
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

Multi-robot collective path inding in dynamic environments 307

Multi-robot collective path inding in dynamic environments

Carlos Astengo-Noguez, Gildardo Sanchez-Ante, José Ramón Calzada and Ricardo
Sisnett-Hernández

X

Multi-robot collective path finding
in dynamic environments

Carlos Astengo-Noguez, Gildardo Sanchez-Ante*,

José Ramón Calzada and Ricardo Sisnett-Hernández*
Tecnológico de Monterrey, Campus Monterrey, Campus Guadalajara

México

1. Introduction

Planning the motion of a rigid or articulated object among static obstacles is known as the
basic motion planning problem. In its simplest definition, it is a purely geometric problem
that only considers avoiding collision with static obstacles, given that the robot is the only
object that is able to move in the environment. This problem has been extensively studied in
the last two decades, and we do know that the problem itself can be very challenging. For
instance, it has been demonstrated that planning the motion of a set of polyhedral objects
forming an articulated structure in an environment with static polyhedral obstacles is
PSPACE-hard (Reif, 1979). That means that although some elegant complete algorithms
exist –the most efficient complete and general algorithm for basic motion planning has a
O(2n) complexity (Canny, 1988)-- their prohibitive computational cost has motivated the
search for efficient algorithms that can run in significantly less time despite the fact that they
are not complete.

In many practical problems the environments is more complex than in the basic motion
planning problem. For instance, it might be the case that there are objects that are supposed
to be moved by the robot, or the objects might not be rigid but deformable, or there could be
objects moving in the environment whose trajectory might not be known in advance by the
robot. All those cases can be considered as extensions of the basic motion planning problem.
In this chapter we are interested in analyzing problems where several robots are moving in
a shared workspace. This topic is raising interest in the community not only because many
researchers argue that we have covered very well the simplest cases by designing efficient
algorithms for them, but also because some applications are already pushing the envelop
towards the automatic generation of behaviors for agents in dynamic and uncertain
environments.

The chapter is structured as follows: first, we will introduce some concepts and notation
commonly used in motion planning. Then, a description of some methods for motion
planning in single-robot environments is offered. The last part of the chapter is about
methods for multi-robot motion planning.

15

www.intechopen.com

Mobile Robots Navigation308

2. Concepts and Notation

A configuration of a robot is a list of parameters that uniquely defines the placement of the
robot in its workspace (Lozano-Perez 1979; Lozano-Perez, 1983). For example, the
configuration of a rigid body is its position and orientation. A configuration q is free if the
object does not collide with the obstacles in the environment or with itself when placed at q.
For any given robot, there are multiple ways of defining a configuration. The selected
definition may affect the geometry of some sets, like the free space, but not their
connectivity, which is what matters in our case. The set of all configurations forms the
configuration space C. The C space is then the union of all the configurations of the robot,
some of them free of collision (Cfree) and some others in collision (Cobs). C = Cfree  Cobst. For a
polygonal rigid body R that translates in a 2-D polygonal space, the configuration space can
be explicitly computed by taking the Minkowsky difference of R and the obstacles.
Intuitively, that means that we "grow" the obstacles by the shape of R and then R becomes a
point in this space. This transformation implies that finding the path for a robot means
constructing a one-dimensional curve in this space, regardless the fact that the robot itself
can be located in a three-dimensional space and may have many degrees of freedom (dof). It
is important to mention that the configuration space will have as many dimensions as
degrees of freedom may have the robot.

There is a distinction between path planning and motion planning. A path is a continuous
curve on the configuration space. It is represented by a continuous function that maps some
path parameter, usually taken to be in the unit interval [0, 1], to a curve in Cfree . The choice
of unit interval is arbitrary; any parameterization would suffice. The solution to the path
planning problem is a continuous function c C0 such that
c : [0, 1] → C where c(0) =qstart, c(1) =qtarget and c(s) Cfree s  [0, 1].

When the path is parameterized by time t, then c(t) is a trajectory, and velocities and
accelerations can be computed by taking the first and second derivatives with respect to
time. This means that c should be at least twice-differentiable. Finding a feasible trajectory is
called trajectory planning or motion planning.

Navigation is the problem of finding a collision-free motion for an agent-system from one
configuration (or state) to another. The agent could be a videogame avatar, a mobile robot,
or something else. Localization is the problem of using a map to interpret sensor data to
determine the configuration of the agent. Mapping is the problem of exploring and sensing
an unknown environment to construct a representation that is useful for navigation or
localization. Localization and mapping can be combined.

3. Single-Robot Motion Planning Algorithms

Most of the work in motion planning has been done considering the case of a single robot
moving in an environment populated with static obstacles. The problem can then be stated
as finding a collision-free path from any given starting position to a goal or desired location
for the robot. In some cases, a function to measure cost is introduced, so that the algorithm is
able to search for the optimal path (i.e., minimum cost).

In general, we could classify the algorithms as complete or incomplete. On the one hand, a
complete algorithm is one that either finds a solution or proves that it does not exist. Some
authors call these algorithms exact. Algorithms under this classification are usually
computationally expensive and, by consequence, impractical for many important instances
of the problem. That is the case of the algorithm of Canny (Canny, 1987). Canny's algorithm
is the most efficient general path planning algorithm known to date, with a time complexity
of O(2n). The method involves powerful techniques from real algebraic geometry (Canny,
1987; Canny, 1988), but is nevertheless exponential in n.

On the other hand, incomplete algorithms are not able to offer such guarantee. When a
complete algorithm is impractical, despite its elegance, what computer scientists would like
to have is an algorithm that satisfies another notion of completeness, such as resolution
completeness or probabilistic completeness. In the first case, we say that an algorithm is
resolution complete if its accuracy arbitrarily improves when the resolution is increased, and it
becomes an exact algorithm at the limit where the resolution approaches the continuum.
Some of the cell decomposition methods are resolution complete, for instance (Zhu, 1990;
Kondo, 1991). For the second case, we say that an algorithm is probabilistically complete if
the probability of finding a solution (if one exists) approaches 1, as the running time
increases. Algorithms such as those described in (Barraquand, 1990; Kavraki, 1996; Hsu,
1997) are probabilistically complete.

One of the main drawbacks of resolution complete methods is that the number of points
required for the discretization of the configuration space grows exponentially in the number
of degrees of freedom. Conversely, in a probabilistic complete method, we would need to
guarantee an adequate coverage of the configuration space in order to have a high
probability of finding a path whenever it exists.

