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1. Introduction     

An important drawback affecting most of the speech processing systems is the 
environmental noise and its harmful effect on the system performance. Examples of such 
systems are the new wireless communications voice services or digital hearing aid devices. 
In speech recognition, there are still technical barriers inhibiting such systems from meeting 
the demands of modern applications. Numerous noise reduction techniques have been 
developed to palliate the effect of the noise on the system performance and often require an 
estimate of the noise statistics obtained by means of a precise voice activity detector (VAD).  
Speech/non-speech detection is an unsolved problem in speech processing and affects 
numerous applications including robust speech recognition (Karray and Marting, 2003; 
Ramirez et al. 2003), discontinuous transmission (ITU, 1996; ETSI, 1999), real-time speech 
transmission on the Internet (Sangwan et al., 2002) or combined noise reduction and echo 
cancellation schemes in the context of telephony (Basbug et al., 2004; Gustafsson et al., 2002). 
The speech/non-speech classification task is not as trivial as it appears, and most of the 
VAD algorithms fail when the level of background noise increases. During the last decade, 
numerous researchers have developed different strategies for detecting speech on a noisy 
signal (Sohn et al., 1999; Cho and Kondoz, 2001; Gazor and Zhang, 2003, Armani et al., 2003) 
and have evaluated the influence of the VAD effectiveness on the performance of speech 
processing systems (Bouquin-Jeannes and Faucon, 1995). Most of the approaches have 
focussed on the development of robust algorithms with special attention being paid to the 
derivation and study of noise robust features and decision rules (Woo et al., 2000; Li et al., 
2002; Marzinzik and Kollmeier, 2002). The different VAD methods include those based on 
energy thresholds (Woo et al., 2000), pitch detection (Chengalvarayan, 1999), spectrum 
analysis (Marzinzik and Kollmeier, 2002), zero-crossing rate (ITU, 1996), periodicity 
measure (Tucker, 1992), higher order statistics in the LPC residual domain (Nemer et al., 
2001) or combinations of different features (ITU, 1993; ETSI, 1999; Tanyer and Özer, 2000). 
This chapter shows a comprehensive approximation to the main challenges in voice activity 
detection, the different solutions that have been reported in a complete review of the state of 
the art and the evaluation frameworks that are normally used. The application of VADs for 
speech coding, speech enhancement and robust speech recognition systems is shown and 
discussed. Three different VAD methods are described and compared to standardized and 
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recently reported strategies by assessing the speech/non-speech discrimination accuracy 
and the robustness of speech recognition systems. 

2. Applications 

VADs are employed in many areas of speech processing. Recently, VAD methods have been 
described in the literature for several applications including mobile communication services 
(Freeman et al. 1989), real-time speech transmission on the Internet (Sangwan  et al., 2002) or 
noise reduction for digital hearing aid devices (Itoh and Mizushima, 1997). As an example, a 
VAD achieves silence compression in modern mobile telecommunication systems reducing 
the average bit rate by using the discontinuous transmission (DTX) mode. Many practical 
applications, such as the Global System for Mobile Communications (GSM) telephony, use 
silence detection and comfort noise injection for higher coding efficiency.  This section 
shows a brief description of the most important VAD applications in speech processing: 
coding, enhancement and recognition. 

