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1. Introduction 
 

Three–phase inductions machines are the primary consumers of electric power in 
industrialized countries, they can typically consume between 40 to 50% of all the generated 
power (Thomsom et al., 2001).  Diagnostic testing of induction machines is therefore of 
tremendous importance in many applications, and has been the focus of intense research for 
many years (Aller et al., 2002), (Antonino-Daviu et al., 2006), (Briz et al., 2008), (Benbouzid, 
2000), (Douglas et al. 2003), (Douglas et al. 2004), (Douglas et al. 2005), (Douglas et al. 2005-b), 
(Faliang Niu & Jin Huang, 2005), (Nandi & Toliyat, 2005), (Thomson & Fenger, 2001), 
(Supangat et al., 2006). 
Based on the results from failure surveys, the failure mechanism for induction machines can 
be divided into the following four general categories, with the percentage of total failure 
shown (Thomsom et al., 2001). 

 Stator related: 40% 
 Rotor related: 10% 
 Bearing related: 40% 
 Other: 10% 

 
A number of methods have been developed for the purpose of detecting faults in induction 
machines, the ultimate goal being to prevent unexpected equipment downtime or severe 
equipment damage.  Classification of the existing methods can be done according to several 
criteria, including: 

 The type of fault that can be detected (stator, rotor, bearing, … ). 
 The physical quantities that are measured and further processed for the detection 

(phase currents, voltages, temperature, infrared, vibration, axial flux, acoustic 
noise, …). 
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 If they work on-line or off-line.  On-line methods do not stop the normal operation 
of the machine, while off-line methods require discontinuing the normal operation 
of the machine and often require moving it to a test rig.  

 If they can work with constant and/or variable fundamental excitation, i.e., if they 
are valid for line-connected machines and/or inverter fed machines. 

 
On-line methods are preferred in general for obvious reasons.  Of special interest are 
methods that use terminal electrical quantities (currents/voltages), as they are easily 
measured.  Methods of this type include negative sequence currents/impedances and motor 
current signature analysis (MCSA) (Kholer et al., 2002), (Lee et al., 2003), (Nandi & Toliyat, 
2005), (Thomson & Fenger, 2001).  These methods exploit the fact that an imbalanced 
machine, i.e., faulted, when fed with a balanced, three-phase voltage, produces specific 
components in the stator currents whose magnitudes and frequencies depend on the level of 
asymmetry and the cause of the fault condition. 
Independent of their attractive properties, these methods have drawbacks that can limit 
their performance (Kholer et al., 2002), (Lee et al., 2003), (Nandi & Toliyat, 2005), (Thomson 
& Fenger, 2001).  First, the line voltages feeding the machine often contain negative 
sequence components, which produce spurious current components caused not by 
imbalances in the machine but by the voltage feeding it.  Although it is possible to measure 
the level of imbalance in the line voltages, it is not easy to accurately estimate their 
contribution to the overall current, since it depends on the machine’s parameters and 
operating point.  A second limitation of these techniques is the dependence of the fault 
related components on the operating point of the machine, and specifically, on the load level 
or slip.  Several improvements have been proposed to mitigate these drawbacks (Lee et al., 
2003), (Nandi & Toliyat, 2005). 

 
1.1 Rotor fault detection 
Rotor faults account for a relatively small portion (10%) of the overall failures occurring in 
induction machines. However, this portion is not uniform for all machines designs and 
applications. Broken rotor bars primarily occur in medium voltage motors with copper bar 
rotors. Direct line starting with heavy loads causes high thermal and mechanical stresses; 
pulsating mechanical loads such as reciprocating compressors or coal crushers (etc.) can 
subject the rotor cage to high mechanical stresses; an increased risk of rotor failure can exist 
in these cases (Loránd et al., 2004). 
MCSA methods have successfully been applied to rotor fault detection.  Damaged rotors 
produce spectral components in the stator current at frequencies that are function of the slip 
(and therefore of the rotor speed).  The magnitude of these components is a function of the 
level of asymmetry of the rotor, from which the rotor condition can be evaluated.  
Regardless of its simple physical principles, use of MCSA for rotor fault detection presents 
limitations.  When the machine operates with light load (small slips), the magnitude of the 
fault related components decrease, and their frequencies gets close to large fundamental 
excitation frequency related components, which result in them being difficult to separate.  
Also, oscillating loads or imbalances in coupled gears and/or mechanical transmissions can 
produce components in the currents at frequencies similar to those caused by faults, making 
them difficult to distinguish from a real fault. 

