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1. Introduction    
 

Planning the motion of a rigid or articulated object among static obstacles is known as the 
basic motion planning problem. In its simplest definition, it is a purely geometric problem 
that only considers avoiding collision with static obstacles, given that the robot is the only 
object that is able to move in the environment. This problem has been extensively studied in 
the last two decades, and we do know that the problem itself can be very challenging. For 
instance, it has been demonstrated that planning the motion of a set of polyhedral objects 
forming an articulated structure in an environment with static polyhedral obstacles is 
PSPACE-hard (Reif, 1979). That means that although some elegant complete algorithms 
exist –the most efficient complete and general algorithm for basic motion planning has a 
O(2n) complexity (Canny, 1988)-- their prohibitive computational cost has motivated the 
search for efficient algorithms that can run in significantly less time despite the fact that they 
are not complete. 
 
In many practical problems the environments is more complex than in the basic motion 
planning problem. For instance, it might be the case that there are objects that are supposed 
to be moved by the robot, or the objects might not be rigid but deformable, or there could be 
objects moving in the environment whose trajectory might not be known in advance by the 
robot. All those cases can be considered as extensions of the basic motion planning problem.  
In this chapter we are interested in analyzing problems where several robots are moving in 
a shared workspace. This topic is raising interest in the community not only because many 
researchers argue that we have covered very well the simplest cases by designing efficient 
algorithms for them, but also because some applications are already pushing the envelop 
towards the automatic generation of behaviors for agents in dynamic and uncertain 
environments.  
 
The chapter is structured as follows: first, we will introduce some concepts and notation 
commonly used in motion planning. Then, a description of some methods for motion 
planning in single-robot environments is offered. The last part of the chapter is about 
methods for multi-robot motion planning. 

15
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2. Concepts and Notation 

A configuration of a robot is a list of parameters that uniquely defines the placement of the 
robot in its workspace (Lozano-Perez 1979; Lozano-Perez, 1983). For example, the 
configuration of a rigid body is its position and orientation. A configuration q is free if the 
object does not collide with the obstacles in the environment or with itself when placed at q. 
For any given robot, there are multiple ways of defining a configuration. The selected 
definition may affect the geometry of some sets, like the free space, but not their 
connectivity, which is what matters in our case. The set of all configurations forms the 
configuration space C. The C space is then the union of all the configurations of the robot, 
some of them free of collision (Cfree) and some others in collision (Cobs). C = Cfree  Cobst. For a 
polygonal rigid body R that translates in a 2-D polygonal space, the configuration space can 
be explicitly computed by taking the Minkowsky difference of R and the obstacles. 
Intuitively, that means that we "grow" the obstacles by the shape of R and then R becomes a 
point in this space. This transformation implies that finding the path for a robot means 
constructing a one-dimensional curve in this space, regardless the fact that the robot itself 
can be located in a three-dimensional space and may have many degrees of freedom (dof). It 
is important to mention that the configuration space will have as many dimensions as 
degrees of freedom may have the robot.  
 
There is a distinction between path planning and motion planning. A path is a continuous 
curve on the configuration space. It is represented by a continuous function that maps some 
path parameter, usually taken to be in the unit interval [0, 1], to a curve in Cfree . The choice 
of unit interval is arbitrary; any parameterization would suffice. The solution to the path 
planning problem is a continuous function c C0 such that 
c : [0, 1] → C where c(0) =qstart,  c(1) =qtarget  and c(s) Cfree s  [0, 1].  
 
When the path is parameterized by time t, then c(t) is a trajectory, and velocities and 
accelerations can be computed by taking the first and second derivatives with respect to 
time. This means that c should be at least twice-differentiable. Finding a feasible trajectory is 
called trajectory planning or motion planning. 
 
Navigation is the problem of finding a collision-free motion for an agent-system from one 
configuration (or state) to another. The agent could be a videogame avatar, a mobile robot, 
or something else. Localization is the problem of using a map to interpret sensor data to 
determine the configuration of the agent. Mapping is the problem of exploring and sensing 
an unknown environment to construct a representation that is useful for navigation or 
localization. Localization and mapping can be combined.  

 
3. Single-Robot Motion Planning Algorithms 
 

Most of the work in motion planning has been done considering the case of a single robot 
moving in an environment populated with static obstacles. The problem can then be stated 
as finding a collision-free path from any given starting position to a goal or desired location 
for the robot. In some cases, a function to measure cost is introduced, so that the algorithm is 
able to search for the optimal path (i.e., minimum cost).  

 

In general, we could classify the algorithms as complete or incomplete.  On the one hand, a 
complete algorithm is one that either finds a solution or proves that it does not exist.  Some 
authors call these algorithms exact. Algorithms under this classification are usually 
computationally expensive and, by consequence, impractical for many important instances 
of the problem. That is the case of the algorithm of Canny (Canny, 1987). Canny's algorithm 
is the most efficient general path planning algorithm known to date, with a time complexity 
of O(2n).  The method involves powerful techniques from real algebraic geometry (Canny, 
1987; Canny, 1988), but is nevertheless exponential in n. 
 
On the other hand, incomplete algorithms are not able to offer such guarantee. When a 
complete algorithm is impractical, despite its elegance, what computer scientists would like 
to have is an algorithm that satisfies another notion of completeness, such as resolution 
completeness or probabilistic completeness. In the first case, we say that an algorithm is 
resolution complete if its accuracy arbitrarily improves when the resolution is increased, and it 
becomes an exact algorithm at the limit where the resolution approaches the continuum. 
Some of the cell decomposition methods are resolution complete, for instance (Zhu, 1990; 
Kondo, 1991). For the second case, we say that an algorithm is probabilistically complete if 
the probability of finding a solution (if one exists) approaches 1, as the running time 
increases. Algorithms such as those described in (Barraquand, 1990; Kavraki, 1996; Hsu, 
1997) are probabilistically complete. 
 
One of the main drawbacks of resolution complete methods is that the number of points 
required for the discretization of the configuration space grows exponentially in the number 
of degrees of freedom. Conversely, in a probabilistic complete method, we would need to 
guarantee an adequate coverage of the configuration space in order to have a high 
probability of finding a path whenever it exists.  
 
Some well known examples of motion planning algorithms are: 
 
Cell Decomposition: Based on the idea of decomposing the Cfree space into convex regions 
(either regular or not) and using that discretization to build a representation of the 
connectivity of Cfree (usually a graph), and then searching for the path in the graph. Cell 
decomposition is an approach that sounds simple at first sight, but whose complexity grows 
quickly with the number of degrees of freedom of the robot. Also, since it is conceived to 
work on the C space, it requires the computation of Cfree, which may take very long time, 
depending on the dofs of the robot. It is an approach that, in general, can only be applied in 
very simple environments, making it unsuitable for real problems where obstacles may have 
complex geometries and the robot may have many degrees of freedom (Latombe, 1991). 
 
Potential Fields: Khatib introduced this approach, in which the idea is to consider the point 
robot in the configuration space as a charged particle under the influence of an artificial 
potential field in a way that the particle is "pushed" away from the obstacles and "attracted" 
towards the goal. The vectorial sum of those forces defines the motion of the robot to a new 
location and then the potentials are computed again and the whole loop is repeated. The 
approach originally was intended to be used as an on-line process for mobile robots 
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decomposition is an approach that sounds simple at first sight, but whose complexity grows 
quickly with the number of degrees of freedom of the robot. Also, since it is conceived to 
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equipped with sensors such as sonars. It has proven to be an approach useful for real robots 
moving on a plane, i.e., 2 or 3 degrees of freedom (Khatib, 1983). 
The main drawback of this approach is the tendency it has to get trapped in local minima 
(since it relies on a greedy search algorithm). Also, unless the C space is pre-computed, it is 
not possible to guarantee optimal paths or even the completeness of the algorithm. In 
practice, the main problem is usually the definition of "good" functions to represent 
attractive and repulsive forces. 
 
Roadmaps: In this approach, the idea is to represent the connectivity of the Cfree space by a 
one-dimensional curve, called roadmap. Once this curve is constructed, it is used to search 
for paths connecting some given initial and goal configurations. There are different ways of 
constructing the roadmap, such as: visibility graphs, Voronoi Diagrams, Silhouettes, etc. The 
main problem with the roadmaps approach is that computing such curve in high-
dimensional spaces is almost prohibitive in terms of computational time, making the 
approach not useful for environments involving many degrees of freedom. 
 
More recently, a new family of methods have been proposed, based on the idea of sampling 
the configuration space instead of actually computing it. The approach relies on recent 
results for algorithms that can enable the computation of collision checks in very short 
amounts of time, such as object oriented bounding boxes (OBB) (ref), axis aligned bounding 
boxes (AABB), Spheres and other options (Lin, 1998). 
 
The methods based on this idea are called Probabilistic Roadmaps (PRM), and we will 
describe them in more detail in the next section. 
 