Some well known examples of motion planning algorithms are:

Cell Decomposition: Based on the idea of decomposing the Cfree space into convex regions
(either regular or not) and using that discretization to build a representation of the
connectivity of Cfree (usually a graph), and then searching for the path in the graph. Cell
decomposition is an approach that sounds simple at first sight, but whose complexity grows
quickly with the number of degrees of freedom of the robot. Also, since it is conceived to
work on the C space, it requires the computation of Cfree, which may take very long time,
depending on the dofs of the robot. It is an approach that, in general, can only be applied in
very simple environments, making it unsuitable for real problems where obstacles may have
complex geometries and the robot may have many degrees of freedom (Latombe, 1991).

Potential Fields: Khatib introduced this approach, in which the idea is to consider the point
robot in the configuration space as a charged particle under the influence of an artificial
potential field in a way that the particle is "pushed" away from the obstacles and "attracted"
towards the goal. The vectorial sum of those forces defines the motion of the robot to a new
location and then the potentials are computed again and the whole loop is repeated. The
approach originally was intended to be used as an on-line process for mobile robots

www.intechopen.com

Multi-robot collective path inding in dynamic environments 309

2. Concepts and Notation

A configuration of a robot is a list of parameters that uniquely defines the placement of the
robot in its workspace (Lozano-Perez 1979; Lozano-Perez, 1983). For example, the
configuration of a rigid body is its position and orientation. A configuration q is free if the
object does not collide with the obstacles in the environment or with itself when placed at q.
For any given robot, there are multiple ways of defining a configuration. The selected
definition may affect the geometry of some sets, like the free space, but not their
connectivity, which is what matters in our case. The set of all configurations forms the
configuration space C. The C space is then the union of all the configurations of the robot,
some of them free of collision (Cfree) and some others in collision (Cobs). C = Cfree  Cobst. For a
polygonal rigid body R that translates in a 2-D polygonal space, the configuration space can
be explicitly computed by taking the Minkowsky difference of R and the obstacles.
Intuitively, that means that we "grow" the obstacles by the shape of R and then R becomes a
point in this space. This transformation implies that finding the path for a robot means
constructing a one-dimensional curve in this space, regardless the fact that the robot itself
can be located in a three-dimensional space and may have many degrees of freedom (dof). It
is important to mention that the configuration space will have as many dimensions as
degrees of freedom may have the robot.

There is a distinction between path planning and motion planning. A path is a continuous
curve on the configuration space. It is represented by a continuous function that maps some
path parameter, usually taken to be in the unit interval [0, 1], to a curve in Cfree . The choice
of unit interval is arbitrary; any parameterization would suffice. The solution to the path
planning problem is a continuous function c C0 such that
c : [0, 1] → C where c(0) =qstart, c(1) =qtarget and c(s) Cfree s  [0, 1].

When the path is parameterized by time t, then c(t) is a trajectory, and velocities and
accelerations can be computed by taking the first and second derivatives with respect to
time. This means that c should be at least twice-differentiable. Finding a feasible trajectory is
called trajectory planning or motion planning.

Navigation is the problem of finding a collision-free motion for an agent-system from one
configuration (or state) to another. The agent could be a videogame avatar, a mobile robot,
or something else. Localization is the problem of using a map to interpret sensor data to
determine the configuration of the agent. Mapping is the problem of exploring and sensing
an unknown environment to construct a representation that is useful for navigation or
localization. Localization and mapping can be combined.

3. Single-Robot Motion Planning Algorithms

Most of the work in motion planning has been done considering the case of a single robot
moving in an environment populated with static obstacles. The problem can then be stated
as finding a collision-free path from any given starting position to a goal or desired location
for the robot. In some cases, a function to measure cost is introduced, so that the algorithm is
able to search for the optimal path (i.e., minimum cost).

In general, we could classify the algorithms as complete or incomplete. On the one hand, a
complete algorithm is one that either finds a solution or proves that it does not exist. Some
authors call these algorithms exact. Algorithms under this classification are usually
computationally expensive and, by consequence, impractical for many important instances
of the problem. That is the case of the algorithm of Canny (Canny, 1987). Canny's algorithm
is the most efficient general path planning algorithm known to date, with a time complexity
of O(2n). The method involves powerful techniques from real algebraic geometry (Canny,
1987; Canny, 1988), but is nevertheless exponential in n.

On the other hand, incomplete algorithms are not able to offer such guarantee. When a
complete algorithm is impractical, despite its elegance, what computer scientists would like
to have is an algorithm that satisfies another notion of completeness, such as resolution
completeness or probabilistic completeness. In the first case, we say that an algorithm is
resolution complete if its accuracy arbitrarily improves when the resolution is increased, and it
becomes an exact algorithm at the limit where the resolution approaches the continuum.
Some of the cell decomposition methods are resolution complete, for instance (Zhu, 1990;
Kondo, 1991). For the second case, we say that an algorithm is probabilistically complete if
the probability of finding a solution (if one exists) approaches 1, as the running time
increases. Algorithms such as those described in (Barraquand, 1990; Kavraki, 1996; Hsu,
1997) are probabilistically complete.

One of the main drawbacks of resolution complete methods is that the number of points
required for the discretization of the configuration space grows exponentially in the number
of degrees of freedom. Conversely, in a probabilistic complete method, we would need to
guarantee an adequate coverage of the configuration space in order to have a high
probability of finding a path whenever it exists.

Some well known examples of motion planning algorithms are:

Cell Decomposition: Based on the idea of decomposing the Cfree space into convex regions
(either regular or not) and using that discretization to build a representation of the
connectivity of Cfree (usually a graph), and then searching for the path in the graph. Cell
decomposition is an approach that sounds simple at first sight, but whose complexity grows
quickly with the number of degrees of freedom of the robot. Also, since it is conceived to
work on the C space, it requires the computation of Cfree, which may take very long time,
depending on the dofs of the robot. It is an approach that, in general, can only be applied in
very simple environments, making it unsuitable for real problems where obstacles may have
complex geometries and the robot may have many degrees of freedom (Latombe, 1991).

Potential Fields: Khatib introduced this approach, in which the idea is to consider the point
robot in the configuration space as a charged particle under the influence of an artificial
potential field in a way that the particle is "pushed" away from the obstacles and "attracted"
towards the goal. The vectorial sum of those forces defines the motion of the robot to a new
location and then the potentials are computed again and the whole loop is repeated. The
approach originally was intended to be used as an on-line process for mobile robots

www.intechopen.com

Mobile Robots Navigation310

equipped with sensors such as sonars. It has proven to be an approach useful for real robots
moving on a plane, i.e., 2 or 3 degrees of freedom (Khatib, 1983).
The main drawback of this approach is the tendency it has to get trapped in local minima
(since it relies on a greedy search algorithm). Also, unless the C space is pre-computed, it is
not possible to guarantee optimal paths or even the completeness of the algorithm. In
practice, the main problem is usually the definition of "good" functions to represent
attractive and repulsive forces.