 

The startup transient offers opportunities for performing rotor diagnostics of line-connected 
machines.  When a machine is connected to the line, the startup transient is characterized by 
large stator (and rotor) currents, as well as by large slips (i.e., rotor speed significantly 
smaller than the excitation frequency).  Damaged rotors create large rotor speed dependent 
components in the stator current during the startup transient.  Analysis of the stator current 
of line-connected machines during startup provides, therefore, an excellent opportunity for 
performing rotor diagnostics. 
Detection of damaged rotor bars using startup transients requires the use of methods 
capable of processing the transient signals. Wavelet functions are well suited for this 
purpose and wavelet based analysis has been proposed for machine diagnostics using 
startup transient currents (Aller et al., 2002), (Antonino-Daviu et al., 2006), (Briz et al., 2008), 
(Douglas et al. 2003), (Douglas et al. 2004), (Douglas et al. 2005), (Douglas et al. 2005-b), 
(Faliang Niu & Jin Huang, 2005), (Nandi & Toliyat, 2005), (Thomson & Fenger, 2001), 
(Supangat et al., 2006). In most of these works, standard wavelets transforms, i.e., wavelet 
families proven useful in other applications, are used.  Discrete wavelet transform based 
filtering was used in (Aller et al., 2002), Daubechies-8 wavelet in (Douglas et al. 2003), 
(Douglas et al. 2004), (Douglas et al. 2005), (Douglas et al. 2005-b), (Supangat et al., 2006), 
Daubechies-40 wavelet in (Antonino-Daviu et al., 2006).  In (Faliang Niu & Jin Huang, 2005), 
a continuous Morlet wavelet is proposed and the analysis was based on an estimate of the 
torque.  This requires measurement of the stator voltage, as well as an estimate of the stator 
resistance, which significantly complicates the implementation of the method. A significant 
inconvenience of standard wavelets is that no clear criteria for selecting the wavelet function 
exist, with selection being made ad hoc.  Also, although the wavelet based analysis can reveal 
differences between a healthy and a damaged machine, there is not a clear relationship 
between the physical characteristics of the signal and the results of wavelet based analysis. 
Alternatively to the use of standard wavelets, it is possible to design wavelet transforms 
based on the physical properties exhibited by the currents when a damaged rotor exist (Briz 
et al., 2008).  Since these wavelet respond to a known pattern, the design, as well as the 
selection of the parameters, are deterministic, with the interpretation of the results of the 
wavelet transform being straightforward. 
A method for rotor fault detection using wavelet based analysis of the stator current 
complex vector during startup is presented in this work.  The chapter is organized in 8 
sections. Section 2 introduces the stator current complex vector of three-phase machines, 
with its nature during start-up transients for both healthy and faulty machines being 
discussed in section 3.  Section 4 introduces complex vector wavelets designed to detect 
rotor fault related patterns of the stator current complex vector during the startup transient.  
Discussion on the design of the wavelet function, as well as experimental results 
demonstrating the viability and performance of the method are presented in Section 5.  
Section 6 analyses implementation aspects, the conclusions being presented in Section 7.  
Section 8 provides the reference list. 
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a) Three phase machine b) Three phase system c) Equivalent two-phase 
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Fig. 1. Three phase machine and reference coordinates systems. 

 
Table 1. Induction motor parameters (fe = 50 Hz) 

Power Rating 0.9 kW, 4 poles 
V rated/ I rated (wye) 400 V / 2.3 A (rms) 

Rated speed 1425 rpm 
# Stator Slots / #Rotor 

Slots 
24 / 30 

 
2. The stator current complex vector 
 

The stator current complex vector is the quantity measured and used in this work for 
detecting rotor faults in induction machines.  This section provides a basic background on 
the definition and utilization of complex vector variables for the analysis of ac electric 
machines. 
Complex vector quantities (or alternatively qd-axis models) are widely used for the analysis, 
design, control and diagnosis of three-phase, ac machines and three-phase power systems 
(Novotny & Lipo, 1996).  Given a set of three-phase currents ia, ib and ic (Fig. 1a), the stator 
current complex vector is defined as: 
 

i s
qds  = i s

qs  – j i s
qd  = 2

3
 ( ia + ib e

j2/3
+ ic e

j4/3
) (1) 

 
The transformation in (1) can be visualized as the currents ia, ib and ic aligned with three non-
orthogonal axes with a phase shift of 120º from each other (Fig. 1b), being transformed to an 
orthogonal q-d reference frame (Fig. 1c). The stator current complex vector (1) can be 
represented as a complex quantity or in cartesian form by using its real and imaginary 
components, s

qsi  and s
dsi  respectively. 