The PRM Planning Approach 
 
Sampling-based motion planning is a well-known concept, (see, for instance (Donald, 1987)) 
that was originally used to deal with some difficulties encountered while implementing 
complete planners. PRM planning consists of sampling the configuration space at random 
and testing the sampled points, as well as connections between them, for collision.  
 
The obstacle regions in configuration space make explicit the constraints on the possible 
motions of a robot. These constraints derive from the interaction between the geometric 
shapes of the robot and the obstacles in the workspace. Small and geometrically simple 
obstacles in the workspace may yield complex and large obstacle regions in the 
configuration space C. 
 
There are two major issues in computing an explicit geometric representation of the obstacle 
regions in C. First, C has as many dimensions as the robot system has dofs. Second, the 
shape of Cfree may be complex even when both the robot and the obstacles have simple 
shapes. 
 
For those reasons, computing an explicit geometric representation of Cfree is not possible in 
practice (even with much greater computational power than is available today). On the 

 

other hand, efficient collision-detection techniques have existed for some years, which can 
determine quickly whether an arbitrary robot configuration is collision-free, or not.  
 
The existence of fast collision-checking techniques has led to the idea of probing the 
configuration space at random. One may pick many sampled configurations and test them 
for collision. Thus, the collision-free samples form a discrete approximation of the free 
space. This is the basic idea underlying probabilistic roadmaps (Kavraki, 1994). 
 
There are two main classes of PRM planners: multi-query and single-query planners. 
Historically, multi-query planners were developed first (Kavraki, 1994; Kavraki, 1996; 
Svestka, 1997; Amato, 1998b}. Single-query planners are more recent (Hsu, 1997; Hsu, 2000; 
Kuffner, 2000; LaValle, 2001), but they have significant advantages over multi-query 
planners. Additionally, mixed planners have also been proposed in (Amato, 1998; Bohlin, 
2000; Nielsen, 2000; Song, 2001). Basically, their goal is to distribute the time over a pre-
computation and a query phase. 
  
Multi-Query Planners 
 
A multi-query PRM planner operates in two phases. It first pre-computes a probabilistic 
roadmap R. Then it uses R to answer an arbitrary number of queries, each defined by a pair 
of configurations. Each query must be made in the same robot-obstacle environment for 
which R was computed. The pre-computation of R may be rather expensive, but it is 
"amortized'' over the several queries that are subsequently made (Kavraki, 1994; Kavraki, 
1996). Processing one query is usually extremely fast. 
 
Building the roadmap 
 
A roadmap R is pre-computed by repeatedly sampling the configuration space C at random. 
Each sample is tested for collision, and the collision-free samples are retained as milestones. 
Then, the planner connects pairs of milestones that are not too far apart by simple paths and 
retains those which test collision-free as local paths. The milestones and local paths form a 
network over Cfree, which is called the probabilistic roadmap. It is stored as an undirected 
graph, which usually has a large number of vertices (typically, several thousands to a few 
millions) (Kavraki, 1994; Kavraki, 1996). 
 
More formally, the algorithm is as follows (d is the metric function in C): 
BUILD_ROADMAP 
 1 R empty graph  
 2 Repeat until s milestones have been generated  
  3 Pick a configuration q uniformly at random in C 
  4 If q is collision-free then add q as a new vertex (milestone) of R 
  5 For each pair of milestones q, q' such that d(q,q')   
  6 If the line segment joining q and q' tests collision-free then  
     add it as an edge (local path) of R 
 7 Return R 
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The algorithm consists of two independent loops. The first loop (lines 2-4) adds milestones 
to the roadmap. The parameter s defines the number of milestones to be generated. It is 
often called the size of the roadmap. The second loop (lines 5-7) establishes the local paths. 
Local paths are created only between milestones that are closer apart than some predefined 
distance . Indeed, there are O(s2) pairs of milestones and testing all segments would be too 
costly. Moreover, if two milestones are far apart, the segment joining them is unlikely to be 
collision-free, and, if it is collision-free, then the above algorithm is likely to connect the two 
milestones by a sequence of local paths through intermediate milestones. Figure 1 illustrates 
the process. 
 

  

Fig. 1. Two steps in the computation of the roadmap. The image in the left shows the 
sampled milestones. The image on the right shows the graph built after calling the local 
planner. 
 
Querying the roadmap 
 
A query is defined by two configurations, qi and and qg. To answer the query, the planner 
first attempts to connect each of these configurations to a milestone of R by a local path. If 
the two connections succeed, then the planner searches R for a sequence of local paths 
connecting qi and qg. Such a sequence, if one is found, constitutes a free path for the robot. 
 
The algorithm is as follows: 
 
QUERY_ROADMAP(qi,qg) 
 1 Repeat for all q  R such that d(q, qi)  
  2 If the line segment joining qi and q tests collision-free then 
       connect qi to q and exit loop 
 3 If qi have not been connected to a milestone of R then return failure 
 4 Repeat for all q  R such that d(q, qg)  
  5 If the line segment joining qg and q tests collision-free then 
      connect qg to q and exit loop 
 6 If qg have not been connected to a milestone of R then return failure 
 7 Search R for a path connecting qi to qg  
 8 If a path has been found, then return this path, else return no path 

 

The algorithm returns failure if it fails to connect qi or qg to the roadmap. It returns no path if 
it fails to find a path connecting qi to qg after they have been successfully connected to the 
roadmap. The possible interpretations of these two outcomes will be discussed below. 
 
Probabilistic completeness 
 
There are two cases where QUERY_ROADMAP does not return a path: (1) if it fails to 
connect qi or qg to the roadmap, and (2) if it fails to find a path in the roadmap. Clearly, it is 
desirable that the first case happens as rarely as possible. In the second case, the algorithm's 
output is no path. This output may be correct, as it is possible that qi and qg belong to two 
distinct components of the free space Cfree. But it may also be incorrect: qi or qg may belong to 
the same component of Cfree, but the roadmap R may have more than one component lying 
in it. It is desirable that the planner rarely returns "no path" incorrectly. 
 
Single-Query Planners 
 
Multi-query PRM planners are appropriate when the pre-computation of a roadmap can be 
amortized over a rather large number of queries performed in the same environment. 
However, in practice, the number of queries in a given environment is rather small, as one 
or several objects are often moved, deleted, or added between two queries. Single-query 
PRM planners are a better solution in those cases. 
 
A single-query PRM planner computes a new probabilistic roadmap for each query (Hsu, 
1997; Hsu, 2000; Kuffner, 2000). While multi-query planners must use a sampling strategy 
that covers well the whole free space, in order to later successfully deal with any query, a 
single-query planner applies a more focused strategy aimed at exploring the smallest 
portion of free space needed to find a solution path.  More precisely, it takes advantage that 
it knows the two query configurations to explore restricted subsets of the components of Cfree 

that are reachable from these configurations. This is done either by growing one tree of 
milestones rooted at one query configuration, until a connection is found with the other 
query configuration (single-directional search), or by growing two trees concurrently, 
respectively rooted at one of the two query configurations, until a connection is found 
between the two trees (bi-directional search) (Hsu, 2000). In both cases, milestones are 
iteratively added to the roadmap. Each new milestone m' is selected in a neighbourhood of a 
milestone m already installed in a tree and is connected to m by a local path (hence, m' 
becomes a child of m). Bi-directional planners are usually more efficient than single-
directional ones (Amato, 1998; Hsu, 1998; Hsu, 1999; Hsu, 2000). Fig. 2 shows an example of 
a single-query planner in process. 
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often called the size of the roadmap. The second loop (lines 5-7) establishes the local paths. 
Local paths are created only between milestones that are closer apart than some predefined 
distance . Indeed, there are O(s2) pairs of milestones and testing all segments would be too 
costly. Moreover, if two milestones are far apart, the segment joining them is unlikely to be 
collision-free, and, if it is collision-free, then the above algorithm is likely to connect the two 
milestones by a sequence of local paths through intermediate milestones. Figure 1 illustrates 
the process. 
 

  

Fig. 1. Two steps in the computation of the roadmap. The image in the left shows the 
sampled milestones. The image on the right shows the graph built after calling the local 
planner. 
 
Querying the roadmap 
 
A query is defined by two configurations, qi and and qg. To answer the query, the planner 
first attempts to connect each of these configurations to a milestone of R by a local path. If 
the two connections succeed, then the planner searches R for a sequence of local paths 
connecting qi and qg. Such a sequence, if one is found, constitutes a free path for the robot. 
 