2.1 Speech coding 

VAD is widely used within the field of speech communication for achieving high speech 
coding efficiency and low-bit rate transmission. The concepts of silence detection and 
comfort noise generation lead to dual-mode speech coding techniques. The different modes 
of operation of a speech codec are: i) the active speech codec, and ii) the silence suppression 
and comfort noise generation modes. The International Telecommunication Union (ITU) 
adopted a toll-quality speech coding algorithm known as G.729 to work in combination with 
a VAD module in DTX mode. Figure 1 shows a block diagram of a dual mode speech codec. 
The full rate speech coder is operational during active voice speech, but a different coding 
scheme is employed for the inactive voice signal, using fewer bits and resulting in a higher 
overall average compression ratio. As an example, the recommendation G.729 Annex B 
(ITU, 1996) uses a feature vector consisting of the linear prediction (LP) spectrum, the full- 
band energy, the low-band (0 to 1 KHz) energy and the zero-crossing rate (ZCR). The 
standard was developed with the collaboration of researchers from France Telecom, the 
University of Sherbrooke, NTT and AT&T Bell Labs and the effectiveness of the VAD was 
evaluated in terms of subjective speech quality and bit rate savings (Benyassine et al., 1997). 
Objective performance tests were also conducted by hand-labeling a large speech database 
and assessing the correct identification of voiced, unvoiced, silence and transition periods. 
Another standard for DTX is the ETSI (Adaptive Multi-Rate) AMR speech coder (ETSI, 1999) 
developed by the Special Mobile Group (SMG) for the GSM system. The standard specifies 
two options for the VAD to be used within the digital cellular telecommunications system. 
In option 1, the signal is passed through a filterbank and the level of signal in each band is 
calculated. A measure of the SNR is used to make the VAD decision together with the 
output of a pitch detector, a tone detector and the correlated complex signal analysis 
module. An enhanced version of the original VAD is the AMR option 2 VAD, which uses 
parameters of the speech encoder, and is more robust against environmental noise than 
AMR1 and G.729. The dual mode speech transmission achieves a significant bit rate 
reduction in digital speech coding since about 60% of the time the transmitted signal 
contains just silence in a phone-based communication. 
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Figure 1. Speech coding with VAD for DTX. 

2.2 Speech enhancement 

Speech enhancement aims at improving the performance of speech communication systems 
in noisy environments. It mainly deals with suppressing background noise from a noisy 
signal. A difficulty in designing efficient speech enhancement systems is the lack of explicit 
statistical models for the speech signal and noise process. In addition, the speech signal, and 
possibly also the noise process, are not strictly stationary processes. Speech enhancement 
normally assumes that the noise source is additive and not correlated with the clean speech 
signal. One of the most popular methods for reducing the effect of background (additive) 
noise is spectral subtraction (Boll, 1979). The popularity of spectral subtraction is largely due 
to its relative simplicity and ease of implementation. The spectrum of noise N(f) is estimated 
during speech inactive periods and subtracted from the spectrum of the current frame X(f)
resulting in an estimate of the spectrum S(f) of the clean speech: 

|)(||)(||)(| fNfXfS −=  (1) 

There exist many refinements of the original method that improve the quality of the 
enhanced speech. As an example, the modified spectral subtraction enabling an over-
subtraction factor α and maximum attenuation β for the noise is given by: 
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{ }|)(||,)(||)(|max|)(| fXfNfXfS βα−=  (2) 

Generally, spectral subtraction is suitable for stationary or very slow varying noises so that 
the statistics of noise could be updated during speech inactive periods. Another popular 
method for speech enhancement is the Wiener filter that obtains a least squares estimate of 
the clean signal s(t) under stationary assumptions of speech and noise. The frequency 
response of the Wiener filter is defined to be:  

)()(
)(

)(
ff

f
fW

nnss

ss

Φ+Φ

Φ
=  (3) 

and requires an estimate of the power spectrum Φss(f) of the clean speech and the power 
spectrum Φnn(f) of the noise. 