Fig. 2a shows the three phase stator currents of the test machine operating in the steady-
state. The parameters of the machine are shown in Table I.  Fig. 2b shows the resulting q- 
and d-axis components obtained using the transformation defined by (1), while Fig. 2c 

 

shows the trajectory of the resulting complex vector.  For the case of balanced, sinusoidal 
three-phase currents, the stator current complex vector consists of a single rotating component, 
with its magnitude being equal to the peak value of the phase currents, its frequency of 
rotation coinciding with the frequency of the phase currents. 
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Fig. 2. a) phase current iu, iv, iw, b) q and d-axis components of the stator current complex 
vector, and c) trajectory of the stator current complex vector with the machine operated in 
steady-state. 
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Fig. 4. a) Magnitude of the stator current complex vector and b) rotor speed during startup 
(400 V rms, 50 Hz), with the motor driving a large inertia load. 
 
Fig. 3 shows the frequency spectrum of the stator current complex vector.  Since it is a 
complex vector quantity, its frequency spectrum contains both positive (forward rotating) 
and negative (backward rotating) frequency components.  It can be observed from the figure 
that the largest component is at a frequency of e=50 Hz, which corresponds to the 
fundamental (line) frequency, with a number of additional harmonics of relatively small 
magnitude being also observable both at positive and negative frequencies. 

 
3. Analysis of the stator current complex vector during startup 
 

Fig. 4 shows the stator current complex vector magnitude and the rotor speed of the test 
machine after it was connected to the line.   Since the transient stator current complex vector 
after connection is a non-stationary signal, conventional FFT based analysis of the type 
shown in Fig. 3 is not adequate.  Instead, the Short Time Fourier Transform (STFT) can be 
used for these purposes (Benbouzid, 2000), (Briz et al., 2008).  Fig. 5a shows the spectrogram 
of the stator current complex vector (1), obtained using the STFT, during the transient shown 
in Fig. 4, for the case of a healthy machine.  A sampling frequency of 5 kHz, with a window 
width of 2048 samples was used. 
The most significant component in the spectrogram is at the line frequency, e=50 Hz, and 
corresponds to the fundamental current.  Additional components of reduced magnitude 
(note the logarithmic scale of the color bar) can also be observed.  Horizontal lines 
correspond to components that do not vary with the rotor speed and have several physical 
origins, e.g., saturation; additional components in the line voltages; interactions between the 
fundamental excitation and asymmetries intrinsic to the design of the machine; imbalances 
in the measurement circuits (current sensors and further electronics), etc.  All of these 
components generally have a small magnitude compared to the signals of interest but they 
are still visible when a logarithmic scale is used (Briz et al., 2008). 
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Fig. 5. Spectrogram of the stator current complex vector during startup with the motor 
driving a large inertia load, for the case of a) a healthy machine and b) machine with a 
broken rotor bar. Color bar units: Amps. 
 
Rotor speed dependent components can also be observed in the spectrogram. Such 
components have previously been reported even for the case of healthy machines due to 
design and construction asymmetries (Benbouzid, 2000). 
Fig. 5b shows the spectrogram of the stator current complex vector during a startup 
transient for the case of a machine with a broken rotor bar.  The bar was disconnected by 
drilling the end ring, as shown in Fig. 6. The rotor was modified so that the continuity of the 
end-ring was maintained and the rotor laminations were not affected.  Components of the 
stator current complex vector caused by a damaged rotor bar are given by (2) (Benbouzid, 
2000), where e is the electrical frequency, s is the slip, p the number of pole pairs, 
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design and construction asymmetries (Benbouzid, 2000). 
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drilling the end ring, as shown in Fig. 6. The rotor was modified so that the continuity of the 
end-ring was maintained and the rotor laminations were not affected.  Components of the 
stator current complex vector caused by a damaged rotor bar are given by (2) (Benbouzid, 
2000), where e is the electrical frequency, s is the slip, p the number of pole pairs, 
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Fig. 6. Rotor modified to break a rotor bar by drilling the end-ring. 
 
and with k/p = 1, 5, 7, 11, 13, … .  The most important component, (3), denoted as brb_2, 
is obtained from (2) with k/p = 1. 
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brb_2 = e (12s)= e + 2 r (3) 

 
Using (2) and (3), the stator current complex vector can be modeled as (4), where the first 
term on the right hand side represents the current of a healthy machine, while the rest of the 
terms represent the rotor fault-induced components.  
 

s
qdsi  =  

s
qds healthyi  + Ibrb_2

( 2 )j e re   

+ Ibrb_k
(( 2 ) / )j k pe re   

  (4) 

 
It can be seen from Fig. 5b that rotor speed dependent components that are readily 
observable during the startup transient have a significantly reduced magnitude in the 
steady-state.  In addition, all of the rotor speed dependent components converge to 
frequencies in the steady-state that are spectrally close to the fundamental excitation frequency 
or its harmonics.  This makes their separation in the steady-state difficult, especially if the 
machine is not heavily loaded.  It can be concluded then that significantly richer information 
for revealing a damaged rotor exists in the current vector during startup than exists during 
steady-state operation. 
 