The algorithm is as follows: 
 
QUERY_ROADMAP(qi,qg) 
 1 Repeat for all q  R such that d(q, qi)  
  2 If the line segment joining qi and q tests collision-free then 
       connect qi to q and exit loop 
 3 If qi have not been connected to a milestone of R then return failure 
 4 Repeat for all q  R such that d(q, qg)  
  5 If the line segment joining qg and q tests collision-free then 
      connect qg to q and exit loop 
 6 If qg have not been connected to a milestone of R then return failure 
 7 Search R for a path connecting qi to qg  
 8 If a path has been found, then return this path, else return no path 

 

The algorithm returns failure if it fails to connect qi or qg to the roadmap. It returns no path if 
it fails to find a path connecting qi to qg after they have been successfully connected to the 
roadmap. The possible interpretations of these two outcomes will be discussed below. 
 
Probabilistic completeness 
 
There are two cases where QUERY_ROADMAP does not return a path: (1) if it fails to 
connect qi or qg to the roadmap, and (2) if it fails to find a path in the roadmap. Clearly, it is 
desirable that the first case happens as rarely as possible. In the second case, the algorithm's 
output is no path. This output may be correct, as it is possible that qi and qg belong to two 
distinct components of the free space Cfree. But it may also be incorrect: qi or qg may belong to 
the same component of Cfree, but the roadmap R may have more than one component lying 
in it. It is desirable that the planner rarely returns "no path" incorrectly. 
 
Single-Query Planners 
 
Multi-query PRM planners are appropriate when the pre-computation of a roadmap can be 
amortized over a rather large number of queries performed in the same environment. 
However, in practice, the number of queries in a given environment is rather small, as one 
or several objects are often moved, deleted, or added between two queries. Single-query 
PRM planners are a better solution in those cases. 
 
A single-query PRM planner computes a new probabilistic roadmap for each query (Hsu, 
1997; Hsu, 2000; Kuffner, 2000). While multi-query planners must use a sampling strategy 
that covers well the whole free space, in order to later successfully deal with any query, a 
single-query planner applies a more focused strategy aimed at exploring the smallest 
portion of free space needed to find a solution path.  More precisely, it takes advantage that 
it knows the two query configurations to explore restricted subsets of the components of Cfree 

that are reachable from these configurations. This is done either by growing one tree of 
milestones rooted at one query configuration, until a connection is found with the other 
query configuration (single-directional search), or by growing two trees concurrently, 
respectively rooted at one of the two query configurations, until a connection is found 
between the two trees (bi-directional search) (Hsu, 2000). In both cases, milestones are 
iteratively added to the roadmap. Each new milestone m' is selected in a neighbourhood of a 
milestone m already installed in a tree and is connected to m by a local path (hence, m' 
becomes a child of m). Bi-directional planners are usually more efficient than single-
directional ones (Amato, 1998; Hsu, 1998; Hsu, 1999; Hsu, 2000). Fig. 2 shows an example of 
a single-query planner in process. 
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Fig. 2. A single-query, bidirectional planner. Two trees are grown rooted at the start and 
goal configurations. 
 
A single-query planner is allowed to generate a maximal number s of milestones. Either it 
outputs a free path between the query configurations, or it indicates that it has not found a 
path after generating s milestones. The second output occurs when the two query 
configurations lie in two distinct connected components of Cfree. It may also occur when a 
solution path exists, but the planner did not find one because s was set too small.  
 
In (Hsu, 2000), it is shown that if Cfree is expansive, then the probability that a slightly 
idealized version of a single-query PRM planner fails to find a path when one exists goes to 
0 exponentially in s. This property defines the probabilistic completeness of a single-query 
PRM planner. The proof in (Hsu, 2000) requires that the milestones generated by the planner 
eventually ``diffuse'' through the components of F reachable from the query configurations. 
 
Intermediate Planners 
 
There are several planners which posses characteristics of both multi-query and single-
query planners. Below we briefly sketch some of them. 
 
In (Bohlin, 2000) a Lazy PRM is described. The algorithm is similar to the original PRM 
(Kavraki, 1994) in the sense that the aim is to find the shortest path in a roadmap 
constructed by randomly distributed configurations. Nevertheless, in this approach, instead 
of constructing a roadmap of feasible paths, a roadmap of paths assumed to be feasible is 
build. The idea is to lazily evaluate the feasibility of the roadmap as planning queries are 
processed. In other words, a number of uniformly distributed points form nodes in a 
roadmap, and the connections between nodes being sufficiently close form the edges on the 
roadmap. Neither nodes nor edges are validated until a possible solution path is found.  At 
that moment, both edges and nodes are checked for collision. If a collision is found, the 
corresponding node/edge is removed and the search process is re-started. 
  
In (Nielsen, 2000) a Fuzzy PRM planner is presented. In such approach, the process is started 
in the query phase, and if the roadmap does not contain a possible solution path, it enters to 
the learning phase, adding milestones and edges. The milestones are always collision-free 
configurations, while in the case of the edges, they are annotated by a probability. This 
probability is an estimate of the chance that the edge is actually feasible. The query phase is 

 

split into three steps: update, search and upgrade. The update step adds nodes to the graph, 
starting with the query ones. In the search step, the most probable path is found from start to 
goal configurations on the graph. The upgrade step is used to do the actual verification of the 
path. As a result of the application of this step, the probabilities on the edges are upgraded. 
 
In (Song, 2001) a "Customizable'' PRM planner is described. In the learning step a coarse 
roadmap is constructed by performing only approximate validation of nodes and edges. In 
the query step, the roadmap is validated and refined only in the area of interest for the 
query. Moreover, it is ``customized'' in accordance with any specified query preferences 
(e.g., maintaining certain clearance from the obstacles). 
 
In (Vallejo, 2001) an adaptive framework for single-query (or single-shot) planning is 
presented. In this approach, two trees are constructed, rooted on the start and goal 
configurations. In each iteration, it is attempted to generate a path that connects both query 
configurations. To do this, all potential query pairs with one configuration in each tree, and 
all the algorithms in the bank are evaluated, and it is selected the query pair and algorithm 
combination that is most likely to make a connection. The approach assumes that several 
planners are available. 

 
4. Multiple-Robot Motion Planning Algorithms 

There are two established approaches to multi-robot motion planning: centralized and 
decoupled (Latombe, 1991). So far, the prevalent approach has been decoupled planning. In 
most cases, centralized planning has been beyond the practical capabilities of existing 
planning techniques, as it requires searching configuration spaces with many dimensions. 
Instead, decoupled planning breaks the original planning problem into several more 
tractable sub-problems. Despite the fact that decoupled planning is known to be inherently 
incomplete – that is, it is not guaranteed to find a solution whenever one exists – it has been 
assumed that the loss of completeness is relatively small in most practical cases and worth 
the gain in computational time. 
 

 
Fig. 3. Model of six-robot spot-welding station. 
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configurations lie in two distinct connected components of Cfree. It may also occur when a 
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PRM planner. The proof in (Hsu, 2000) requires that the milestones generated by the planner 
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In (Bohlin, 2000) a Lazy PRM is described. The algorithm is similar to the original PRM 
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constructed by randomly distributed configurations. Nevertheless, in this approach, instead 
of constructing a roadmap of feasible paths, a roadmap of paths assumed to be feasible is 
build. The idea is to lazily evaluate the feasibility of the roadmap as planning queries are 
processed. In other words, a number of uniformly distributed points form nodes in a 
roadmap, and the connections between nodes being sufficiently close form the edges on the 
roadmap. Neither nodes nor edges are validated until a possible solution path is found.  At 
that moment, both edges and nodes are checked for collision. If a collision is found, the 
corresponding node/edge is removed and the search process is re-started. 
  
In (Nielsen, 2000) a Fuzzy PRM planner is presented. In such approach, the process is started 
in the query phase, and if the roadmap does not contain a possible solution path, it enters to 
the learning phase, adding milestones and edges. The milestones are always collision-free 
configurations, while in the case of the edges, they are annotated by a probability. This 
probability is an estimate of the chance that the edge is actually feasible. The query phase is 

 

split into three steps: update, search and upgrade. The update step adds nodes to the graph, 
starting with the query ones. In the search step, the most probable path is found from start to 
goal configurations on the graph. The upgrade step is used to do the actual verification of the 
path. As a result of the application of this step, the probabilities on the edges are upgraded. 
 
In (Song, 2001) a "Customizable'' PRM planner is described. In the learning step a coarse 
roadmap is constructed by performing only approximate validation of nodes and edges. In 
the query step, the roadmap is validated and refined only in the area of interest for the 
query. Moreover, it is ``customized'' in accordance with any specified query preferences 
(e.g., maintaining certain clearance from the obstacles). 
 
In (Vallejo, 2001) an adaptive framework for single-query (or single-shot) planning is 
presented. In this approach, two trees are constructed, rooted on the start and goal 
configurations. In each iteration, it is attempted to generate a path that connects both query 
configurations. To do this, all potential query pairs with one configuration in each tree, and 
all the algorithms in the bank are evaluated, and it is selected the query pair and algorithm 
combination that is most likely to make a connection. The approach assumes that several 
planners are available. 