Roadmaps: In this approach, the idea is to represent the connectivity of the Cfree space by a
one-dimensional curve, called roadmap. Once this curve is constructed, it is used to search
for paths connecting some given initial and goal configurations. There are different ways of
constructing the roadmap, such as: visibility graphs, Voronoi Diagrams, Silhouettes, etc. The
main problem with the roadmaps approach is that computing such curve in high-
dimensional spaces is almost prohibitive in terms of computational time, making the
approach not useful for environments involving many degrees of freedom.

More recently, a new family of methods have been proposed, based on the idea of sampling
the configuration space instead of actually computing it. The approach relies on recent
results for algorithms that can enable the computation of collision checks in very short
amounts of time, such as object oriented bounding boxes (OBB) (ref), axis aligned bounding
boxes (AABB), Spheres and other options (Lin, 1998).

The methods based on this idea are called Probabilistic Roadmaps (PRM), and we will
describe them in more detail in the next section.

The PRM Planning Approach

Sampling-based motion planning is a well-known concept, (see, for instance (Donald, 1987))
that was originally used to deal with some difficulties encountered while implementing
complete planners. PRM planning consists of sampling the configuration space at random
and testing the sampled points, as well as connections between them, for collision.

The obstacle regions in configuration space make explicit the constraints on the possible
motions of a robot. These constraints derive from the interaction between the geometric
shapes of the robot and the obstacles in the workspace. Small and geometrically simple
obstacles in the workspace may yield complex and large obstacle regions in the
configuration space C.

There are two major issues in computing an explicit geometric representation of the obstacle
regions in C. First, C has as many dimensions as the robot system has dofs. Second, the
shape of Cfree may be complex even when both the robot and the obstacles have simple
shapes.

For those reasons, computing an explicit geometric representation of Cfree is not possible in
practice (even with much greater computational power than is available today). On the

other hand, efficient collision-detection techniques have existed for some years, which can
determine quickly whether an arbitrary robot configuration is collision-free, or not.

The existence of fast collision-checking techniques has led to the idea of probing the
configuration space at random. One may pick many sampled configurations and test them
for collision. Thus, the collision-free samples form a discrete approximation of the free
space. This is the basic idea underlying probabilistic roadmaps (Kavraki, 1994).

There are two main classes of PRM planners: multi-query and single-query planners.
Historically, multi-query planners were developed first (Kavraki, 1994; Kavraki, 1996;
Svestka, 1997; Amato, 1998b}. Single-query planners are more recent (Hsu, 1997; Hsu, 2000;
Kuffner, 2000; LaValle, 2001), but they have significant advantages over multi-query
planners. Additionally, mixed planners have also been proposed in (Amato, 1998; Bohlin,
2000; Nielsen, 2000; Song, 2001). Basically, their goal is to distribute the time over a pre-
computation and a query phase.

Multi-Query Planners

A multi-query PRM planner operates in two phases. It first pre-computes a probabilistic
roadmap R. Then it uses R to answer an arbitrary number of queries, each defined by a pair
of configurations. Each query must be made in the same robot-obstacle environment for
which R was computed. The pre-computation of R may be rather expensive, but it is
"amortized'' over the several queries that are subsequently made (Kavraki, 1994; Kavraki,
1996). Processing one query is usually extremely fast.

Building the roadmap

A roadmap R is pre-computed by repeatedly sampling the configuration space C at random.
Each sample is tested for collision, and the collision-free samples are retained as milestones.
Then, the planner connects pairs of milestones that are not too far apart by simple paths and
retains those which test collision-free as local paths. The milestones and local paths form a
network over Cfree, which is called the probabilistic roadmap. It is stored as an undirected
graph, which usually has a large number of vertices (typically, several thousands to a few
millions) (Kavraki, 1994; Kavraki, 1996).

More formally, the algorithm is as follows (d is the metric function in C):
BUILD_ROADMAP
 1 R empty graph
 2 Repeat until s milestones have been generated
 3 Pick a configuration q uniformly at random in C
 4 If q is collision-free then add q as a new vertex (milestone) of R
 5 For each pair of milestones q, q' such that d(q,q')  
 6 If the line segment joining q and q' tests collision-free then
 add it as an edge (local path) of R
 7 Return R

www.intechopen.com

Multi-robot collective path inding in dynamic environments 311

equipped with sensors such as sonars. It has proven to be an approach useful for real robots
moving on a plane, i.e., 2 or 3 degrees of freedom (Khatib, 1983).
The main drawback of this approach is the tendency it has to get trapped in local minima
(since it relies on a greedy search algorithm). Also, unless the C space is pre-computed, it is
not possible to guarantee optimal paths or even the completeness of the algorithm. In
practice, the main problem is usually the definition of "good" functions to represent
attractive and repulsive forces.

Roadmaps: In this approach, the idea is to represent the connectivity of the Cfree space by a
one-dimensional curve, called roadmap. Once this curve is constructed, it is used to search
for paths connecting some given initial and goal configurations. There are different ways of
constructing the roadmap, such as: visibility graphs, Voronoi Diagrams, Silhouettes, etc. The
main problem with the roadmaps approach is that computing such curve in high-
dimensional spaces is almost prohibitive in terms of computational time, making the
approach not useful for environments involving many degrees of freedom.

More recently, a new family of methods have been proposed, based on the idea of sampling
the configuration space instead of actually computing it. The approach relies on recent
results for algorithms that can enable the computation of collision checks in very short
amounts of time, such as object oriented bounding boxes (OBB) (ref), axis aligned bounding
boxes (AABB), Spheres and other options (Lin, 1998).

The methods based on this idea are called Probabilistic Roadmaps (PRM), and we will
describe them in more detail in the next section.

The PRM Planning Approach

Sampling-based motion planning is a well-known concept, (see, for instance (Donald, 1987))
that was originally used to deal with some difficulties encountered while implementing
complete planners. PRM planning consists of sampling the configuration space at random
and testing the sampled points, as well as connections between them, for collision.