 
 

 

4. Detection of damaged rotor bards using complex vector wavelets 
 

The separation of the information revealing a damaged rotor from the overall stator current 
requires adequate signal processing.  The STFT, combined with a spectrogram 
representation of Fig. 5 is one option.  However, while visually insightful, it is not easy to 
establish a metric that indicates the rotor condition.  Wavelets are an efficient tool for 
pattern detection in transient signals.  This can be accomplished by designing the wavelet to 
resemble the attributes of the signal to be detected. 

 
4.1 Wavelet design 
 It has been shown that a damaged rotor induces, among others, a component, Ibrb_2 (4), in 
the stator current complex vector.  This component is resembled during a startup transient 
by a wavelet function , (5), consisting of a complex exponent multiplied by a windowing 
function, h. 
 

(t) = h(t) e    j(( q 2q )e t r tt  (5) 
 
The complex exponent is a function of the electrical angle, e and the rotor angle, r.  These 
angles can be obtained by integration of the fundamental excitation frequency, e, and the 
rotor speed, r, respectively, (6).  However, while e is known in advance and constant, r 
is practically never measured in line-connected machines.  Because of this, an estimate of the 
rotor speed during the startup transient rw needs to be used.  For this work, the estimate 
rw(t) was obtained using a simple polynomial curve fit method from the e+2r 
component in the spectrogram shown in Fig. 5a during a commissioning stage, the 
estimated rotor speed being shown in Fig. 4b.  The angle rw was then obtained by 
integrating rw(t) (6). 
 

e(t) =  e dt ,  rw(t) = ( ) rw t dt  (6) 

 
It is noted that the determination of the exact value of rw(t) is not critical, as the wavelet (5) 
will later be scaled (i.e., stretched or shrunk) to effectively sweep the expected range of 
startup transient time lengths and shifted to find the exact time in which the startup 
transient occurred.  This is done by defining rw (7) and h as a function of scale (denoted as 
a) and time translation (denoted as b) (discussion about the design of h is presented in sub-
section 4.3).  The resulting wavelet function is given by (8).  
 

rw(a,b) = (( ) / ) rw t b a dt   (7) 

 

(a,b) = h(a,b) e  j ( q 2q , )e rw a bt  (8) 
 
Since the wavelet definition (8) relies on an estimation of the rotor speed shape, the reliability 
of the method can be reduced if significant variations in the rotor speed shape, due to variations 
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Fig. 7. Magnitude of the stator current complex vector component at e+2r (Ibrb_2 in (4)) 
vs. r for the case of a healthy machine and a machine with a broken rotor bar, during the 
startup transients of Fig. 5. 

in the load characteristics, occur.  It is emphasized however that variations of the transient 
length do not prevent the method from providing reliable fault detection, as will be 
demonstrated in section 5. 

 
4.2 Wavelet transform 
Once  is defined, (8), the coefficient of the wavelet transform C is obtained using (9) 
(MathWorks Inc., 2007), with ‘*’ standing for the complex conjugate.  It is noted that, 
although the integral symbol is used in (9), it actually operates with sampled signals, with 
the integration being transformed into a summation in the practical implementation. 
 

C(a,b) = *1 ( , )  s
qdsa b i dt

a
  (9) 

 
This coefficient is a function of a, i.e., how much the base wavelet is stretched or shrunk, and 
b, i.e., how much the wavelet is shifted in time with respect to the signal being analyzed.  
Evaluation of (9) is made by changing a and b at short, regular steps, resulting therefore in a 
continuous wavelet transform (MathWorks Inc., 2007). 
 
Selecting a and b in (9) is straightforward since they are directly related to characteristics of 
the signal being analyzed.  The limits for a are related to the minimum and maximum 
startup transient time lengths, while the limits for b are related to how accurately the startup 
transient can be detected.  
 