 
4. Multiple-Robot Motion Planning Algorithms 

There are two established approaches to multi-robot motion planning: centralized and 
decoupled (Latombe, 1991). So far, the prevalent approach has been decoupled planning. In 
most cases, centralized planning has been beyond the practical capabilities of existing 
planning techniques, as it requires searching configuration spaces with many dimensions. 
Instead, decoupled planning breaks the original planning problem into several more 
tractable sub-problems. Despite the fact that decoupled planning is known to be inherently 
incomplete – that is, it is not guaranteed to find a solution whenever one exists – it has been 
assumed that the loss of completeness is relatively small in most practical cases and worth 
the gain in computational time. 
 

 
Fig. 3. Model of six-robot spot-welding station. 
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Centralized planning 

It consists of considering all the robots involved in the problem as if they were forming 
a single multi-limb robot, by encoding all their dofs in a single "composite" 
configuration space C and searching that space for a collision-free path between the 
initial composite configuration and the goal one. In such case, the "total" configuration 
space is given by the combination of the configuration spaces of all the robots: C = C1  
C2  ...  Cp, where p is the number of robots and Ci is the configuration space of the i-th 
robot (i  [1,p]). Thus, the number of dimensions of C is equal to the total number of 
dofs of the robots. In the example of Fig. 3, where each robot has 6 dofs, the composite 
configuration space has 36 dimensions.  

Let : s  [0,1]  (s)  F be a path in the free subset F of C. The projection i of  into 
the subspace Ci is the path to be followed by the i-th robot. For each s   [0,1], (s) is of 
the form (1(s), 2(s), ... , p(s)), which describes the configurations of the p robots at a 
single point along the path . Hence, a collision-free path in F, if one exists, not only 
describes the individual path to be followed by each robot, but also how the robots are 
to be coordinated.  

In principle, any sufficiently general path-planning algorithm can be used to implement 
centralized planning. This only requires applying this algorithm to the composite space 
C. However, in the past, centralized planning has not been considered practical because 
it usually leads to searching large-dimensional configuration spaces that are beyond the 
practical capabilities of existing planning techniques. Most proposed centralized 
planners have been based on ad-hoc and incomplete heuristics, for example potential 
field techniques, which are too unreliable to be widely useful (Tournassoud, 1986; 
Barraquand, 1990; Barraquand, 1991; Barraquand, 1992).  Complete centralized 
planning algorithms have only been proposed for very simple robotic systems, e.g., the 
coordination of discs among polygonal obstacles (Schwartz, 1983). The complexity of 
the algorithm described in that work is O(n3) for two discs, and O(n13) for three discs.  

Centralized approaches have the advantage that, at least in theory, they allow for 
complete planners.  
 
Decoupled planning 
 
This is a two-phase approach. In the first phase, a collision-free path is generated for 
each robot by considering only the obstacles in the environment and ignoring the other 
robots. In the second phase, called velocity tuning, the relative velocities of the robots 
along their respective paths are selected to avoid collision among them (Kant86, 
Odonnell89, Alami98,Aronov99}. 
 

 

 

 

 

 
Fig. 4. Coordination space for two robots. 
 
Velocity tuning consists of searching a coordination space. Consider two robots, and let 1 
and 2 be the two paths (one for each robot) generated in the first phase of decoupled 
planning. By forcing the robots to move along these paths, we actually reduce the number of 
dofs of each robot to 1, hence the dimension of their composite configuration space -- now 
called the coordination space -- to 2 (O'Donnell, 1989).  
 
Let each path i (i = 1,2) be parameterized by some si [0,1].  The set P = [0,1]  [0,1] 
represents the coordination space of the two robots (see Fig. 4). Each point (s1,s2) P defines 
a placement of the two robots at their respective configurations 1(s1) and 2(s2). This point is 
collision-free if at this placement the two robots do not collide with each other. (Collisions 
with obstacles in the environment were already taken care of during the generation of 1 and 
2).  A path joining the point (0,0) -- where both robots are at their respective initial 
configurations -- to the point (1,1) -- where they are at their goal configurations -- in the 
collision-free subset of P defines a valid coordination of the two robots along 1 and 2; it 
determines the relative velocities of the robots along their respective paths. Note that this 
path may not be monotonic along any of the dimensions of P. If it is not non-monotonic 
along si (i = 1 or 2), then for a while the i-th robot will move backward along i. Such motion 
may be required to provide maneuvering space to the second robot. An unfortunate choice 
of 1 and 2 in the first phase of decoupled planning may lead the points (0,0) and (1,1) to lie 
in two distinct connected component of the free subset of P.  
 
If there are p > 2 robots, one may coordinate all the robots by generating a collision-free path 
in the p-dimensional space P where the i-th axis encodes the parameter si of the path of the i-
th robot, from the point (0,...,0) to the point (1,...,1). We term this approach to velocity tuning 
global coordination. An alternative, pairwise coordination, consists of planning p-1 paths in a 
series of p-1 two-dimensional spaces P2,...,Pp. The axes of P2 encode the parameters s1 and s2 
along the paths of the 1st and 2nd robots, and a collision-free path 1,2: s1,2  [0,1]  1,2(s1,2) 
 P2 defines a valid coordination of these two robots. One axis of P3 encodes the parameter 
s3 along the path of the 3rd robot, while the other axis encodes the parameter s1,2 along the 
coordinated path of the 1st and 2nd robots. Hence, each point in P3 determines a placement 
of the first three robots, and a collision-free path in P3 defines a valid coordination of these 
robots. 
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C2  ...  Cp, where p is the number of robots and Ci is the configuration space of the i-th 
robot (i  [1,p]). Thus, the number of dimensions of C is equal to the total number of 
dofs of the robots. In the example of Fig. 3, where each robot has 6 dofs, the composite 
configuration space has 36 dimensions.  

Let : s  [0,1]  (s)  F be a path in the free subset F of C. The projection i of  into 
the subspace Ci is the path to be followed by the i-th robot. For each s   [0,1], (s) is of 
the form (1(s), 2(s), ... , p(s)), which describes the configurations of the p robots at a 
single point along the path . Hence, a collision-free path in F, if one exists, not only 
describes the individual path to be followed by each robot, but also how the robots are 
to be coordinated.  

In principle, any sufficiently general path-planning algorithm can be used to implement 
centralized planning. This only requires applying this algorithm to the composite space 
C. However, in the past, centralized planning has not been considered practical because 
it usually leads to searching large-dimensional configuration spaces that are beyond the 
practical capabilities of existing planning techniques. Most proposed centralized 
planners have been based on ad-hoc and incomplete heuristics, for example potential 
field techniques, which are too unreliable to be widely useful (Tournassoud, 1986; 
Barraquand, 1990; Barraquand, 1991; Barraquand, 1992).  Complete centralized 
planning algorithms have only been proposed for very simple robotic systems, e.g., the 
coordination of discs among polygonal obstacles (Schwartz, 1983). The complexity of 
the algorithm described in that work is O(n3) for two discs, and O(n13) for three discs.  

Centralized approaches have the advantage that, at least in theory, they allow for 
complete planners.  
 
Decoupled planning 
 
This is a two-phase approach. In the first phase, a collision-free path is generated for 
each robot by considering only the obstacles in the environment and ignoring the other 
robots. In the second phase, called velocity tuning, the relative velocities of the robots 
along their respective paths are selected to avoid collision among them (Kant86, 
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and 2 be the two paths (one for each robot) generated in the first phase of decoupled 
planning. By forcing the robots to move along these paths, we actually reduce the number of 
dofs of each robot to 1, hence the dimension of their composite configuration space -- now 
called the coordination space -- to 2 (O'Donnell, 1989).  
 
Let each path i (i = 1,2) be parameterized by some si [0,1].  The set P = [0,1]  [0,1] 
represents the coordination space of the two robots (see Fig. 4). Each point (s1,s2) P defines 
a placement of the two robots at their respective configurations 1(s1) and 2(s2). This point is 
collision-free if at this placement the two robots do not collide with each other. (Collisions 
with obstacles in the environment were already taken care of during the generation of 1 and 
2).  A path joining the point (0,0) -- where both robots are at their respective initial 
configurations -- to the point (1,1) -- where they are at their goal configurations -- in the 
collision-free subset of P defines a valid coordination of the two robots along 1 and 2; it 
determines the relative velocities of the robots along their respective paths. Note that this 
path may not be monotonic along any of the dimensions of P. If it is not non-monotonic 
along si (i = 1 or 2), then for a while the i-th robot will move backward along i. Such motion 
may be required to provide maneuvering space to the second robot. An unfortunate choice 
of 1 and 2 in the first phase of decoupled planning may lead the points (0,0) and (1,1) to lie 
in two distinct connected component of the free subset of P.  
 