The obstacle regions in configuration space make explicit the constraints on the possible
motions of a robot. These constraints derive from the interaction between the geometric
shapes of the robot and the obstacles in the workspace. Small and geometrically simple
obstacles in the workspace may yield complex and large obstacle regions in the
configuration space C.

There are two major issues in computing an explicit geometric representation of the obstacle
regions in C. First, C has as many dimensions as the robot system has dofs. Second, the
shape of Cfree may be complex even when both the robot and the obstacles have simple
shapes.

For those reasons, computing an explicit geometric representation of Cfree is not possible in
practice (even with much greater computational power than is available today). On the

other hand, efficient collision-detection techniques have existed for some years, which can
determine quickly whether an arbitrary robot configuration is collision-free, or not.

The existence of fast collision-checking techniques has led to the idea of probing the
configuration space at random. One may pick many sampled configurations and test them
for collision. Thus, the collision-free samples form a discrete approximation of the free
space. This is the basic idea underlying probabilistic roadmaps (Kavraki, 1994).

There are two main classes of PRM planners: multi-query and single-query planners.
Historically, multi-query planners were developed first (Kavraki, 1994; Kavraki, 1996;
Svestka, 1997; Amato, 1998b}. Single-query planners are more recent (Hsu, 1997; Hsu, 2000;
Kuffner, 2000; LaValle, 2001), but they have significant advantages over multi-query
planners. Additionally, mixed planners have also been proposed in (Amato, 1998; Bohlin,
2000; Nielsen, 2000; Song, 2001). Basically, their goal is to distribute the time over a pre-
computation and a query phase.

Multi-Query Planners

A multi-query PRM planner operates in two phases. It first pre-computes a probabilistic
roadmap R. Then it uses R to answer an arbitrary number of queries, each defined by a pair
of configurations. Each query must be made in the same robot-obstacle environment for
which R was computed. The pre-computation of R may be rather expensive, but it is
"amortized'' over the several queries that are subsequently made (Kavraki, 1994; Kavraki,
1996). Processing one query is usually extremely fast.

Building the roadmap

A roadmap R is pre-computed by repeatedly sampling the configuration space C at random.
Each sample is tested for collision, and the collision-free samples are retained as milestones.
Then, the planner connects pairs of milestones that are not too far apart by simple paths and
retains those which test collision-free as local paths. The milestones and local paths form a
network over Cfree, which is called the probabilistic roadmap. It is stored as an undirected
graph, which usually has a large number of vertices (typically, several thousands to a few
millions) (Kavraki, 1994; Kavraki, 1996).

More formally, the algorithm is as follows (d is the metric function in C):
BUILD_ROADMAP
 1 R empty graph
 2 Repeat until s milestones have been generated
 3 Pick a configuration q uniformly at random in C
 4 If q is collision-free then add q as a new vertex (milestone) of R
 5 For each pair of milestones q, q' such that d(q,q')  
 6 If the line segment joining q and q' tests collision-free then
 add it as an edge (local path) of R
 7 Return R

www.intechopen.com

Mobile Robots Navigation312

The algorithm consists of two independent loops. The first loop (lines 2-4) adds milestones
to the roadmap. The parameter s defines the number of milestones to be generated. It is
often called the size of the roadmap. The second loop (lines 5-7) establishes the local paths.
Local paths are created only between milestones that are closer apart than some predefined
distance . Indeed, there are O(s2) pairs of milestones and testing all segments would be too
costly. Moreover, if two milestones are far apart, the segment joining them is unlikely to be
collision-free, and, if it is collision-free, then the above algorithm is likely to connect the two
milestones by a sequence of local paths through intermediate milestones. Figure 1 illustrates
the process.

Fig. 1. Two steps in the computation of the roadmap. The image in the left shows the
sampled milestones. The image on the right shows the graph built after calling the local
planner.

Querying the roadmap

A query is defined by two configurations, qi and and qg. To answer the query, the planner
first attempts to connect each of these configurations to a milestone of R by a local path. If
the two connections succeed, then the planner searches R for a sequence of local paths
connecting qi and qg. Such a sequence, if one is found, constitutes a free path for the robot.

The algorithm is as follows:

QUERY_ROADMAP(qi,qg)
 1 Repeat for all q  R such that d(q, qi) 
 2 If the line segment joining qi and q tests collision-free then
 connect qi to q and exit loop
 3 If qi have not been connected to a milestone of R then return failure
 4 Repeat for all q  R such that d(q, qg) 
 5 If the line segment joining qg and q tests collision-free then
 connect qg to q and exit loop
 6 If qg have not been connected to a milestone of R then return failure
 7 Search R for a path connecting qi to qg
 8 If a path has been found, then return this path, else return no path

The algorithm returns failure if it fails to connect qi or qg to the roadmap. It returns no path if
it fails to find a path connecting qi to qg after they have been successfully connected to the
roadmap. The possible interpretations of these two outcomes will be discussed below.

Probabilistic completeness

There are two cases where QUERY_ROADMAP does not return a path: (1) if it fails to
connect qi or qg to the roadmap, and (2) if it fails to find a path in the roadmap. Clearly, it is
desirable that the first case happens as rarely as possible. In the second case, the algorithm's
output is no path. This output may be correct, as it is possible that qi and qg belong to two
distinct components of the free space Cfree. But it may also be incorrect: qi or qg may belong to
the same component of Cfree, but the roadmap R may have more than one component lying
in it. It is desirable that the planner rarely returns "no path" incorrectly.

Single-Query Planners

Multi-query PRM planners are appropriate when the pre-computation of a roadmap can be
amortized over a rather large number of queries performed in the same environment.
However, in practice, the number of queries in a given environment is rather small, as one
or several objects are often moved, deleted, or added between two queries. Single-query
PRM planners are a better solution in those cases.