4.3 Selection of the windowing function 
The windowing function h in (5) is required so that the wavelet, , has a finite length and a 
smooth transition, since the complex exponential term in (5) has a constant magnitude equal 
to one.  Fig. 7 shows the magnitude of the stator current complex vector e2r component 
vs. r for the case of a healthy machine and for the case of a machine with a broken rotor bar.  
They were obtained from signal processing of the spectrograms in Fig. 5a and 5b, 
respectively.  It is interesting to notice that while the differences between the two signals are 
noticeable during the startup transient, both signals increase significantly and coincide for 
values of r near e (50 Hz).  This is due to the fact that the frequency being tracked (3) 
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and is difficult to separate from the desired signal.  A similar effect is also observed for 
values of r near 0, caused by the spectral closeness of the e component. 
 
To avoid border effects, h is chosen to be equal to zero for values of rw near 0 and e.  This is 
schematically shown in Fig. 8.  The window has two transition regions (t1t2 and t3t4) of 
variable magnitude and a mid-region (t2t3) of constant magnitude.  The transition regions 
are defined by (10)-(11), being similar to a hanning window.  The real and imaginary 
components of the resulting wavelet function, (5), are shown in Fig. 8c, with its magnitude 
and phase in Fig. 8b and 8d, respectively. 
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Fig. 7. Magnitude of the stator current complex vector component at e+2r (Ibrb_2 in (4)) 
vs. r for the case of a healthy machine and a machine with a broken rotor bar, during the 
startup transients of Fig. 5. 
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and is difficult to separate from the desired signal.  A similar effect is also observed for 
values of r near 0, caused by the spectral closeness of the e component. 
 
To avoid border effects, h is chosen to be equal to zero for values of rw near 0 and e.  This is 
schematically shown in Fig. 8.  The window has two transition regions (t1t2 and t3t4) of 
variable magnitude and a mid-region (t2t3) of constant magnitude.  The transition regions 
are defined by (10)-(11), being similar to a hanning window.  The real and imaginary 
components of the resulting wavelet function, (5), are shown in Fig. 8c, with its magnitude 
and phase in Fig. 8b and 8d, respectively. 
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Fig. 9. a) Estimated rotor speed, b) windowing function and c) magnitude of windowed 
stator current complex vector resulting from applying the windowing functions to the stator 
current complex vector magnitude of Fig. 1. In all cases b=0. 

 
Although this window will be used for all of the experimental results presented in this work, a 
variety of windowing functions can be used, each providing similar results (Briz et al., 2008). 

 
5. Experimental verification of the method 
 

The proposed method was tested using the machine in Table I.  Fig. 9a and 9b shows the 
estimated rotor speed rw and the windowing function, h, defined by (10)-(11), for different 
scales of a, with 0.2 and 2 representing the limits over which the wavelet transform (9) was 
evaluated, and 1 being a nominal case.  Fig. 9c shows the magnitude of the windowed stator 
current complex vector for these values of a. 
Fig. 10a and 10b show the magnitude of the C coefficient resulting from the wavelet 
transform for the case of a healthy machine and a machine with a broken rotor bar 
respectively.  The estimated start of the transient was assigned a time t=0, the b (time 
translation) parameter of the wavelet transform, , being evaluated in a range of 0.2 to 0.3 s 
around this value.  The a parameter was varied within a range of 0.2 to 2 times the base 
function.  The region of Fig. 10b that shows the most significant differences with respect to 
Fig. 10a is zoomed.  Comparing Fig. 10a and 10b it can be observed that the coefficient of the 

 

wavelet transform for the case of a healthy machine (Fig. 10a) has a rather constant value 
(uniform color), independent of the values for a and b.  This means that the wavelet transform 
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Fig. 10. Magnitude of the wavelet transform coefficient |C| during the startup transient 
shown in Fig. 9, as a function of a and b (relative to the estimated start of the transient). 
 

 
 

|C| 
 

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.5

1

1.5

a  
Fig. 11. Magnitude of the wavelet transform coefficient |C| during a startup transient, as a 

-0.1 0 0.1

0.84

0.86

0.88

health

1 broken rotor bar 

www.intechopen.com



Rotor Fault Detection in Line-fed Induction Machines Using  
Complex Wavelet Analysis of Startup Transients 337

 

34
34

1 ( )
2

cosh  
 , with 3

34
4 3

( )
( )
t t
t t
 

 


and 3 4t t t   (11) 

 
 
a) 
rw(t/a) 

(Hz) 

0

25

50 scale=0.2

scale=2

scale=1

 
b) 

h(t/a) 

0

0.5

1 scale=0.2

scale=1 scale=2

c) 

|h· s
qdsi  | 

|· s
qdsi | 

 (A) 

0 10 20 30 40
0

5

10

15

20 scale=0.2
scale=1

scale=2

time (s)

Fig. 9. a) Estimated rotor speed, b) windowing function and c) magnitude of windowed 
stator current complex vector resulting from applying the windowing functions to the stator 
current complex vector magnitude of Fig. 1. In all cases b=0. 