2.3 Speech recognition 

Performance of speech recognition systems is strongly influenced by the quality of the 
speech signal. Most of these systems are based on complex hidden Markov models (HMM) 
that are trained using a training speech database. The mismatch between the training 
conditions and the testing conditions has a deep impact on the accuracy of these systems 
and represents a barrier for their operation in noisy environments. Fig. 2 shows an example 
of the degradation of the word accuracy for the AURORA2 database and speech recognition 
task when the ETSI recommendation (ETSI, 2000) not including noise compensation 
algorithm is used as feature extraction process. Note that, when the HMMs are trained using 
clean speech, the recognizer performance rapidly decreases when the level of background 
noise increases. Better results are obtained when the HMMs are trained using a collection of 
clean and noisy speech records.  
VAD is a very useful technique for improving the performance of speech recognition 
systems working in these scenarios. A VAD module is used in most of the speech 
recognition systems within the feature extraction process for speech enhancement. The noise 
statistics such as its spectrum are estimated during non-speech periods in order to apply the 
speech enhancement algorithm (spectral subtraction or Wiener filter). On the other hand, 
non-speech frame-dropping (FD) is also a frequently used technique in speech recognition 
to reduce the number of insertion errors caused by the noise. It consists on dropping non-
speech periods (based on the VAD decision) from the input of the speech recognizer. This 
reduces the number of insertion errors due to the noise that can be a serious error source 
under high mismatch training/testing conditions. Fig. 3 shows an example of a typical 
robust speech recognition system incorporating spectral noise reduction and non-speech 
frame-dropping. After the speech enhancement process is applied, the Mel frequency 
cepstral coefficients and its first- and second-order derivatives are computed in a frame by 
frame basis to form a feature vector suitable for recognition. Figure 4 shows the 
improvement provided by a speech recognition system incorporating the VAD presented in 
(Ramirez et al., 2005) within an enhanced feature extraction process based on a Wiener filter 
and non-speech frame dropping for the AURORA 2 database and tasks. The relative 
improvement over (ETSI, 2000) is about 27.17% in multicondition and 60.31% in clean 
condition training/testing. 
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Figure 4. Results obtained for an enhanced feature extraction process incorporating VAD-
based Wiener filtering and non-speech frame-dropping. 

3. Voice activity detection in noisy environments 

An important problem in many areas of speech processing is the determination of presence 
of speech periods in a given signal. This task can be identified as a statistical hypothesis 
problem and its purpose is the determination to which category or class a given signal 
belongs. The decision is made based on an observation vector, frequently called feature 
vector, which serves as the input to a decision rule that assigns a sample vector to one of the 
given classes. The classification task is often not as trivial as it appears since the increasing 
level of background noise degrades the classifier effectiveness, thus leading to numerous 
detection errors. Fig. 5 illustrates the challenge of detecting speech presence in a noisy signal 
when the level of background noise increases and the noise completely masks the speech 
signal. The selection of an adequate feature vector for signal detection and a robust decision 
rule is a challenging problem that affects the performance of VADs working under noise 
conditions. Most algorithms are effective in numerous applications but often cause detection 
errors mainly due to the loss of discriminating power of the decision rule at low SNR levels 
(ITU, 1996; ETSI, 1999). For example, a simple energy level detector can work satisfactorily 
in high signal-to-noise ratio (SNR) conditions, but would fail significantly when the SNR 
drops. VAD results more critical in non-stationary noise environments since it is needed to 
update the constantly varying noise statistics affecting a misclassification error strongly to 
the system performance. 
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Figure 5. Energy profile of a speech utterance corrupted by additive backgorund noise at 
decreasing SNRs.  

3.1 Description of the problem 

The VAD problem considers detecting the presence of speech in a noisy signal. The VAD 
decision is normally based on a feature vector x. Assuming that the speech signals and the 
noise are additive, the VAD module has to decide in favour of the two hypotheses: 
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A block diagram of VAD is shown in figure 6. It consists of: i) the feature extraction process, 
ii) the decision module, and iii) the decision smoothing stage. 

Feature

extraction

x(n)

x(l)
Decision

module

Decision

smoothing
VAD(l)

Decisión

final
VAD0(l)

Figure 6. Block diagram of a VAD. 

3.2 Feature extraction 

The objective of feature extraction process is to compute discriminative speech features 
suitable for detection. A number of robust speech features have been studied in this context. 
The different approaches include: i) full-band and subband energies (Woo et al., 2000), ii)
spectrum divergence measures between speech and background noise (Marzinzik and 
Kollmeier, 2002), iii) pitch estimation (Tucker, 1992), iv) zero crossing rate (Rabiner et al., 
1975), and v)  higher-order statistics (Nemer et al. 2001; Ramírez et al., 2006a; Górriz et al., 
2006a; Ramírez et al., 2007). Most of the VAD methods are based on the current observation 
(frame) and do not consider contextual information. However, using long-term speech 
information (Ramírez et al., 2004a; Ramírez et al. 2005a) has shown significant benefits for 
detecting speech presence in high noise environments. 