A single-query PRM planner computes a new probabilistic roadmap for each query (Hsu,
1997; Hsu, 2000; Kuffner, 2000). While multi-query planners must use a sampling strategy
that covers well the whole free space, in order to later successfully deal with any query, a
single-query planner applies a more focused strategy aimed at exploring the smallest
portion of free space needed to find a solution path. More precisely, it takes advantage that
it knows the two query configurations to explore restricted subsets of the components of Cfree

that are reachable from these configurations. This is done either by growing one tree of
milestones rooted at one query configuration, until a connection is found with the other
query configuration (single-directional search), or by growing two trees concurrently,
respectively rooted at one of the two query configurations, until a connection is found
between the two trees (bi-directional search) (Hsu, 2000). In both cases, milestones are
iteratively added to the roadmap. Each new milestone m' is selected in a neighbourhood of a
milestone m already installed in a tree and is connected to m by a local path (hence, m'
becomes a child of m). Bi-directional planners are usually more efficient than single-
directional ones (Amato, 1998; Hsu, 1998; Hsu, 1999; Hsu, 2000). Fig. 2 shows an example of
a single-query planner in process.

www.intechopen.com

Multi-robot collective path inding in dynamic environments 313

The algorithm consists of two independent loops. The first loop (lines 2-4) adds milestones
to the roadmap. The parameter s defines the number of milestones to be generated. It is
often called the size of the roadmap. The second loop (lines 5-7) establishes the local paths.
Local paths are created only between milestones that are closer apart than some predefined
distance . Indeed, there are O(s2) pairs of milestones and testing all segments would be too
costly. Moreover, if two milestones are far apart, the segment joining them is unlikely to be
collision-free, and, if it is collision-free, then the above algorithm is likely to connect the two
milestones by a sequence of local paths through intermediate milestones. Figure 1 illustrates
the process.

Fig. 1. Two steps in the computation of the roadmap. The image in the left shows the
sampled milestones. The image on the right shows the graph built after calling the local
planner.

Querying the roadmap

A query is defined by two configurations, qi and and qg. To answer the query, the planner
first attempts to connect each of these configurations to a milestone of R by a local path. If
the two connections succeed, then the planner searches R for a sequence of local paths
connecting qi and qg. Such a sequence, if one is found, constitutes a free path for the robot.

The algorithm is as follows:

QUERY_ROADMAP(qi,qg)
 1 Repeat for all q  R such that d(q, qi) 
 2 If the line segment joining qi and q tests collision-free then
 connect qi to q and exit loop
 3 If qi have not been connected to a milestone of R then return failure
 4 Repeat for all q  R such that d(q, qg) 
 5 If the line segment joining qg and q tests collision-free then
 connect qg to q and exit loop
 6 If qg have not been connected to a milestone of R then return failure
 7 Search R for a path connecting qi to qg
 8 If a path has been found, then return this path, else return no path

The algorithm returns failure if it fails to connect qi or qg to the roadmap. It returns no path if
it fails to find a path connecting qi to qg after they have been successfully connected to the
roadmap. The possible interpretations of these two outcomes will be discussed below.

Probabilistic completeness

There are two cases where QUERY_ROADMAP does not return a path: (1) if it fails to
connect qi or qg to the roadmap, and (2) if it fails to find a path in the roadmap. Clearly, it is
desirable that the first case happens as rarely as possible. In the second case, the algorithm's
output is no path. This output may be correct, as it is possible that qi and qg belong to two
distinct components of the free space Cfree. But it may also be incorrect: qi or qg may belong to
the same component of Cfree, but the roadmap R may have more than one component lying
in it. It is desirable that the planner rarely returns "no path" incorrectly.

Single-Query Planners

Multi-query PRM planners are appropriate when the pre-computation of a roadmap can be
amortized over a rather large number of queries performed in the same environment.
However, in practice, the number of queries in a given environment is rather small, as one
or several objects are often moved, deleted, or added between two queries. Single-query
PRM planners are a better solution in those cases.

A single-query PRM planner computes a new probabilistic roadmap for each query (Hsu,
1997; Hsu, 2000; Kuffner, 2000). While multi-query planners must use a sampling strategy
that covers well the whole free space, in order to later successfully deal with any query, a
single-query planner applies a more focused strategy aimed at exploring the smallest
portion of free space needed to find a solution path. More precisely, it takes advantage that
it knows the two query configurations to explore restricted subsets of the components of Cfree

that are reachable from these configurations. This is done either by growing one tree of
milestones rooted at one query configuration, until a connection is found with the other
query configuration (single-directional search), or by growing two trees concurrently,
respectively rooted at one of the two query configurations, until a connection is found
between the two trees (bi-directional search) (Hsu, 2000). In both cases, milestones are
iteratively added to the roadmap. Each new milestone m' is selected in a neighbourhood of a
milestone m already installed in a tree and is connected to m by a local path (hence, m'
becomes a child of m). Bi-directional planners are usually more efficient than single-
directional ones (Amato, 1998; Hsu, 1998; Hsu, 1999; Hsu, 2000). Fig. 2 shows an example of
a single-query planner in process.

www.intechopen.com

Mobile Robots Navigation314

Fig. 2. A single-query, bidirectional planner. Two trees are grown rooted at the start and
goal configurations.

A single-query planner is allowed to generate a maximal number s of milestones. Either it
outputs a free path between the query configurations, or it indicates that it has not found a
path after generating s milestones. The second output occurs when the two query
configurations lie in two distinct connected components of Cfree. It may also occur when a
solution path exists, but the planner did not find one because s was set too small.

In (Hsu, 2000), it is shown that if Cfree is expansive, then the probability that a slightly
idealized version of a single-query PRM planner fails to find a path when one exists goes to
0 exponentially in s. This property defines the probabilistic completeness of a single-query
PRM planner. The proof in (Hsu, 2000) requires that the milestones generated by the planner
eventually ``diffuse'' through the components of F reachable from the query configurations.

Intermediate Planners

There are several planners which posses characteristics of both multi-query and single-
query planners. Below we briefly sketch some of them.

In (Bohlin, 2000) a Lazy PRM is described. The algorithm is similar to the original PRM
(Kavraki, 1994) in the sense that the aim is to find the shortest path in a roadmap
constructed by randomly distributed configurations. Nevertheless, in this approach, instead
of constructing a roadmap of feasible paths, a roadmap of paths assumed to be feasible is
build. The idea is to lazily evaluate the feasibility of the roadmap as planning queries are
processed. In other words, a number of uniformly distributed points form nodes in a
roadmap, and the connections between nodes being sufficiently close form the edges on the
roadmap. Neither nodes nor edges are validated until a possible solution path is found. At
that moment, both edges and nodes are checked for collision. If a collision is found, the
corresponding node/edge is removed and the search process is re-started.

In (Nielsen, 2000) a Fuzzy PRM planner is presented. In such approach, the process is started
in the query phase, and if the roadmap does not contain a possible solution path, it enters to
the learning phase, adding milestones and edges. The milestones are always collision-free
configurations, while in the case of the edges, they are annotated by a probability. This
probability is an estimate of the chance that the edge is actually feasible. The query phase is

split into three steps: update, search and upgrade. The update step adds nodes to the graph,
starting with the query ones. In the search step, the most probable path is found from start to
goal configurations on the graph. The upgrade step is used to do the actual verification of the
path. As a result of the application of this step, the probabilities on the edges are upgraded.

