanning system specification
and the different domain-specific models that are created in the course of the concretization.
The shown change scenario can be realized by the use of automated model transformations
[GSD+09].

v1.0ME

v1.1ME

v1.2ME

v1.1CE

v1.2CE

v1.0EE

v1.1EE

v1.2EE

v1.0SE

v1.1SE

v1.2SE

v0.2

v0.3

v1.0

v0.1

System Integration

v1.1

v1.2

C
on

cr
et

iz
at

io
n

C
on

ce
pt

ua
l D

es
ig

n
Tr

an
si

tio
n

v1.0CE

Initial transformation and mapping
of corresponding design artifacts

Domain-spanning relevant change
(Insertion of a distance sensor component)

Update of the system specification
through existing correspondences

Update of domain-specific models
through existing correspondences

Domain-spanning relevant change
(Refinement of distance sensor to laser unit)

Update of the system specification
through existing correspondences

Update of domain-specific models
through existing correspondences

1

2

3

4

5

6

7

v1.1SE

v1.1CE

v1.1EE

v1.1ME

Software Engineering Models

Control Engineering Models

Electrical Engineering Models

Mechanical Eng. Models

v1.1 Domain-Spanning Models

Fig. 20. Propagation of relevant changes between the domain-specific models and the do-
main-spanning system specification [GSD+09]

7. Conclusion

The paradigm of self-optimization will enable fascinating perspectives for the future devel-
opment of mechanical engineering systems. These systems rely on the close interaction of
mechanics, electrical engineering/electronics, control engineering and software engineering,
which is aptly expressed by the term mechatronics. At present there is no established meth-
odology for the conceptual design of mechatronic systems, let alone for self-optimizing sys-
tems. Concerning the conceptual design of such systems, the main challenge consists in the
specification of a domain-spanning principle solution, which describes the basic construc-
tion as well as the mode of operation in a domain-spanning way. The presented specifica-
tion technique offers the possibility to create a principle solution for advanced mechatronic
systems, with regard to self-optimizing aspects, such as “application scenarios” and “system

of objectives”. Simultaneously it outperforms classic specification techniques by appropri-
ately encouraging the conceptual design process. It is fundamental to the communication
and cooperation of the participating specialists and enables them to avoid design mistakes,
which base on misunderstandings between them. It has been described in what way the ac-
cording concretization, which takes place parallel to the participating domains, is going to
be structured and coordinated on the basis of the principle solution. The practicability of the
specification technique and the appropriate methodology was demonstrated by the example
of a complex railway vehicle.

8. Acknowledgement
This contribution was developed and published in the course of the Collaborative Research
Center 614 “Self-Optimizing Concepts and Structures in Mechanical Engineering” funded
by the German Research Foundation (DFG) under grant number SFB 614.

9. References
[ADG+08] ADELT, P.; DONOTH, J.; GAUSEMEIER, J.; GEISLER, J.; HENKLER, S.; KAHL,

S.; KLÖPPER, B.; KRUPP, A.; MÜNCH, E.; OBERTHÜR, S.; PAIZ, C.; PODLOGAR,
H.; PORRMANN, M.; RADKOWSKI, R.; ROMAUS, C.; SCHMIDT, A.; SCHULZ,
B.; VÖCKING, H.; WITKOWSKI, U.; WITTING, K.; ZNAMENSHCHYKOV, O.:
Selbstoptimierende Systeme des Maschinenbaus – Definitionen, Anwendungen,
Konzepte. HNI-Verlagsschriftenreihe, Band 234, Paderborn, 2008

[AIS+77] Alexander, C.; Ishikawa, S.; Silverstein, M.; Jacobson, M.; Fiksdahl-King, I.; Angel,
A.: A Pattern Language. Oxford University Press, New York, 1977

[Bir80]Birkhofer, H.: Analyse und Synthese der Funktionen technischer Produkte. Disserta-
tion, Technische Universität Braunschweig, 1980

[Ehr03]Ehrlenspiel, K.: Integrierte Produktentwicklung. Carl Hanser Verlag, München, 2003
[GEK01]Gausemeier, J.; Ebbesmeyer, P.; Kallmeyer, F.: Produktinnovation - Strategische

Planung und Entwicklung der Produkte von morgen. Carl Hanser Verlag, Mün-
chen, 2001

[GFD+08]Gausemeier J., Frank U., Donoth J. and Kahl S. Spezifikationstechnik zur Beschrei-
bung der Prinziplösung selbstoptimierender Systeme des Maschinenbaus – Teil
1/2. Konstruktion, Vol. 7/8 and 9, July/August and September 2008, pp. 59-66/
pp. 91-108 (Springer-VDI-Verlag, Düsseldorf).