3.3 Formulation of the decision rule 

The decision module defines the rule or method for assigning a class (speech or silence) to 
the feature vector x. Sohn et al. (Sohn et al., 1999) proposed a robust VAD algorithm based 
on a statistical likelihood ratio test (LRT) involving a single observation vector. (Sohn et al., 
1999). The method considered a two-hypothesis test where the optimal decision rule that 
minimizes the error probability is the Bayes classifier. Given an observation vector to be 
classified, the problem is reduced to selecting the class (H0 or H1) with the largest posterior 
probability P(Hi|x):

 )|()|( 01

0

1

xx HPHP

H

H

<

>
 (5) 

Using the Bayes rule leads to statistical likelihood ratio test: 
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In order to evaluate this test, the discrete Fourier transform (DFT) coefficients of the clean 
speech (Sj) and the noise (Nj) are assumed to be asymptotically independent Gaussian 
random variables: 
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where Xj represents the noisy speech DFT coefficients, and )( jNλ  and )( jSλ  denote the 

variances of Nj and Sj for the j-th bin of the DFT, respectively. Thus, the decision rule is 
reduced to: 
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and η defines the decision threshold and J is the DFT order. jξ and jγ  define the a priori and 

a posteriori SNRs: 
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that are normally estimated using the Ephraim and Malah minimum mean-square error 
(MMSE) estimator (Ephraim and Malah, 1984). 
Several methods for VAD formulate the decision rule based on distance measures like the 
Euclidean distance (Gorriz et al., 2006b), Itakura-Saito and Kullback-Leibler divergence 
(Ramírez et al., 2004b). Other techniques include fuzzy logic (Beritelli et al., 2002), support 
vector machines (SVM) (Ramírez et al. 2006b) and genetic algorithms (Estevez et al., 2005). 

3.4 Decision smoothing 

Most of the VADs that formulate the decision rule on a frame by frame basis normally use 
decision smoothing algorithms in order to improve the robustness against the noise. The 
motivations for these approaches are found in the speech production process and the 
reduced signal energy of word beginnings and endings. The so called hang-over algorithms 
extends and smooth the VAD decision in order to recover speech periods that are masked 
by the acoustic noise. 
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4. Robust VAD algorithms 

This section summarizes three VAD algorithms recently reported that yield high 
speech/non-speech discrimination in noisy environments. 

4.1 Long-term spectral divergence 

The speech/non-speech detection algorithm proposed in (Ramírez et al., 2004a) assumes 
that the most significant information for detecting voice activity on a noisy speech signal 
remains on the time-varying signal spectrum magnitude. It uses a long-term speech window 
instead of instantaneous values of the spectrum to track the spectral envelope and is based 
on the estimation of the so called Long-Term Spectral Envelope (LTSE). The decision rule is 
then formulated in terms of the Long-Term Spectral Divergence (LTSD) between speech and 
noise.  
Let x(n) be a noisy speech signal that is segmented into overlapped frames and, X(k,l) its 
amplitude spectrum for the k-th band at frame l. The N-order Long-Term Spectral Envelope 
(LTSE) is defined as: 

{ } Nj
NjN jlkXlkLTSE +=

−=
+= ),(max),(  (9) 

The VAD decision rule is then formulated by means of the N-order Long-Term Spectral 
Divergence (LTSD) between speech and noise is defined as the deviation of the LTSE respect 
to the average noise spectrum magnitude N(k) for the k band, k= 0, 1, …, NFFT-1, and is 
given by: 
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4.2 Multiple observation likelihood ratio test 

An improvement over the LRT proposed by Sohn (Sohn et al., 1999) is the multiple 
observation LRT (MO-LRT) proposed by Ramírez (Ramírez et al., 2005b). The performance 
of the decision rule was improved by incorporating more observations to the statistical test. 
The MO-LRT is defined over the observation vectors },...,...,{ mllml +− xxx  as follows: 
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where l denotes the frame being classified as speech (H1) or silence (H0). Thus, the decision 
rule is formulated over a sliding window consisting of observation vectors around the 
current frame. The so-defined decision rule reported significant improvements in 
speech/non-speech discrimination accuracy over existing VAD methods that are defined on 
a single observation and need empirically tuned hangover mechanisms. 