In (Song, 2001) a "Customizable'' PRM planner is described. In the learning step a coarse
roadmap is constructed by performing only approximate validation of nodes and edges. In
the query step, the roadmap is validated and refined only in the area of interest for the
query. Moreover, it is ``customized'' in accordance with any specified query preferences
(e.g., maintaining certain clearance from the obstacles).

In (Vallejo, 2001) an adaptive framework for single-query (or single-shot) planning is
presented. In this approach, two trees are constructed, rooted on the start and goal
configurations. In each iteration, it is attempted to generate a path that connects both query
configurations. To do this, all potential query pairs with one configuration in each tree, and
all the algorithms in the bank are evaluated, and it is selected the query pair and algorithm
combination that is most likely to make a connection. The approach assumes that several
planners are available.

4. Multiple-Robot Motion Planning Algorithms

There are two established approaches to multi-robot motion planning: centralized and
decoupled (Latombe, 1991). So far, the prevalent approach has been decoupled planning. In
most cases, centralized planning has been beyond the practical capabilities of existing
planning techniques, as it requires searching configuration spaces with many dimensions.
Instead, decoupled planning breaks the original planning problem into several more
tractable sub-problems. Despite the fact that decoupled planning is known to be inherently
incomplete – that is, it is not guaranteed to find a solution whenever one exists – it has been
assumed that the loss of completeness is relatively small in most practical cases and worth
the gain in computational time.

Fig. 3. Model of six-robot spot-welding station.

www.intechopen.com

Multi-robot collective path inding in dynamic environments 315

Fig. 2. A single-query, bidirectional planner. Two trees are grown rooted at the start and
goal configurations.

A single-query planner is allowed to generate a maximal number s of milestones. Either it
outputs a free path between the query configurations, or it indicates that it has not found a
path after generating s milestones. The second output occurs when the two query
configurations lie in two distinct connected components of Cfree. It may also occur when a
solution path exists, but the planner did not find one because s was set too small.

In (Hsu, 2000), it is shown that if Cfree is expansive, then the probability that a slightly
idealized version of a single-query PRM planner fails to find a path when one exists goes to
0 exponentially in s. This property defines the probabilistic completeness of a single-query
PRM planner. The proof in (Hsu, 2000) requires that the milestones generated by the planner
eventually ``diffuse'' through the components of F reachable from the query configurations.

Intermediate Planners

There are several planners which posses characteristics of both multi-query and single-
query planners. Below we briefly sketch some of them.

In (Bohlin, 2000) a Lazy PRM is described. The algorithm is similar to the original PRM
(Kavraki, 1994) in the sense that the aim is to find the shortest path in a roadmap
constructed by randomly distributed configurations. Nevertheless, in this approach, instead
of constructing a roadmap of feasible paths, a roadmap of paths assumed to be feasible is
build. The idea is to lazily evaluate the feasibility of the roadmap as planning queries are
processed. In other words, a number of uniformly distributed points form nodes in a
roadmap, and the connections between nodes being sufficiently close form the edges on the
roadmap. Neither nodes nor edges are validated until a possible solution path is found. At
that moment, both edges and nodes are checked for collision. If a collision is found, the
corresponding node/edge is removed and the search process is re-started.

In (Nielsen, 2000) a Fuzzy PRM planner is presented. In such approach, the process is started
in the query phase, and if the roadmap does not contain a possible solution path, it enters to
the learning phase, adding milestones and edges. The milestones are always collision-free
configurations, while in the case of the edges, they are annotated by a probability. This
probability is an estimate of the chance that the edge is actually feasible. The query phase is

split into three steps: update, search and upgrade. The update step adds nodes to the graph,
starting with the query ones. In the search step, the most probable path is found from start to
goal configurations on the graph. The upgrade step is used to do the actual verification of the
path. As a result of the application of this step, the probabilities on the edges are upgraded.

In (Song, 2001) a "Customizable'' PRM planner is described. In the learning step a coarse
roadmap is constructed by performing only approximate validation of nodes and edges. In
the query step, the roadmap is validated and refined only in the area of interest for the
query. Moreover, it is ``customized'' in accordance with any specified query preferences
(e.g., maintaining certain clearance from the obstacles).

In (Vallejo, 2001) an adaptive framework for single-query (or single-shot) planning is
presented. In this approach, two trees are constructed, rooted on the start and goal
configurations. In each iteration, it is attempted to generate a path that connects both query
configurations. To do this, all potential query pairs with one configuration in each tree, and
all the algorithms in the bank are evaluated, and it is selected the query pair and algorithm
combination that is most likely to make a connection. The approach assumes that several
planners are available.

4. Multiple-Robot Motion Planning Algorithms

There are two established approaches to multi-robot motion planning: centralized and
decoupled (Latombe, 1991). So far, the prevalent approach has been decoupled planning. In
most cases, centralized planning has been beyond the practical capabilities of existing
planning techniques, as it requires searching configuration spaces with many dimensions.
Instead, decoupled planning breaks the original planning problem into several more
tractable sub-problems. Despite the fact that decoupled planning is known to be inherently
incomplete – that is, it is not guaranteed to find a solution whenever one exists – it has been
assumed that the loss of completeness is relatively small in most practical cases and worth
the gain in computational time.

Fig. 3. Model of six-robot spot-welding station.

www.intechopen.com

Mobile Robots Navigation316

Centralized planning

It consists of considering all the robots involved in the problem as if they were forming
a single multi-limb robot, by encoding all their dofs in a single "composite"
configuration space C and searching that space for a collision-free path between the
initial composite configuration and the goal one. In such case, the "total" configuration
space is given by the combination of the configuration spaces of all the robots: C = C1 
C2  ...  Cp, where p is the number of robots and Ci is the configuration space of the i-th
robot (i  [1,p]). Thus, the number of dimensions of C is equal to the total number of
dofs of the robots. In the example of Fig. 3, where each robot has 6 dofs, the composite
configuration space has 36 dimensions.

Let : s  [0,1]  (s)  F be a path in the free subset F of C. The projection i of  into
the subspace Ci is the path to be followed by the i-th robot. For each s  [0,1], (s) is of
the form (1(s), 2(s), ... , p(s)), which describes the configurations of the p robots at a
single point along the path . Hence, a collision-free path in F, if one exists, not only
describes the individual path to be followed by each robot, but also how the robots are
to be coordinated.