[GRD+09]Geiger, C.; Reckter, H.; Dumitrescu, R.; Kahl, S.; Berssenbrügge, J.: A Zoomable
User Interface for Presenting Hierarchical Diagrams on Large Screens. In: 13th In-
ternational Conference on Human-Computer Interaction (HCI International 2009),
July 19-24, 2009, San Diego, CA, USA, 2009

[GSD+09]Gausemeier, J.; Steffen, D.; Donoth, J.; Kahl, S.: Conceptual Design of Modularized
Advanced Mechatronic Systems. In: 17th International Conference on Engineering
Design (ICED`09), August 24-27, 2009, Stanford, CA, USA, 2009

[GSG+09]Gausemeier, J.; Schäfer, W.; Greenyer, J.; Kahl, S.; Pook, S.; Rieke, J.: Management
of Cross-Domain Model Consistency during the Development of Advanced Mecha-
tronic Systems. In: 17th International Conference on Engineering Design (ICED`09),
August 24-27, 2009, Stanford, CA, USA, 2009

www.intechopen.com

Mechatronic Systems, Simulation, Modelling and Control282

[Köc04] Köckerling, M.: Methodische Entwicklung und Optimierung der Wirkstruktur me-
chatronischer Systeme. Dissertation, Fakultät für Maschinenbau, Universität Pa-
derborn, HNI-Verlagsschriftenreihe Band 143, Paderborn, 2004

[Lan00] Langlotz, G.: Ein Beitrag zur Funktionsstrukturentwicklung innovativer Produkte.
Dissertation, Institut für Rechneranwendung in Planung und Konstruktion, Un-
iversität Karlsruhe, Shaker-Verlag, Band 2/2000, Aachen, 2000

[LHL01] Lückel, J.; Hestermeyer, T.; Liu-Henke, X.: Generalization of the Cascade Principle
in View of a Structured Form of Mechatronic Systems. 2001 IEEE/ASME Interna-
tional Conference on Advanced Intelligent Mechatronics (AIM 2001), Villa Olmo;
Como, Italy

[PBF+07]Pahl, G., Beitz, W., Feldhusen, J., Grote, K.-H.: Engineering Design – A Systematic
Approach. ed. 3, 2007, Springer Verlag, London, 2007

[Rot00]Roth, K.-H.: Konstruieren mit Konstruktionskatalogen. Springer-Verlag, , Band 1
Konstruktionslehre, 3. Auflage, Berlin, 2000

[Ste07]Steffen, D.: Ein Verfahren zur Produktstrukturierung für fortgeschrittene mechatro-
nische Systeme. Dissertation, Fakultät für Maschinenbau, Universität Paderborn,
HNI-Verlagsschriftenreihe, Paderborn, Band 207, 2007

[VDI04]Verein Deutscher Ingenieure (VDI): VDI-Richtlinie 2206 - Entwicklungsmethodik für
mechatronische Systeme. Beuth-Verlag, Berlin, 2004

[ZBS+05] Zimmer, D.; Böcker, J.; Schmidt, A.; Schulz, B.: Elektromagnetische Direktantriebe
im Vergleich. In: Antriebstechnik, no. 2/2005, Vereinigte Fachverlage GmbH,
Mainz, 2005

[ZS05]Zimmer, D.; Schmidt, A.: Der Luftspalt bei Linearmotor-getriebenen Schienenfahr-
zeugen. In: Antriebstechnik, no. 2/2005, Vereinigte Fachverlage GmbH, Mainz,
2005

www.intechopen.com

Mechatronic Systems Simulation Modeling and Control

Edited by Annalisa Milella Donato Di Paola and Grazia Cicirelli

ISBN 978-953-307-041-4

Hard cover, 298 pages

Publisher InTech

Published online 01, March, 2010

Published in print edition March, 2010

InTech Europe

University Campus STeP Ri

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

This book collects fifteen relevant papers in the field of mechatronic systems. Mechatronics, the synergistic

blend of mechanics, electronics, and computer science, integrates the best design practices with the most

advanced technologies to realize high-quality products, guaranteeing at the same time a substantial reduction

in development time and cost. Topics covered in this book include simulation, modelling and control of

electromechanical machines, machine components, and mechatronic vehicles. New software tools, integrated

development environments, and systematic design methods are also introduced. The editors are extremely

grateful to all the authors for their valuable contributions. The book begins with eight chapters related to

modelling and control of electromechanical machines and machine components. Chapter 9 presents a

nonlinear model for the control of a three-DOF helicopter. A helicopter model and a control method of the

model are also presented and validated experimentally in Chapter 10. Chapter 11 introduces a planar

laboratory testbed for the simulation of autonomous proximity manoeuvres of a uniquely control actuator

configured spacecraft. Integrated methods of simulation and Real-Time control aiming at improving the

efficiency of an iterative design process of control systems are presented in Chapter 12. Reliability analysis

methods for an embedded Open Source Software (OSS) are discussed in Chapter 13. A new specification

technique for the conceptual design of self-optimizing mechatronic systems is presented in Chapter 14.

Chapter 15 provides a general overview of design specificities including mechanical and control considerations

for micro-mechatronic structures. It also presents an example of a new optimal synthesis method to design

topology and associated robust control methodologies for monolithic compliant microstructures.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Jurgen Gausemeier, Sascha Kahl (2010). Architecture and Design Methodology of Self-Optimizing

Mechatronic Systems, Mechatronic Systems Simulation Modeling and Control, Annalisa Milella Donato Di

Paola and Grazia Cicirelli (Ed.), ISBN: 978-953-307-041-4, InTech, Available from:

http://www.intechopen.com/books/mechatronic-systems-simulation-modeling-and-control/architecture-and-

design-methodology-of-self-optimizing-mechatronic-systems

www.intechopen.com

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