 
Although this window will be used for all of the experimental results presented in this work, a 
variety of windowing functions can be used, each providing similar results (Briz et al., 2008). 

 
5. Experimental verification of the method 
 

The proposed method was tested using the machine in Table I.  Fig. 9a and 9b shows the 
estimated rotor speed rw and the windowing function, h, defined by (10)-(11), for different 
scales of a, with 0.2 and 2 representing the limits over which the wavelet transform (9) was 
evaluated, and 1 being a nominal case.  Fig. 9c shows the magnitude of the windowed stator 
current complex vector for these values of a. 
Fig. 10a and 10b show the magnitude of the C coefficient resulting from the wavelet 
transform for the case of a healthy machine and a machine with a broken rotor bar 
respectively.  The estimated start of the transient was assigned a time t=0, the b (time 
translation) parameter of the wavelet transform, , being evaluated in a range of 0.2 to 0.3 s 
around this value.  The a parameter was varied within a range of 0.2 to 2 times the base 
function.  The region of Fig. 10b that shows the most significant differences with respect to 
Fig. 10a is zoomed.  Comparing Fig. 10a and 10b it can be observed that the coefficient of the 

 

wavelet transform for the case of a healthy machine (Fig. 10a) has a rather constant value 
(uniform color), independent of the values for a and b.  This means that the wavelet transform 

a)
 H

ea
lth

y 
m

ac
hi

ne
 

a 
(s

ca
le

) 

-0.2 -0.1 0 0.1 0.2 0.3

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 

b)
 M

ac
hi

ne
 w

ith
 a

 b
ro

ke
n 

ro
to

r b
ar

 
a 

(s
ca

le
) 

-0.2 -0.1 0 0.1 0.2 0.3

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 
b (time translation, seconds) 

Fig. 10. Magnitude of the wavelet transform coefficient |C| during the startup transient 
shown in Fig. 9, as a function of a and b (relative to the estimated start of the transient). 
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function of a (scale), (b=0.04 s), for the case of a healthy machine and a machine with a 
broken rotor bar. 
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Fig. 12. Magnitude of the stator current complex vector and of the windowed stator current 
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Fig. 13. Magnitude of the wavelet transform coefficient |C| during the startup transient 
shown in Fig. 12, as a function of a and b (relative to the estimated start of the transient). 
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Fig. 14. Magnitude of the wavelet transform coefficient |C| during a startup transient, as a 
function of a (scale), (b0.04 s), for the case of a healthy machine and a machine with a 
broken rotor bar. 
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Fig. 15. Flowchart showing the implementation of the method. 
 
effectively eliminates components of the stator current complex vector different from the one 
modeled by the wavelet function .   On the other hand, the coefficient C resulting from the 
wavelet transform for the case of a machine with a broken rotor bar has large values for well 
defined values of a and b, which reflects that good correlation exists between the wavelet, , 
and the signal for these values of a and b. 
Fig. 11 shows the value of C, as a function of a, from Fig. 10 for b=0.04 s, for the cases of a 
healthy machine and a machine with a broken rotor bar.  It can be observed that the 
maximum value of C is obtained for a=0.86, i.e., the startup transient was shorter than the 
wavelet base function.   
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Fig. 12. Magnitude of the stator current complex vector and of the windowed stator current 
complex vector during startup transient. 
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Fig. 13. Magnitude of the wavelet transform coefficient |C| during the startup transient 
shown in Fig. 12, as a function of a and b (relative to the estimated start of the transient). 

| qdsi ||h qdsi |

-0.1 0 0.1

0.27

0.29

0.31

 

 
 

|C| 
 

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.5

1

1.5

a  
Fig. 14. Magnitude of the wavelet transform coefficient |C| during a startup transient, as a 
function of a (scale), (b0.04 s), for the case of a healthy machine and a machine with a 
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Fig. 15. Flowchart showing the implementation of the method. 
 
effectively eliminates components of the stator current complex vector different from the one 
modeled by the wavelet function .   On the other hand, the coefficient C resulting from the 
wavelet transform for the case of a machine with a broken rotor bar has large values for well 
defined values of a and b, which reflects that good correlation exists between the wavelet, , 
and the signal for these values of a and b. 
Fig. 11 shows the value of C, as a function of a, from Fig. 10 for b=0.04 s, for the cases of a 
healthy machine and a machine with a broken rotor bar.  It can be observed that the 
maximum value of C is obtained for a=0.86, i.e., the startup transient was shorter than the 
wavelet base function.   
 

health

1 broken rotor bar 
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It is concluded from these results that the proposed wavelet transform is highly sensitive to the 
properties exhibited by the current of a motor with a damaged rotor during startup.  A metric 
as simple as the peak value of |C| can be used to effectively indicate the condition of the 
machine. 