In principle, any sufficiently general path-planning algorithm can be used to implement
centralized planning. This only requires applying this algorithm to the composite space
C. However, in the past, centralized planning has not been considered practical because
it usually leads to searching large-dimensional configuration spaces that are beyond the
practical capabilities of existing planning techniques. Most proposed centralized
planners have been based on ad-hoc and incomplete heuristics, for example potential
field techniques, which are too unreliable to be widely useful (Tournassoud, 1986;
Barraquand, 1990; Barraquand, 1991; Barraquand, 1992). Complete centralized
planning algorithms have only been proposed for very simple robotic systems, e.g., the
coordination of discs among polygonal obstacles (Schwartz, 1983). The complexity of
the algorithm described in that work is O(n3) for two discs, and O(n13) for three discs.

Centralized approaches have the advantage that, at least in theory, they allow for
complete planners.

Decoupled planning

This is a two-phase approach. In the first phase, a collision-free path is generated for
each robot by considering only the obstacles in the environment and ignoring the other
robots. In the second phase, called velocity tuning, the relative velocities of the robots
along their respective paths are selected to avoid collision among them (Kant86,
Odonnell89, Alami98,Aronov99}.

Fig. 4. Coordination space for two robots.

Velocity tuning consists of searching a coordination space. Consider two robots, and let 1
and 2 be the two paths (one for each robot) generated in the first phase of decoupled
planning. By forcing the robots to move along these paths, we actually reduce the number of
dofs of each robot to 1, hence the dimension of their composite configuration space -- now
called the coordination space -- to 2 (O'Donnell, 1989).

Let each path i (i = 1,2) be parameterized by some si [0,1]. The set P = [0,1]  [0,1]
represents the coordination space of the two robots (see Fig. 4). Each point (s1,s2) P defines
a placement of the two robots at their respective configurations 1(s1) and 2(s2). This point is
collision-free if at this placement the two robots do not collide with each other. (Collisions
with obstacles in the environment were already taken care of during the generation of 1 and
2). A path joining the point (0,0) -- where both robots are at their respective initial
configurations -- to the point (1,1) -- where they are at their goal configurations -- in the
collision-free subset of P defines a valid coordination of the two robots along 1 and 2; it
determines the relative velocities of the robots along their respective paths. Note that this
path may not be monotonic along any of the dimensions of P. If it is not non-monotonic
along si (i = 1 or 2), then for a while the i-th robot will move backward along i. Such motion
may be required to provide maneuvering space to the second robot. An unfortunate choice
of 1 and 2 in the first phase of decoupled planning may lead the points (0,0) and (1,1) to lie
in two distinct connected component of the free subset of P.

If there are p > 2 robots, one may coordinate all the robots by generating a collision-free path
in the p-dimensional space P where the i-th axis encodes the parameter si of the path of the i-
th robot, from the point (0,...,0) to the point (1,...,1). We term this approach to velocity tuning
global coordination. An alternative, pairwise coordination, consists of planning p-1 paths in a
series of p-1 two-dimensional spaces P2,...,Pp. The axes of P2 encode the parameters s1 and s2
along the paths of the 1st and 2nd robots, and a collision-free path 1,2: s1,2  [0,1]  1,2(s1,2)
 P2 defines a valid coordination of these two robots. One axis of P3 encodes the parameter
s3 along the path of the 3rd robot, while the other axis encodes the parameter s1,2 along the
coordinated path of the 1st and 2nd robots. Hence, each point in P3 determines a placement
of the first three robots, and a collision-free path in P3 defines a valid coordination of these
robots.

www.intechopen.com

Multi-robot collective path inding in dynamic environments 317

Centralized planning

It consists of considering all the robots involved in the problem as if they were forming
a single multi-limb robot, by encoding all their dofs in a single "composite"
configuration space C and searching that space for a collision-free path between the
initial composite configuration and the goal one. In such case, the "total" configuration
space is given by the combination of the configuration spaces of all the robots: C = C1 
C2  ...  Cp, where p is the number of robots and Ci is the configuration space of the i-th
robot (i  [1,p]). Thus, the number of dimensions of C is equal to the total number of
dofs of the robots. In the example of Fig. 3, where each robot has 6 dofs, the composite
configuration space has 36 dimensions.

Let : s  [0,1]  (s)  F be a path in the free subset F of C. The projection i of  into
the subspace Ci is the path to be followed by the i-th robot. For each s  [0,1], (s) is of
the form (1(s), 2(s), ... , p(s)), which describes the configurations of the p robots at a
single point along the path . Hence, a collision-free path in F, if one exists, not only
describes the individual path to be followed by each robot, but also how the robots are
to be coordinated.

In principle, any sufficiently general path-planning algorithm can be used to implement
centralized planning. This only requires applying this algorithm to the composite space
C. However, in the past, centralized planning has not been considered practical because
it usually leads to searching large-dimensional configuration spaces that are beyond the
practical capabilities of existing planning techniques. Most proposed centralized
planners have been based on ad-hoc and incomplete heuristics, for example potential
field techniques, which are too unreliable to be widely useful (Tournassoud, 1986;
Barraquand, 1990; Barraquand, 1991; Barraquand, 1992). Complete centralized
planning algorithms have only been proposed for very simple robotic systems, e.g., the
coordination of discs among polygonal obstacles (Schwartz, 1983). The complexity of
the algorithm described in that work is O(n3) for two discs, and O(n13) for three discs.

Centralized approaches have the advantage that, at least in theory, they allow for
complete planners.

Decoupled planning

This is a two-phase approach. In the first phase, a collision-free path is generated for
each robot by considering only the obstacles in the environment and ignoring the other
robots. In the second phase, called velocity tuning, the relative velocities of the robots
along their respective paths are selected to avoid collision among them (Kant86,
Odonnell89, Alami98,Aronov99}.

Fig. 4. Coordination space for two robots.

Velocity tuning consists of searching a coordination space. Consider two robots, and let 1
and 2 be the two paths (one for each robot) generated in the first phase of decoupled
planning. By forcing the robots to move along these paths, we actually reduce the number of
dofs of each robot to 1, hence the dimension of their composite configuration space -- now
called the coordination space -- to 2 (O'Donnell, 1989).