4.3 Order statistics filters 

The MO-LRT VAD takes advantage of using contextual information for the formulation of 
the decision rule. The same idea can be found in other existing VADs like the Li et al. (Li et 
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al., 2002) that considers optimum edge detection linear filters on the full-band energy. Order 
statistics filters (OSFs) have been also evaluated for a low variance measure of the 
divergence between speech and silence (noise). The algorithm proposed in (Ramírez et al., 
2005a) uses two OSFs for the multiband quantile (MBQ) SNR estimation. The algorithm is 
described as follows. Once the input speech has been de-noised by Wiener filtering, the log-
energies for the l-th frame, E(k,l), in K subbands (k= 0, 1, …, K-1), are computed by means of: 

1,...,1,0
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The implementation of both OSFs is based on a sequence of log-energy values {E(k,l-N), …, 
E(k,l), …, E(k,l+N)} around the frame to be analyzed. The r-th order statistics of this 
sequence, E(r)(k,l), is defined as the r-th largest number in algebraic order. A first OSF 
estimates the subband signal energy by means of 

 ),(),()1(),( )1()( lkfElkEflkQ ssp ++−=  (12) 

where Qp(k,l) is the sampling quantile, s= 2pN  and f= 2pN-s. Finally, the SNR in each 
subband is measured by: 

 )(),(),( kElkQlkQSNR Np −=  (13) 

where EN(k) is the noise level in the k-th band that needs to be estimated. For the 
initialization of the algorithm, the first frames are assumed to be non-speech frames and the 
noise level EN(k) in the k-th band is estimated as the median of the set {E(0,k), E(1,k), …, E(N-
1,k)}. In order to track non-stationary noisy environments, the noise references are updated 
during non-speech periods by means of a second OSF (a median filter) 

),()1()()( 5.0 lkQkEkE NN αα −+=  (14) 

where Q0.5(k,l) is the output of the median filter and α= 0.97 was experimentally selected. On 
the other hand, the sampling quantile p= 0.9 is selected as a good estimation of the subband 
spectral envelope. The decision rule is then formulated in terms of the average subband 
SNR:
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Figure 7 shows the operation of the MBQ VAD on an utterance of the Spanish SpeechDat-
Car (SDC) database (Moreno et al., 2000). For this example, K= 2 subbands were used while 
N= 8 . The optimal selection of these parameters is studied in (Ramirez et al., 2005a). It is 
clearly shown how the SNR in the upper and lower band yields improved speech/non-
speech discrimination of fricative sounds by giving complementary information. The VAD 
performs an advanced detection of beginnings and delayed detection of word endings 
which, in part, makes a hang-over unnecessary. 
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Figure 7. Operation of the VAD on an utterance of Spanish SDC database. (a) SNR and VAD 
decision. (b) Subband SNRs. 
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5. Experimental framework 

Several experiments are commonly conducted to evaluate the performance of VAD 
algorithms. The analysis is mainly focussed on the determination of the error probabilities 
or classification errors at different SNR levels (Marzinzik and Kollmeier, 2002), and the 
influence of the VAD decision on the performance of speech processing systems (Bouquin-
Jeannes and Faucon, 1995). Subjective performance tests have also been considered for the 
evaluation of VADs working in combination with speech coders (Benyassine et al., 1997). 
The experimental framework and the objective performance tests commonly conducted to 
evaluate VAD methods are described in this section. 

5.1 Speech/non-speech discrimination analysis 

VADs are widely evaluated in terms of the ability to discriminate between speech and pause 
periods at different SNR levels. In order to illustrate the analysis, this subsection considers 
the evaluation of the LTSE VAD (Ramírez et al., 2004). The original AURORA-2 database 
(Hirsch and Pearce, 2000) was used in this analysis since it uses the clean TIdigits database 
consisting of sequences of up to seven connected digits spoken by American English talkers 
as source speech, and a selection of eight different real-world noises that have been 
artificially added to the speech at SNRs of 20dB, 15dB, 10dB, 5dB, 0dB and -5dB. These noisy 
signals have been recorded at different places (suburban train, crowd of people (babble), car, 
exhibition hall, restaurant, street, airport and train station), and were selected to represent 
the most probable application scenarios for telecommunication terminals. In the 
discrimination analysis, the clean TIdigits database was used to manually label each 
utterance as speech or non-speech frames for reference. Detection performance as a function 
of the SNR was assessed in terms of the non-speech hit-rate (HR0) and the speech hit-rate 
(HR1) defined as the fraction of all actual pause or speech frames that are correctly detected 
as pause or speech frames, respectively: 