 
5.1 Influence of the start up transient length 
To assess the robustness of the method against variations in the startup transient 
characteristics, the analysis was repeated with the machine driving a significantly smaller 
inertia.  Fig. 12 shows the magnitude of the stator current complex vector during the startup, 
as well as the windowed current.  Fig. 13a and 13b shows the magnitude of the coefficient, 
C, for the case of a healthy machine and of a machine with a broken rotor bar, respectively.  
Regardless of the significant change in the startup transient's length, the wavelet transform 
in Fig. 13b clearly displays the presence of a fault. Fig. 14 shows the values of C, as a 
function of a, for b= 0.06 s, both for the healthy machine and for the machine with a broken 
rotor bar. 

 
6. Implementation of the method 
 

The proposed method requires the measurement of three current sensors for the 
implementation described in Section 3 (see Fig. 1a).  The use of two current sensors is 
adequate for these purposes, however, and is a common practice, provided that no zero 
sequence current exists.  It is equally valid for both delta- and wye-connected machines, and 
for machines with open as well as closed rotor slots.  For the experiments presented in this 
work, conventional Hall effects current sensors and 12 bits A/D converters were used. 
Fig. 15 shows the flowchart of the method.  For the wavelet design, the rotor speed, rw, 
during a startup transient is estimated and stored.  The windowing function, h, is then 
designed as discussed in Section 5 and stored for later use.  The stored rw and h are then used 
for the wavelet based analysis each time that a startup occurs. 
The peak value of |C|, is used to indicate the condition of the machine.  This implies the 
establishment of a threshold that differentiates a healthy from a faulty machine.  This cannot 
be easily done when no previous data from the machine of interest exists.  It is 
recommended that Cpeak be measured when a machine is first installed, or is known to be 
healthy, after that, increments or changes in the value of Cpeak would indicate a 
deterioration of the rotor.  Tracking the changes in Cpeak could also be used for diagnostics 
in machines already installed and for which the condition of the rotor is unknown (with the 
assumption that the rotor starts out relatively healthy and any increase in C indicates a 
deterioration in the rotor bar health). 
The experimental results shown in Fig. 10 and 13 used a wide range of values for a and b to 
better show the results of the method.  However, to reduce the computational and time 
requirements of the method, the range of evaluation for a and b parameters can be 
significantly reduced by simple analysis of the startup transient current vector magnitude 
(Fig. 4 and 12).  The start of the transient can typically be accurately established, which 
suggests that b could be restricted to a single value.  However, it is convenient in practice to 
allow a narrow range of evaluation for b.  This allows for compensation of effects like those 

 

caused by the non-ideal (non-repetitive) behavior of the breakers, the variation of the instant 
in time relative to the period of the phase voltages in which the breakers were ordered to 
close, as well as for inaccuracies in the rotor speed rw.  For the experiments presented in 
this paper, the time translation parameter b was changed in steps of 5 ms, with a range of 
variation in the order of 0.1 s relative to the theoretical start of the transient. 
As for the selection of the range of a, line-connected machines often show repetitive startup 
transients, allowing for narrow bounds to a, which would be specific for each application.  
For the case of machines showing significant variations in the startup transient length, simple 
threshold based analysis of the startup current can be used to dynamically adapt the limits for 
a for each startup transient.  For the experiments presented in this paper, a was changed in 
steps of 0.02.  The calculation of the C coefficient for each value of a and b, including scaling 
of h and rw, took 0.06 s in a standard computer. 
In the top-right corner of Fig. 10b and 13b the wavelet transform coefficient is shown with a 
and b restricted to a reduced range of values, which were automatically obtained by the 
analysis of startup transient current described above. 

 
7. Conclusion 
 

Broken rotor bar detection in a line-connected induction machine using complex wavelets to 
analyze the stator currents during startup transients was presented in this work.  These 
wavelets allow for the accurate detection of fault related components in the stator current 
complex vector indicative of damaged rotors.  In comparison with standard wavelet based 
methods, the wavelet design is made following a well defined procedure.  Because of this, 
limits for the scale and time translation parameters of the transform are easily established, 
reducing the computational requirements of the transformation.  In addition, interpretation of 
the results of the wavelet transform is physically insightful.  Experimental results confirm the 
effectiveness of the method in detecting damaged rotor bars. 
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It is concluded from these results that the proposed wavelet transform is highly sensitive to the 
properties exhibited by the current of a motor with a damaged rotor during startup.  A metric 
as simple as the peak value of |C| can be used to effectively indicate the condition of the 
machine. 