If there are p > 2 robots, one may coordinate all the robots by generating a collision-free path 
in the p-dimensional space P where the i-th axis encodes the parameter si of the path of the i-
th robot, from the point (0,...,0) to the point (1,...,1). We term this approach to velocity tuning 
global coordination. An alternative, pairwise coordination, consists of planning p-1 paths in a 
series of p-1 two-dimensional spaces P2,...,Pp. The axes of P2 encode the parameters s1 and s2 
along the paths of the 1st and 2nd robots, and a collision-free path 1,2: s1,2  [0,1]  1,2(s1,2) 
 P2 defines a valid coordination of these two robots. One axis of P3 encodes the parameter 
s3 along the path of the 3rd robot, while the other axis encodes the parameter s1,2 along the 
coordinated path of the 1st and 2nd robots. Hence, each point in P3 determines a placement 
of the first three robots, and a collision-free path in P3 defines a valid coordination of these 
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Decoupled planning leads to searching lower-dimensional spaces than centralized planning. 
But, it is inherently incomplete, even if the core planning algorithms used in the first and 
second phases are complete. Velocity tuning may fail because the paths generated in the 
first planning phase cannot be coordinated without collision between robots, while this 
coordination would have been possible if other paths had been selected. A decoupled 
planner based on global coordination is less incomplete than one based on pairwise 
coordination, since a specific path selected in the path space Pi may result into a space Pi+1 
with no collision-free path between (0,...,0) and (1,...,1). Nevertheless, in the past, pairwise 
coordination has been more widely used than global coordination, since it only requires 
planning in two-dimensional spaces. In theory, when velocity tuning fails, the planner could 
backtrack and generate new robot paths. But this option has rarely been used. Indeed, it is 
difficult to extract from a failure the information that can be used to generate new paths. 
Moreover, backtracking quickly increases the planner's running time.  
 
An alternative to velocity tuning, called prioritized planning, is proposed in (Erdmann, 1986).  
It consists of processing the robots in some predefined order and planning the path of each 
robot by treating the robots whose paths have already been planned as moving obstacles of 
known trajectories. A problem with this approach is finding a good way of defining the 
priorities for the robots, as this assignment affects the likelihood of finding the solution.  
 
In (Sánchez, 2002), we describe the use of the SBL planner to implement both the centralized 
and the decoupled approaches. Interestingly, SBL can be invoked at each stage of decoupled 
planning, not only to plan individual paths of robots, but also to coordinate these paths 
(velocity tuning). We give experimental results obtained for the model of a 6-robot spot-
welding station shown in Fig. 3, comparing the relative performance and reliability of 
centralized planning, decoupled planning with global coordination, and decoupled 
planning with pairwise coordination (these terms will be precisely defined below). The 
results reveal that, in the context of multi-robot spot welding, which requires rather tight 
robot coordination, decoupled planning is too un-reliable to be practical. This is an 
important observation, since it invalidates the assumption that the loss of completeness in 
adopting decoupled planning is not very significant in practice and indicates that 
centralized planning is a more desirable approach. By no means, however, does this imply 
that decoupled planning is useless. First, it may be reasonably reliable for other applications 
where interactions among robots are less constraining. Second, there are distributed-robot 
systems where centralized planning is not possible because no robot or processor knows the 
global state of the system or the goals of all robots. Finally, even in cases where decoupled 
planning is possible but unreliable, a decoupled planner may still have some utility if it 
receives interactive hints from a human user. 

 

 
Fig. 5. Snapshot of a path obtained in Maya using SBL Planner 
 
We have recently programmed SBL inside Autodesk Maya software, using Python. In Fig 5. 
it is shown the path obtained by SBL (red) and the optimized path (yellow). In general, 
computing such paths take less than a second for uncluttered 3D environments and a robot 
with 2-3 dofs.  

 
5. Multiple-Robot Planning as Multi-Agent Systems 

A somewhat different way of dealing with the coordination of multiple robots is based on 
the idea of the robots  forming a multi-agent system. A multi-agent system (MAS) is a 
system composed of multiple interacting intelligent agents. Multi-agent systems can be used 
to solve problems which are difficult or impossible for an individual agent to solve.  
The agents in a multi-agent system have several important characteristics (Shoham, 2008):  
 

 Autonomy: the agents are at least partially autonomous. 

 Local views: no agent has a full global view of the system, or the system is too 
complex for an agent to make practical use of such knowledge. 

* Decentralization: there is no designated controlling agent (or the system is effectively 
reduced to a monolithic system). 

Typically multi-agent systems research refers to software agents. However, the agents in a 
multi-agent system could equally well be robots, humans or human teams. A multi-agent 
system may contain combined human-agent teams. 
 
Multi-agent systems can manifest self-organization and complex behaviors even when the 
individual strategies of all their agents are simple. 
 
Agents are assumed to operate in a planar (R2) or three dimensional (R3) environment or 
(vectorial) space, called workspace W. This workspace will often contain obstacles; let WOi 
be the i-th obstacle. Motion planning, however, does not usually occur in the workspace. 
Instead, it occurs in the configuration space (also called C-space). 
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Decoupled planning leads to searching lower-dimensional spaces than centralized planning. 
But, it is inherently incomplete, even if the core planning algorithms used in the first and 
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It consists of processing the robots in some predefined order and planning the path of each 
robot by treating the robots whose paths have already been planned as moving obstacles of 
known trajectories. A problem with this approach is finding a good way of defining the 
priorities for the robots, as this assignment affects the likelihood of finding the solution.  
 
In (Sánchez, 2002), we describe the use of the SBL planner to implement both the centralized 
and the decoupled approaches. Interestingly, SBL can be invoked at each stage of decoupled 
planning, not only to plan individual paths of robots, but also to coordinate these paths 
(velocity tuning). We give experimental results obtained for the model of a 6-robot spot-
welding station shown in Fig. 3, comparing the relative performance and reliability of 
centralized planning, decoupled planning with global coordination, and decoupled 
planning with pairwise coordination (these terms will be precisely defined below). The 
results reveal that, in the context of multi-robot spot welding, which requires rather tight 
robot coordination, decoupled planning is too un-reliable to be practical. This is an 
important observation, since it invalidates the assumption that the loss of completeness in 
adopting decoupled planning is not very significant in practice and indicates that 
centralized planning is a more desirable approach. By no means, however, does this imply 
that decoupled planning is useless. First, it may be reasonably reliable for other applications 
where interactions among robots are less constraining. Second, there are distributed-robot 
systems where centralized planning is not possible because no robot or processor knows the 
global state of the system or the goals of all robots. Finally, even in cases where decoupled 
planning is possible but unreliable, a decoupled planner may still have some utility if it 
receives interactive hints from a human user. 

 

 
Fig. 5. Snapshot of a path obtained in Maya using SBL Planner 
 
We have recently programmed SBL inside Autodesk Maya software, using Python. In Fig 5. 
it is shown the path obtained by SBL (red) and the optimized path (yellow). In general, 
computing such paths take less than a second for uncluttered 3D environments and a robot 
with 2-3 dofs.  

 
5. Multiple-Robot Planning as Multi-Agent Systems 

A somewhat different way of dealing with the coordination of multiple robots is based on 
the idea of the robots  forming a multi-agent system. A multi-agent system (MAS) is a 
system composed of multiple interacting intelligent agents. Multi-agent systems can be used 
to solve problems which are difficult or impossible for an individual agent to solve.  
The agents in a multi-agent system have several important characteristics (Shoham, 2008):  
 

 Autonomy: the agents are at least partially autonomous. 

 Local views: no agent has a full global view of the system, or the system is too 
complex for an agent to make practical use of such knowledge. 

* Decentralization: there is no designated controlling agent (or the system is effectively 
reduced to a monolithic system). 

Typically multi-agent systems research refers to software agents. However, the agents in a 
multi-agent system could equally well be robots, humans or human teams. A multi-agent 
system may contain combined human-agent teams. 
 
Multi-agent systems can manifest self-organization and complex behaviors even when the 
individual strategies of all their agents are simple. 
 
Agents are assumed to operate in a planar (R2) or three dimensional (R3) environment or 
(vectorial) space, called workspace W. This workspace will often contain obstacles; let WOi 
be the i-th obstacle. Motion planning, however, does not usually occur in the workspace. 
Instead, it occurs in the configuration space (also called C-space). 
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The game industry is demanding algorithms that allow multiple agents to plan for non-
colliding routes on congested-dynamical environments (Pottinger, 1999), such problems also 
appear in flock traffic navigation (FTN) based on negotiation (Astengo, 2007). 
 
FTN uses A* for path planning and, only at intersections, flocks use the Dresner and Stone 
reservation algorithm (Dresner, 2005). We intend to improve this algorithm using 
cooperative strategies. 
 