refref N

N

N

N

1

1,1

0

0,0 HR1HR0 ==  (15) 

where refN0  and refN1  are the number of real non-speech and speech frames in the whole 

database, respectively, while N0,0 and N1,1 are the number of non-speech and speech frames 
correctly classified.  
Figure 8 provides the results of this analysis and compares the proposed LTSE VAD 
algorithm to standard G.729, AMR and AFE (ETSI, 2002) VADs in terms of non-speech hit-
rate (HR0, Fig. 8.a) and speech hit-rate (HR1, Fig. 8.b) for clean conditions and SNR levels 
ranging from 20 to -5 dB. Note that results for the two VADs defined in the AFE DSR 
standard (ETSI, 2002) for estimating the noise spectrum in the Wiener filtering stage and 
non-speech frame-dropping are provided. It can be concluded that LTSE achieves the best 
compromise among the different VADs tested; it obtains a good behavior in detecting non-
speech periods as well as exhibits a slow decay in performance at unfavorable noise 
conditions in speech detection. 
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Figure 8. Speech/non-speech discrimination analysis. (a) Non-speech hit-rate (HR0). (b) 
Speech hit rate (HR1). 
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5.2 Receiver operating characteristics curves 

The ROC curves are frequently used to completely describe the VAD error rate. The 
AURORA subset of the original Spanish SpeechDat-Car (SDC) database (Moreno et al., 
2000) was used in this analysis. This database contains 4914 recordings using close-talking 
and distant microphones from more than 160 speakers. The files are categorized into three 
noisy conditions: quiet, low noisy and highly noisy conditions, which represent different 
driving conditions with average SNR values between 25 dB, and 5 dB. The non-speech hit 
rate (HR0) and the false alarm rate (FAR0= 100-HR1) were determined in each noise 
condition being the actual speech frames and actual speech pauses determined by hand-
labeling the database on the close-talking microphone.  
Figure 9 shows the ROC curves of the MO-LRT VAD (Ramírez et al., 2005b) and other 
frequently referred algorithms for recordings from the distant microphone in quiet and high 
noisy conditions. The working points of the G.729, AMR, and AFE VADs are also included. 
The results show improvements in detection accuracy over standard VADs and over a 
representative set of VAD algorithms. Thus, among all the VAD examined, our VAD yields 
the lowest false alarm rate for a fixed non-speech hit rate and also, the highest non-speech 
hit rate for a given false alarm rate. The benefits are especially important over G.729, which 
is used along with a speech codec for discontinuous transmission, and over the Li’s 
algorithm, that is based on an optimum linear filter for edge detection. The proposed VAD 
also improves Marzinzik’s VAD that tracks the power spectral envelopes, and the Sohn’s 
VAD, that formulates the decision rule by means of a statistical likelihood ratio test. 

5.3 Improvement in speech recognition systems 

Performance of ASR systems working over wireless networks and noisy environments 
normally decreases and non efficient speech/non-speech detection appears to be an 
important degradation source (Karray and Martin, 2003). Although the discrimination 
analysis or the ROC curves are effective to evaluate a given algorithm, this section evaluates 
the VAD according to the goal for which it was developed by assessing the influence of the 
VAD over the performance of a speech recognition system. 
The reference framework considered for these experiments was the ETSI AURORA project 
for DSR (ETSI, 2000; ETSI, 2002). The recognizer is based on the HTK (Hidden Markov 
Model Toolkit) software package (Young et al., 1997). The task consists of recognizing 
connected digits which are modeled as whole word HMMs (Hidden Markov Models) with 
the following parameters: 16 states per word, simple left-to-right models, mixture of three 
Gaussians per state (diagonal covariance matrix) while speech pause models consist of three 
states with a mixture of six Gaussians per state. The 39-parameter feature vector consists of 
12 cepstral coefficients (without the zero-order coefficient), the logarithmic frame energy 
plus the corresponding delta and acceleration coefficients.  