 
5.1 Influence of the start up transient length 
To assess the robustness of the method against variations in the startup transient 
characteristics, the analysis was repeated with the machine driving a significantly smaller 
inertia.  Fig. 12 shows the magnitude of the stator current complex vector during the startup, 
as well as the windowed current.  Fig. 13a and 13b shows the magnitude of the coefficient, 
C, for the case of a healthy machine and of a machine with a broken rotor bar, respectively.  
Regardless of the significant change in the startup transient's length, the wavelet transform 
in Fig. 13b clearly displays the presence of a fault. Fig. 14 shows the values of C, as a 
function of a, for b= 0.06 s, both for the healthy machine and for the machine with a broken 
rotor bar. 

 
6. Implementation of the method 
 

The proposed method requires the measurement of three current sensors for the 
implementation described in Section 3 (see Fig. 1a).  The use of two current sensors is 
adequate for these purposes, however, and is a common practice, provided that no zero 
sequence current exists.  It is equally valid for both delta- and wye-connected machines, and 
for machines with open as well as closed rotor slots.  For the experiments presented in this 
work, conventional Hall effects current sensors and 12 bits A/D converters were used. 
Fig. 15 shows the flowchart of the method.  For the wavelet design, the rotor speed, rw, 
during a startup transient is estimated and stored.  The windowing function, h, is then 
designed as discussed in Section 5 and stored for later use.  The stored rw and h are then used 
for the wavelet based analysis each time that a startup occurs. 
The peak value of |C|, is used to indicate the condition of the machine.  This implies the 
establishment of a threshold that differentiates a healthy from a faulty machine.  This cannot 
be easily done when no previous data from the machine of interest exists.  It is 
recommended that Cpeak be measured when a machine is first installed, or is known to be 
healthy, after that, increments or changes in the value of Cpeak would indicate a 
deterioration of the rotor.  Tracking the changes in Cpeak could also be used for diagnostics 
in machines already installed and for which the condition of the rotor is unknown (with the 
assumption that the rotor starts out relatively healthy and any increase in C indicates a 
deterioration in the rotor bar health). 
The experimental results shown in Fig. 10 and 13 used a wide range of values for a and b to 
better show the results of the method.  However, to reduce the computational and time 
requirements of the method, the range of evaluation for a and b parameters can be 
significantly reduced by simple analysis of the startup transient current vector magnitude 
(Fig. 4 and 12).  The start of the transient can typically be accurately established, which 
suggests that b could be restricted to a single value.  However, it is convenient in practice to 
allow a narrow range of evaluation for b.  This allows for compensation of effects like those 

 

caused by the non-ideal (non-repetitive) behavior of the breakers, the variation of the instant 
in time relative to the period of the phase voltages in which the breakers were ordered to 
close, as well as for inaccuracies in the rotor speed rw.  For the experiments presented in 
this paper, the time translation parameter b was changed in steps of 5 ms, with a range of 
variation in the order of 0.1 s relative to the theoretical start of the transient. 
As for the selection of the range of a, line-connected machines often show repetitive startup 
transients, allowing for narrow bounds to a, which would be specific for each application.  
For the case of machines showing significant variations in the startup transient length, simple 
threshold based analysis of the startup current can be used to dynamically adapt the limits for 
a for each startup transient.  For the experiments presented in this paper, a was changed in 
steps of 0.02.  The calculation of the C coefficient for each value of a and b, including scaling 
of h and rw, took 0.06 s in a standard computer. 
In the top-right corner of Fig. 10b and 13b the wavelet transform coefficient is shown with a 
and b restricted to a reduced range of values, which were automatically obtained by the 
analysis of startup transient current described above. 

 
7. Conclusion 
 

Broken rotor bar detection in a line-connected induction machine using complex wavelets to 
analyze the stator currents during startup transients was presented in this work.  These 
wavelets allow for the accurate detection of fault related components in the stator current 
complex vector indicative of damaged rotors.  In comparison with standard wavelet based 
methods, the wavelet design is made following a well defined procedure.  Because of this, 
limits for the scale and time translation parameters of the transform are easily established, 
reducing the computational requirements of the transformation.  In addition, interpretation of 
the results of the wavelet transform is physically insightful.  Experimental results confirm the 
effectiveness of the method in detecting damaged rotor bars. 
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