Cooperative Pathfiding  
 
In cooperative pathfinding each agent is assumed to have full knowledge of all other agents 
and their planned routes (Silver, 2005). The complementary problem is called “non-
cooperative pathfinding”, where the agents have no knowledge of each other’s plans and 
must predict their future movements. There is also another approach called “antagonist 
pathfinding” where agents try to reach their own goals while preventing other agents from 
reaching theirs.  
 
FTN based on negotiation uses a decoupled approach called local repair A*: each agent 
searches for a route to the destination using A*, ignoring all other agents except for its 
current neighbors. It is in this neighborhood that negotiation takes place and the flock is 
created. The agents then follow their route (according to the bone-structure) until a collision 
is imminent.  
 
It is clear that collisions will happen at the intersections, so there are, with this approach, 
two possible solutions:  
 

1. The Dresner and Stone reservation method (Dresner, 2004; 2005; 2006; 2007).   
2. The Zelinsky (Zelinsky, 1992) brute force algorithm: whenever an agent or a flock is 
about to move into an occupied position it instead recalculates the remainder of its route.  

 
The implementation of each method depends on the information and the time that the agent 
or flock has at that particular moment. The Zelinsky algorithm usually suffers from cycles 
and other severe breakdowns in scenarios where bottlenecks are present (Pottinger, 1999; 
Zelinksy, 2992). 
 
The Dresner and Stone reservation model was developed for individual agents that can 
accelerate or decelerate according to the reservation agenda. In simulations performed it 
was shown that, at the beginning, it works properly, but as time moves on the agents are 
eventually stopped.  
 
Cooperative Pathfinding with A*  
 
The task is decoupled into a series of single agent searches. The individual searches are 
performed in three-dimensional space-time and takes the planned routes of other agents 
into account. A wait move is included in the agent’s action set to enable it to remain 
stationary. After each agent’s route is calculated the states along the route are marked into a 

 

reservation table. Entries in the reservation table are considered impassable and are avoided 
during searches by subsequent agents.  
 
The reservation table represents the agents' shared knowledge about each other's planned 
routes. The reservation table is a three-dimensional grid: two spatial dimensions and one 
time dimension. Each cell that is intersected by the agent’s planned route is marked as 
impassable for precisely the duration of the intersection, thus preventing any other agent 
from planning a colliding route. Only a small proportion of grid locations will be touched, 
and so the grid can be efficiently implemented as a hash table (Silver, 2005).  
 
New Cooperative Pathfinding Algorithm  
 
Using the Cooperative A* a D* algorithms as a starting point, we can propose a new 
algorithm that can use similar techniques to plan paths in a dynamic environment in which 
several agents exist. 
 
As in Cooperative A*, a reservation table is used to store the agents’ planned paths and the 
time at which they will occupy certain regions in space. Assuming a three-dimensional 
space, we need a four-dimensional table that allows us to reference a specific point in space 
at a certain point in time. Any dynamic elements of the environment and their movement 
need to be included in the table as well. 
 
Agents rely on a visibility index to determine how far ahead in time they can detect potential 
collisions with other agents or objects. In a fully cooperative environment where all agents 
have complete access to the planning information of other agents, this index is equal to the 
total amount of time required for all agents to move through their planned paths. 
 
Once the visibility index has been established, all agents will be added to a priority queue, 
where their priority will be the delay the agent has suffered due to adjustments made to its 
path in order to avoid collisions. At first, all agents start with a priority value of zero. 
 
During execution, each agent will be removed from the queue and then, assuming an initial 
planned path that was the result of an A* algorithm, will attempt to make a reservation in 
the table that covers the different points in space-time that correspond to the path of the 
agent within the visibility index previously established. 
 
If the reservation is successful, then we update the agent’s position according to its planned 
path and velocity. If not, then we need to roll back any entries made to the table within the 
current reservation for this particular agent and detect at which point in time the collision 
would have occurred. 
 
Once, and if, we have set the collision time, we can use it to calculate a lower velocity that 
would allow us to avoid it. Agents can optionally set a speed threshold which would prompt 
the agent to calculate a new path, using A*, from its current position to its desired position in 
case the new speed would fall below it. In any case, the delay caused by the modifications is 
calculated and then stored. This is the value that determines the agent’s priority when making 
a reservation, which ensures that agents do not receive preferential treatment. 
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The game industry is demanding algorithms that allow multiple agents to plan for non-
colliding routes on congested-dynamical environments (Pottinger, 1999), such problems also 
appear in flock traffic navigation (FTN) based on negotiation (Astengo, 2007). 
 
FTN uses A* for path planning and, only at intersections, flocks use the Dresner and Stone 
reservation algorithm (Dresner, 2005). We intend to improve this algorithm using 
cooperative strategies. 
 
Cooperative Pathfiding  
 
In cooperative pathfinding each agent is assumed to have full knowledge of all other agents 
and their planned routes (Silver, 2005). The complementary problem is called “non-
cooperative pathfinding”, where the agents have no knowledge of each other’s plans and 
must predict their future movements. There is also another approach called “antagonist 
pathfinding” where agents try to reach their own goals while preventing other agents from 
reaching theirs.  
 
FTN based on negotiation uses a decoupled approach called local repair A*: each agent 
searches for a route to the destination using A*, ignoring all other agents except for its 
current neighbors. It is in this neighborhood that negotiation takes place and the flock is 
created. The agents then follow their route (according to the bone-structure) until a collision 
is imminent.  
 
It is clear that collisions will happen at the intersections, so there are, with this approach, 
two possible solutions:  
 

1. The Dresner and Stone reservation method (Dresner, 2004; 2005; 2006; 2007).   
2. The Zelinsky (Zelinsky, 1992) brute force algorithm: whenever an agent or a flock is 
about to move into an occupied position it instead recalculates the remainder of its route.  

 
The implementation of each method depends on the information and the time that the agent 
or flock has at that particular moment. The Zelinsky algorithm usually suffers from cycles 
and other severe breakdowns in scenarios where bottlenecks are present (Pottinger, 1999; 
Zelinksy, 2992). 
 
The Dresner and Stone reservation model was developed for individual agents that can 
accelerate or decelerate according to the reservation agenda. In simulations performed it 
was shown that, at the beginning, it works properly, but as time moves on the agents are 
eventually stopped.  
 
Cooperative Pathfinding with A*  
 
The task is decoupled into a series of single agent searches. The individual searches are 
performed in three-dimensional space-time and takes the planned routes of other agents 
into account. A wait move is included in the agent’s action set to enable it to remain 
stationary. After each agent’s route is calculated the states along the route are marked into a 

 

reservation table. Entries in the reservation table are considered impassable and are avoided 
during searches by subsequent agents.  
 
The reservation table represents the agents' shared knowledge about each other's planned 
routes. The reservation table is a three-dimensional grid: two spatial dimensions and one 
time dimension. Each cell that is intersected by the agent’s planned route is marked as 
impassable for precisely the duration of the intersection, thus preventing any other agent 
from planning a colliding route. Only a small proportion of grid locations will be touched, 
and so the grid can be efficiently implemented as a hash table (Silver, 2005).  
 
New Cooperative Pathfinding Algorithm  
 
Using the Cooperative A* a D* algorithms as a starting point, we can propose a new 
algorithm that can use similar techniques to plan paths in a dynamic environment in which 
several agents exist. 
 
As in Cooperative A*, a reservation table is used to store the agents’ planned paths and the 
time at which they will occupy certain regions in space. Assuming a three-dimensional 
space, we need a four-dimensional table that allows us to reference a specific point in space 
at a certain point in time. Any dynamic elements of the environment and their movement 
need to be included in the table as well. 
 
Agents rely on a visibility index to determine how far ahead in time they can detect potential 
collisions with other agents or objects. In a fully cooperative environment where all agents 
have complete access to the planning information of other agents, this index is equal to the 
total amount of time required for all agents to move through their planned paths. 
 
Once the visibility index has been established, all agents will be added to a priority queue, 
where their priority will be the delay the agent has suffered due to adjustments made to its 
path in order to avoid collisions. At first, all agents start with a priority value of zero. 
 
During execution, each agent will be removed from the queue and then, assuming an initial 
planned path that was the result of an A* algorithm, will attempt to make a reservation in 
the table that covers the different points in space-time that correspond to the path of the 
agent within the visibility index previously established. 
 
If the reservation is successful, then we update the agent’s position according to its planned 
path and velocity. If not, then we need to roll back any entries made to the table within the 
current reservation for this particular agent and detect at which point in time the collision 
would have occurred. 
 