Robust Speech Recognition and Understanding 16

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20

FALSE ALARM RATE (FAR0)

P
A

U
S

E
 H

IT
 R

A
T

E
 (

H
R

0
)

MO-LRT G.729

AMR1 AMR2

AFE (Noise Est.) AFE (frame-dropping)

Li Marzinzik

Sohn Woo

(a)

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40
FALSE ALARM RATE (FAR0)

P
A

U
S

E
 H

IT
 R

A
T

E
 (

H
R

0
)

MO-LRT G.729

AMR1 AMR2

AFE (Noise Est.) AFE (frame-dropping)

Li Marzinzik

Sohn Woo

(b)

Figure 9. ROC curves. (a) Stopped Car, Motor Running. (b) High Speed, Good Road. 
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WF 66.19 74.97 83.37 81.57 84.12

WF+FD 70.32 74.29 82.89 83.29 86.09

 Woo Li Marzinzik Sohn Hand-labeled 

WF 83.64 77.43 84.02 83.89 84.69 

WF+FD 81.09 82.11 85.23 83.80 86.86 

Table 1. Average Word Accuracy (%) for the AURORA 2 database for clean and 
multicondition training experiments. Results are mean values for all the noises and SNRs 
ranging from 20 to 0 dB. 

Two training modes are defined for the experiments conducted on the AURORA-2 database: 
i) training on clean data only (Clean Training), and ii) training on clean and noisy data 
(multicondition training). For the AURORA-3 SpeechDat-Car databases, the so called well-
matched (WM), medium-mismatch (MM) and high-mismatch (HM) conditions are used. 
These databases contain recordings from the close-talking and distant microphones. In WM 
condition, both close-talking and hands-free microphones are used for training and testing. 
In MM condition, both training and testing are performed using the hands-free microphone 
recordings. In HM condition, training is done using close-talking microphone material from 
all driving conditions while testing is done using hands-free microphone material taken for 
low noise and high noise driving conditions. Finally, recognition performance is assessed in 
terms of the word accuracy (WAcc) that considers deletion, substitution and insertion errors. 
An enhanced feature extraction scheme incorporating a noise reduction algorithm and non-
speech frame-dropping was built on the base system (ETSI, 2000). The noise reduction 
algorithm has been implemented as a single Wiener filtering stage as described in the AFE 
standard (ETSI, 2002) but without mel-scale warping. No other mismatch reduction 
techniques already present in the AFE standard have been considered since they are not 
affected by the VAD decision and can mask the impact of the VAD precision on the overall 
system performance. 
Table 1 shows the recognition performance achieved by the different VADs that were 
compared. These results are averaged over the three test sets of the AURORA-2 recognition 
experiments and SNRs between 20 and 0 dBs. Note that, for the recognition experiments 
based on the AFE VADs, the same configuration of the standard (ETSI, 2002), which 
considers different VADs for WF and FD, was used. The MBQW VAD outperforms G.729, 
AMR1, AMR2 and AFE standard VADs in both clean and multi condition training/testing 
experiments. When compared to recently reported VAD algorithms, it yields better results 
being the one that is closer to the “ideal” hand-labeled speech recognition performance. 
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Base + WF Base + WF + FD 
Base