Once, and if, we have set the collision time, we can use it to calculate a lower velocity that 
would allow us to avoid it. Agents can optionally set a speed threshold which would prompt 
the agent to calculate a new path, using A*, from its current position to its desired position in 
case the new speed would fall below it. In any case, the delay caused by the modifications is 
calculated and then stored. This is the value that determines the agent’s priority when making 
a reservation, which ensures that agents do not receive preferential treatment. 
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COOPERATIVE_PF() 
Until all agents have reached their goals do 
     For each agent in priority queue do 
          Remove agent from queue 
                For t=0 to t=v  
                     Calculate position occupied at t according to current path 
                     Attempt to make reservation 
                     if reservation not successful 
                          Undo previous reservations 
                           set collision Time 
                           set collision Agent 
                           break; 
                     end 
                     if collision Time = -1 do 
                          update agent position according to its velocity and path 
                     else 
                           calculate speed decrease required to avoid collision 
                           if speed after decrease < speed threshold 
                                calculate new path from goal to current position 
                        
                 calculate time difference between modified time and speed and 
                 original time and speed.  
 
                Use that value to re-insert the agent into priority queue 
                Store it in agent.total-delay 
          end 
     Insert all agents into queue using their total delays as priority values. 
END COOPERATIVE_PF 

 
Once all agents have been removed from the priority queue, they are inserted back in if they 
haven’t reached their goals yet. 
 
New Cooperative Pathfinding Algorithm Applied to Flock Traffic Navigation  
 
We will explain the classic FTN based on Negotiation algorithm and then propose an 
improvement to avoid collisions at intersections. 
 
Flock Traffic Navigation 
 
Flock Traffic Navigation (FTN) based on negotiation is a new approach for solving traffic 
congestion problems in big cities (Astengo, 2007). In FTN, vehicles can navigate 
automatically in groups called flocks allowing the coordination of intersections at the flock 
level, instead of at the individual vehicle level, making it simpler and far safer. To handle 
flock formation, coordination mechanisms are issued from multi-agent systems. 
 

 

The mechanism to negotiate (Astengo, 2006) starts with an agent who wants to reach its 
destination. The agent knows an a priori estimation of the travel time that takes to reach its 
goal from its actual position if he travels alone. In order to win a speed bonus (social bonus) 
he must agree with other agents (neighbors) to travel together at least for a while. The point 
in which the two agents agree to get together is called the meeting point and the point 
where the two agents will separate is called the splitting point. Together they form the so-
called "bone" structure diagram. 
 
Individual reasoning plays the main role in this approach. Each agent must compare its a 
priori travel time estimation versus the new travel time estimation based on the bone-
diagram and the social bonus and then make a rational decision. Decision will be made 
according to whether they are in Nash equilibrium (there is no incentive for either of them 
to choose another neighbor agent over the agreed one) or if they are in a Pareto Set 
(Wooldridge, 2002). 
 
If both agents are in Nash equilibrium, they can travel together as partners and can be 
benefited with the social bonus. In this moment a new virtual agent is created in order to 
negotiate with future candidates. Agents in a Pareto Set can be added to this “bone” 
diagram if their addition benefits them without affecting the original partners negatively. 
Simulations indicate that flock navigation of autonomous vehicles could substantially save 
time to users and let traffic flow faster (Astengo, 2007). 
Until now, Agents make their own path planning according to A* and only at intersections 
use the Dresner-Stone Algorithm. 
 
A Collision Detection Flock Traffic Navigation Algorithm 
 
FTN based on Negotiation now are decoupled in two main parts: 
 

OFFLINE Algorithm 
   For each Agent do 
    plan using A* and find  
           an optimal path traveling  and 
           an arrival time estimation. 
 
REAL Time Algorithm 
   For each spirit flock do 
       A reservation δ-time units forward according to its path 
       If reservation = TRUE 
       Follow previous calculated A*-path 
       else 
       Conflict Module 

 
The critical issue is the conflict Module that can be changed according to the social rules. 
Here we present a conflict module according to the rules in (Astengo 2006). 
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COOPERATIVE_PF() 
Until all agents have reached their goals do 
     For each agent in priority queue do 
          Remove agent from queue 
                For t=0 to t=v  
                     Calculate position occupied at t according to current path 
                     Attempt to make reservation 
                     if reservation not successful 
                          Undo previous reservations 
                           set collision Time 
                           set collision Agent 
                           break; 
                     end 
                     if collision Time = -1 do 
                          update agent position according to its velocity and path 
                     else 
                           calculate speed decrease required to avoid collision 
                           if speed after decrease < speed threshold 
                                calculate new path from goal to current position 
                        
                 calculate time difference between modified time and speed and 
                 original time and speed.  
 
                Use that value to re-insert the agent into priority queue 
                Store it in agent.total-delay 
          end 
     Insert all agents into queue using their total delays as priority values. 
END COOPERATIVE_PF 

 
Once all agents have been removed from the priority queue, they are inserted back in if they 
haven’t reached their goals yet. 
 
New Cooperative Pathfinding Algorithm Applied to Flock Traffic Navigation  
 
We will explain the classic FTN based on Negotiation algorithm and then propose an 
improvement to avoid collisions at intersections. 
 
Flock Traffic Navigation 
 
Flock Traffic Navigation (FTN) based on negotiation is a new approach for solving traffic 
congestion problems in big cities (Astengo, 2007). In FTN, vehicles can navigate 
automatically in groups called flocks allowing the coordination of intersections at the flock 
level, instead of at the individual vehicle level, making it simpler and far safer. To handle 
flock formation, coordination mechanisms are issued from multi-agent systems. 
 

 

The mechanism to negotiate (Astengo, 2006) starts with an agent who wants to reach its 
destination. The agent knows an a priori estimation of the travel time that takes to reach its 
goal from its actual position if he travels alone. In order to win a speed bonus (social bonus) 
he must agree with other agents (neighbors) to travel together at least for a while. The point 
in which the two agents agree to get together is called the meeting point and the point 
where the two agents will separate is called the splitting point. Together they form the so-
called "bone" structure diagram. 
 
Individual reasoning plays the main role in this approach. Each agent must compare its a 
priori travel time estimation versus the new travel time estimation based on the bone-
diagram and the social bonus and then make a rational decision. Decision will be made 
according to whether they are in Nash equilibrium (there is no incentive for either of them 
to choose another neighbor agent over the agreed one) or if they are in a Pareto Set 
(Wooldridge, 2002). 
 
If both agents are in Nash equilibrium, they can travel together as partners and can be 
benefited with the social bonus. In this moment a new virtual agent is created in order to 
negotiate with future candidates. Agents in a Pareto Set can be added to this “bone” 
diagram if their addition benefits them without affecting the original partners negatively. 
Simulations indicate that flock navigation of autonomous vehicles could substantially save 
time to users and let traffic flow faster (Astengo, 2007). 
Until now, Agents make their own path planning according to A* and only at intersections 
use the Dresner-Stone Algorithm. 
 
A Collision Detection Flock Traffic Navigation Algorithm 
 
FTN based on Negotiation now are decoupled in two main parts: 
 

OFFLINE Algorithm 
   For each Agent do 
    plan using A* and find  
           an optimal path traveling  and 
           an arrival time estimation. 
 
REAL Time Algorithm 
   For each spirit flock do 
       A reservation δ-time units forward according to its path 
       If reservation = TRUE 
       Follow previous calculated A*-path 
       else 
       Conflict Module 

 
The critical issue is the conflict Module that can be changed according to the social rules. 
Here we present a conflict module according to the rules in (Astengo 2006). 
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Conflict Module 
Rules 
   Priority 1: Larger Flock goes first 
                     Then tile is marked as obstacle. 
   Priority 2: If Size of Flocks are equal 
                      compare delay-table 
                      delayed Flock goes first 
                      Then tile is marked as obstacle 
  Priority 3: If none previous priority is accomplished  
                     Use Stone-Dresner Algorithm    

              
Application to Continuous Domains 
 
When applied to computer games, path finding usually takes place on top of one of two 
representations: A grid structure that wholly describes the traversable game world or a 
waypoint graph that samples the continuous space over which game agents can move.  
 
The first variant can usually be seen in Real-Time Strategy Games (RTS) and bi-dimensional 
role-playing games (RPG). The cooperative path finding algorithm in dynamic 
environments is a perfect fit for these representations and allows game agents to react 
realistically to the presence of other agents and unforeseen obstacles. Other genres, 
however, require the simulation of a continuous space updated in fixed time-steps.  
 
Applying a grid-like structure to such spaces can be prohibitively expensive. The algorithm 
can be modified to work in continuous domains by replacing the reservation table with an 
analysis of world geometry. 
 
The algorithm consists of an update function, responsible for advancing the state of each 
agent by a single time-step. The agents are stored in a priority queue that uses each agent’s 
total delay as its key. The function calculates the time elapsed between the last and the 
current call and uses this value to update the agents. The agents are updated by first 
performing a collision-detection test between the Minkowsky sum of the agent’s path and 
an assigned bounding volume and each of the Minkowsky sums of the other agents’ 
predicted paths and their bounding volumes. If a collision is detected, the agent will try to 
adjust its speed to avoid the intersection point at the intersection time. If this value falls 
under a specified threshold, the agent will, instead, attempt to calculate a different path. 
 
The predicted paths are calculated using only the other agent’s current position, orientation, 
and speed. These predictions are also limited by the forecasting index, which indicates how 
far in time are agents willing to predict.  
 
This approach allows the path-planning operation to be distributed across frame updates 
and the individual update steps for each agent cause no side-effects, making them trivially 
parallelizable. The algorithm can be further optimized by pruning the collision-detection 
search by using spatial partitioning schemes such as kd-Trees and by limiting the path used 
to calculate the Minkowsky sums with the forecasting index. 

 

The update function is presented below: 
 

INPUTS: agents[0…N], forecastIdx[0…N], agentPositions[0…N], agentSpeeds[0…N], speedBound, 
agentOrientations[0…N], agentDelays[0…N], agentPaths[0…N], boundingVolumes[0…N] 
 
    WHILE agents NOT EMPTY 
          a <- agents[0] 
          removeFromQueue(a) 
          currentPath <- minkowski(agentPaths[a], boundingVolumes[a], forecastIdx[a]) 
                FOR o IN 0…N 
                      otherPath <- minkowski(predictPath(agentPositions[o], agentSpeeds[o],                                 
                                           agentOrientations[o], forecastIdx[a]), boundingVolumes[o], forecastIdx[a]) 
                      IF intersects(currentPath, otherPath) THEN 
                            slowdown <- calculateSlowdown(agentPaths[a], agentSpeeds[a], intersectionPoint,     
                            intersectionTime) 
                            IF slowdown < speedBound THEN 
                                  IF isOtherPathAvailable(a) THEN 
                                        previousPath <- agentPaths[a] 
                                        agentPaths[a] <- calculateNewPath(a) 
                                        delay <- calculatePathDelay(agentPaths[a], previousPath) 
                                        agentDelays[a] <- agentDelays[a] + delay 
                                        addToQueue(a, agentDelays[a]) 
                            ELSE 
                                   delay <- calculateSpeedDelay(agentSpeeds[a], slowdown) 
                                   agentSpeeds[a] <- slowdown 
                                   agentDelays[a] <- agentDelays[a] + delay 
                                   addToQueue(a, agentDelays[a]) 
                            END 
                      ELSE 
                            agentPositions[a] <- updatePosition(agentPaths[a], agentSpeeds[a])   
                      END 
                END 
          END 
          agents <- buildPriorityQueue(agentDelays) 

                                
5. Concluding Remarks and future work 

Pathfinding is a critical element of AI in many modern applications like multiple mobile 
robots, game industry and flock traffic navigation based on negotiation (FTN). 
 
We develop a new algorithm capable of planning paths for multiple agents on partially 
known and changing environments inspired by cooperative A* and D*. 
 
From a distributed approach (Decoupled) our collective pathfinding in dynamic 
environments algorithm decomposes the task of individual plan into weakly-dependent 
problems for each agent. Each agent can search greedily for a path according to its 
destination, given the current state of all other agents. Then based on a space-time search 
space each agent attempt to make a reservation on (x,y,t,δ) where x,y are in the Euclidean 
space, t is a time measure and δ is a forward planning-vision measure (forecasting index). 
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Conflict Module 
Rules 
   Priority 1: Larger Flock goes first 
                     Then tile is marked as obstacle. 
   Priority 2: If Size of Flocks are equal 
                      compare delay-table 
                      delayed Flock goes first 
                      Then tile is marked as obstacle 
  Priority 3: If none previous priority is accomplished  
                     Use Stone-Dresner Algorithm    

              
Application to Continuous Domains 
 
When applied to computer games, path finding usually takes place on top of one of two 
representations: A grid structure that wholly describes the traversable game world or a 
waypoint graph that samples the continuous space over which game agents can move.  
 
The first variant can usually be seen in Real-Time Strategy Games (RTS) and bi-dimensional 
role-playing games (RPG). The cooperative path finding algorithm in dynamic 
environments is a perfect fit for these representations and allows game agents to react 
realistically to the presence of other agents and unforeseen obstacles. Other genres, 
however, require the simulation of a continuous space updated in fixed time-steps.  
 
Applying a grid-like structure to such spaces can be prohibitively expensive. The algorithm 
can be modified to work in continuous domains by replacing the reservation table with an 
analysis of world geometry. 
 
The algorithm consists of an update function, responsible for advancing the state of each 
agent by a single time-step. The agents are stored in a priority queue that uses each agent’s 
total delay as its key. The function calculates the time elapsed between the last and the 
current call and uses this value to update the agents. The agents are updated by first 
performing a collision-detection test between the Minkowsky sum of the agent’s path and 
an assigned bounding volume and each of the Minkowsky sums of the other agents’ 
predicted paths and their bounding volumes. If a collision is detected, the agent will try to 
adjust its speed to avoid the intersection point at the intersection time. If this value falls 
under a specified threshold, the agent will, instead, attempt to calculate a different path. 
 
The predicted paths are calculated using only the other agent’s current position, orientation, 
and speed. These predictions are also limited by the forecasting index, which indicates how 
far in time are agents willing to predict.  
 
This approach allows the path-planning operation to be distributed across frame updates 
and the individual update steps for each agent cause no side-effects, making them trivially 
parallelizable. The algorithm can be further optimized by pruning the collision-detection 
search by using spatial partitioning schemes such as kd-Trees and by limiting the path used 
to calculate the Minkowsky sums with the forecasting index. 

 

The update function is presented below: 
 

INPUTS: agents[0…N], forecastIdx[0…N], agentPositions[0…N], agentSpeeds[0…N], speedBound, 
agentOrientations[0…N], agentDelays[0…N], agentPaths[0…N], boundingVolumes[0…N] 
 
    WHILE agents NOT EMPTY 
          a <- agents[0] 
          removeFromQueue(a) 
          currentPath <- minkowski(agentPaths[a], boundingVolumes[a], forecastIdx[a]) 
                FOR o IN 0…N 
                      otherPath <- minkowski(predictPath(agentPositions[o], agentSpeeds[o],                                 
                                           agentOrientations[o], forecastIdx[a]), boundingVolumes[o], forecastIdx[a]) 
                      IF intersects(currentPath, otherPath) THEN 
                            slowdown <- calculateSlowdown(agentPaths[a], agentSpeeds[a], intersectionPoint,     
                            intersectionTime) 
                            IF slowdown < speedBound THEN 
                                  IF isOtherPathAvailable(a) THEN 
                                        previousPath <- agentPaths[a] 
                                        agentPaths[a] <- calculateNewPath(a) 
                                        delay <- calculatePathDelay(agentPaths[a], previousPath) 
                                        agentDelays[a] <- agentDelays[a] + delay 
                                        addToQueue(a, agentDelays[a]) 
                            ELSE 
                                   delay <- calculateSpeedDelay(agentSpeeds[a], slowdown) 
                                   agentSpeeds[a] <- slowdown 
                                   agentDelays[a] <- agentDelays[a] + delay 
                                   addToQueue(a, agentDelays[a]) 
                            END 
                      ELSE 
                            agentPositions[a] <- updatePosition(agentPaths[a], agentSpeeds[a])   
                      END 
                END 
          END 
          agents <- buildPriorityQueue(agentDelays) 

                                
5. Concluding Remarks and future work 

Pathfinding is a critical element of AI in many modern applications like multiple mobile 
robots, game industry and flock traffic navigation based on negotiation (FTN). 
 
We develop a new algorithm capable of planning paths for multiple agents on partially 
known and changing environments inspired by cooperative A* and D*. 
 
From a distributed approach (Decoupled) our collective pathfinding in dynamic 
environments algorithm decomposes the task of individual plan into weakly-dependent 
problems for each agent. Each agent can search greedily for a path according to its 
destination, given the current state of all other agents. Then based on a space-time search 
space each agent attempt to make a reservation on (x,y,t,δ) where x,y are in the Euclidean 
space, t is a time measure and δ is a forward planning-vision measure (forecasting index). 
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Because these kinds of algorithms are problem dependent we developed a modification of 
our collective pathfinding in dynamic environments algorithm in the FTN context. Taking 
care that in FTN the main issue is that it is based on negotiation a conflict-solver module 
that has the social rules within. 
 
Evidently in FTN we will not in general obtain a globally optimal path from the individual 
agent perspective but it is a at least a better plan compared with traveling alone ( the worst 
scenario is if an agent can’t find Nash or Pareto partners in the whole path so, it becomes a 
1-individual flock).  
 
It was shown that the algorithm can, with relatively few modifications, work on continuous 
domains updated in fixed time-steps, such as those used by most 3D computer games. The 
shift from using a reservation table to analyzing world geometry allows the work to be 
cleanly distributed amongst the agents. This creates a clear separation of concerns and the 
lack of side-effects makes it trivially parallelizable. 
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