G.729 AMR1 AMR2 AFE MBQW G.729 AMR1 AMR2 AFE MBQW

WM 92.74 93.27 93.66 95.52 94.28 95.36 88.62 94.57 95.52 94.25 94.70 

MM 80.51 75.99 78.93 75.51 78.52 74.49 67.99 81.60 79.55 82.42 80.08 

HM 40.53 50.81 40.95 55.41 55.05 56.40 65.80 77.14 80.21 56.89 83.67 
Finnish

Average 71.26 73.36 71.18 75.48 75.95 75.42 74.14 84.44 85.09 77.85 86.15 

WM 92.94 89.83 85.48 91.24 89.71 91.66 88.62 94.65 95.67 95.28 96.79 

MM 83.31 79.62 79.31 81.44 76.12 83.95 72.84 80.59 90.91 90.23 91.85 

HM 51.55 66.59 56.39 70.14 68.84 70.47 65.50 62.41 85.77 77.53 87.25 
Spanish 

Average 75.93 78.68 73.73 80.94 78.22 82.03 75.65 74.33 90.78 87.68 91.96 

WM 91.20 90.60 90.20 93.13 91.48 92.87 87.20 90.36 92.79 93.03 93.73 

MM 81.04 82.94 77.67 86.02 84.11 85.58 68.52 78.48 83.87 85.43 87.40 

HM 73.17 78.40 70.40 83.07 82.01 82.56 72.48 66.23 81.77 83.16 83.49 
German 

Average 81.80 83.98 79.42 87.41 85.87 87.00 76.07 78.36 86.14 87.21 88.21 

Average 76.33 78.67 74.78 81.28 80.01 81.48 75.29 79.04 87.34 84.25 88.77 

(a)

Base + WF Base + WF + FD 
Base

Woo Li Marzinzik Sohn MBQW Woo Li Marzinzik Sohn MBQW

WM 92.74 95.25 95.15 95.39 95.21 95.36 86.81 85.60 93.73 93.84 94.70 

MM 80.51 77.70 76.74 73.94 72.16 74.49 66.62 55.63 76.47 80.10 80.08 

HM 40.53 57.74 53.85 57.28 57.24 56.40 62.54 58.34 68.37 75.34 83.67 
Finnish

Average 71.26 76.90 75.25 75.54 74.87 75.42 71.99 66.52 79.52 83.09 86.15 

WM 92.94 90.85 91.24 91.31 91.25 91.66 95.35 91.82 94.29 96.07 96.79 

MM 83.31 81.07 84.00 82.90 82.21 83.95 89.30 77.45 89.81 91.64 91.85 

HM 51.55 61.38 64.72 65.05 69.89 70.47 83.64 78.52 79.43 84.03 87.25 
Spanish 

Average 75.93 77.77 79.99 79.75 81.12 82.03 89.43 82.60 87.84 90.58 91.96 

WM 91.20 92.83 92.25 93.17 93.17 92.87 91.59 89.62 91.58 93.23 93.73 

MM 81.04 85.58 85.21 85.29 86.09 85.58 80.28 70.87 83.67 83.97 87.40 

HM 73.17 83.02 82.98 83.02 83.53 82.56 78.68 78.55 81.27 82.19 83.49 
German 

Average 81.80 87.14 86.81 87.16 87.60 87.00 83.52 79.68 85.51 86.46 88.21 

Average 76.33 80.60 80.68 80.82 81.20 81.48 81.65 76.27 84.29 86.71 88.77 

(b)

Table 2. Average Word Accuracy for the SpeechDat-Car databases. (a) Comparison to 
standardized VADs. (b) Comparison to other recently reported methods. 
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Table 2 shows the recognition performance for the Finnish, Spanish, and German SDC 
databases for the different training/test mismatch conditions (HM, high mismatch, MM: 
medium mismatch and WM: well matched) when WF and FD are performed on the base 
system (ETSI, 2000). Again, MBQW VAD outperforms all the algorithms used for reference, 
yielding relevant improvements in speech recognition. Note that the SDC databases used in 
the AURORA 3 experiments have longer non-speech periods than the AURORA 2 database 
and then, the effectiveness of the VAD results more important for the speech recognition 
system. This fact can be clearly shown when comparing the performance of MBQW VAD to 
Marzinzik’s VAD. The word accuracy of both VADs is quite similar for the AURORA 2 task. 
However, MBQW yields a significant performance improvement over Marzinzik’s VAD for 
the SDC databases. 

6. Conclusions 

This chapter has shown an overview of the main challenges in robust speech detection and a 
review of the state of the art and applications. VADs are frequently used in a number of 
applications including speech coding, speech enhancement and speech recognition. A 
precise VAD extracts a set of discriminative speech features from the noisy speech and 
formulates the decision in terms of well defined rule. The chapter has summarized three 
robust VAD methods that yield high speech/non-speech discrimination accuracy and 
improve the performance of speech recognition systems working in noisy environments. 
The evaluation of these methods showed the experiments most commonly conducted to 
compare VADs: i) speech/non-speech discrimination analysis, ii) the receiver operating 
characteristic curves, and iii) speech recognition system tests. 
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