Let each path i (i = 1,2) be parameterized by some si [0,1]. The set P = [0,1]  [0,1]
represents the coordination space of the two robots (see Fig. 4). Each point (s1,s2) P defines
a placement of the two robots at their respective configurations 1(s1) and 2(s2). This point is
collision-free if at this placement the two robots do not collide with each other. (Collisions
with obstacles in the environment were already taken care of during the generation of 1 and
2). A path joining the point (0,0) -- where both robots are at their respective initial
configurations -- to the point (1,1) -- where they are at their goal configurations -- in the
collision-free subset of P defines a valid coordination of the two robots along 1 and 2; it
determines the relative velocities of the robots along their respective paths. Note that this
path may not be monotonic along any of the dimensions of P. If it is not non-monotonic
along si (i = 1 or 2), then for a while the i-th robot will move backward along i. Such motion
may be required to provide maneuvering space to the second robot. An unfortunate choice
of 1 and 2 in the first phase of decoupled planning may lead the points (0,0) and (1,1) to lie
in two distinct connected component of the free subset of P.

If there are p > 2 robots, one may coordinate all the robots by generating a collision-free path
in the p-dimensional space P where the i-th axis encodes the parameter si of the path of the i-
th robot, from the point (0,...,0) to the point (1,...,1). We term this approach to velocity tuning
global coordination. An alternative, pairwise coordination, consists of planning p-1 paths in a
series of p-1 two-dimensional spaces P2,...,Pp. The axes of P2 encode the parameters s1 and s2
along the paths of the 1st and 2nd robots, and a collision-free path 1,2: s1,2  [0,1]  1,2(s1,2)
 P2 defines a valid coordination of these two robots. One axis of P3 encodes the parameter
s3 along the path of the 3rd robot, while the other axis encodes the parameter s1,2 along the
coordinated path of the 1st and 2nd robots. Hence, each point in P3 determines a placement
of the first three robots, and a collision-free path in P3 defines a valid coordination of these
robots.

www.intechopen.com

Mobile Robots Navigation318

Decoupled planning leads to searching lower-dimensional spaces than centralized planning.
But, it is inherently incomplete, even if the core planning algorithms used in the first and
second phases are complete. Velocity tuning may fail because the paths generated in the
first planning phase cannot be coordinated without collision between robots, while this
coordination would have been possible if other paths had been selected. A decoupled
planner based on global coordination is less incomplete than one based on pairwise
coordination, since a specific path selected in the path space Pi may result into a space Pi+1
with no collision-free path between (0,...,0) and (1,...,1). Nevertheless, in the past, pairwise
coordination has been more widely used than global coordination, since it only requires
planning in two-dimensional spaces. In theory, when velocity tuning fails, the planner could
backtrack and generate new robot paths. But this option has rarely been used. Indeed, it is
difficult to extract from a failure the information that can be used to generate new paths.
Moreover, backtracking quickly increases the planner's running time.

An alternative to velocity tuning, called prioritized planning, is proposed in (Erdmann, 1986).
It consists of processing the robots in some predefined order and planning the path of each
robot by treating the robots whose paths have already been planned as moving obstacles of
known trajectories. A problem with this approach is finding a good way of defining the
priorities for the robots, as this assignment affects the likelihood of finding the solution.

In (Sánchez, 2002), we describe the use of the SBL planner to implement both the centralized
and the decoupled approaches. Interestingly, SBL can be invoked at each stage of decoupled
planning, not only to plan individual paths of robots, but also to coordinate these paths
(velocity tuning). We give experimental results obtained for the model of a 6-robot spot-
welding station shown in Fig. 3, comparing the relative performance and reliability of
centralized planning, decoupled planning with global coordination, and decoupled
planning with pairwise coordination (these terms will be precisely defined below). The
results reveal that, in the context of multi-robot spot welding, which requires rather tight
robot coordination, decoupled planning is too un-reliable to be practical. This is an
important observation, since it invalidates the assumption that the loss of completeness in
adopting decoupled planning is not very significant in practice and indicates that
centralized planning is a more desirable approach. By no means, however, does this imply
that decoupled planning is useless. First, it may be reasonably reliable for other applications
where interactions among robots are less constraining. Second, there are distributed-robot
systems where centralized planning is not possible because no robot or processor knows the
global state of the system or the goals of all robots. Finally, even in cases where decoupled
planning is possible but unreliable, a decoupled planner may still have some utility if it
receives interactive hints from a human user.

Fig. 5. Snapshot of a path obtained in Maya using SBL Planner

We have recently programmed SBL inside Autodesk Maya software, using Python. In Fig 5.
it is shown the path obtained by SBL (red) and the optimized path (yellow). In general,
computing such paths take less than a second for uncluttered 3D environments and a robot
with 2-3 dofs.

5. Multiple-Robot Planning as Multi-Agent Systems

A somewhat different way of dealing with the coordination of multiple robots is based on
the idea of the robots forming a multi-agent system. A multi-agent system (MAS) is a
system composed of multiple interacting intelligent agents. Multi-agent systems can be used
to solve problems which are difficult or impossible for an individual agent to solve.
The agents in a multi-agent system have several important characteristics (Shoham, 2008):

 Autonomy: the agents are at least partially autonomous.

 Local views: no agent has a full global view of the system, or the system is too
complex for an agent to make practical use of such knowledge.

* Decentralization: there is no designated controlling agent (or the system is effectively
reduced to a monolithic system).

Typically multi-agent systems research refers to software agents. However, the agents in a
multi-agent system could equally well be robots, humans or human teams. A multi-agent
system may contain combined human-agent teams.

Multi-agent systems can manifest self-organization and complex behaviors even when the
individual strategies of all their agents are simple.

Agents are assumed to operate in a planar (R2) or three dimensional (R3) environment or
(vectorial) space, called workspace W. This workspace will often contain obstacles; let WOi
be the i-th obstacle. Motion planning, however, does not usually occur in the workspace.
Instead, it occurs in the configuration space (also called C-space).

www.intechopen.com

Multi-robot collective path inding in dynamic environments 319

Decoupled planning leads to searching lower-dimensional spaces than centralized planning.
But, it is inherently incomplete, even if the core planning algorithms used in the first and
second phases are complete. Velocity tuning may fail because the paths generated in the
first planning phase cannot be coordinated without collision between robots, while this
coordination would have been possible if other paths had been selected. A decoupled
planner based on global coordination is less incomplete than one based on pairwise
coordination, since a specific path selected in the path space Pi may result into a space Pi+1
with no collision-free path between (0,...,0) and (1,...,1). Nevertheless, in the past, pairwise
coordination has been more widely used than global coordination, since it only requires
planning in two-dimensional spaces. In theory, when velocity tuning fails, the planner could
backtrack and generate new robot paths. But this option has rarely been used. Indeed, it is
difficult to extract from a failure the information that can be used to generate new paths.
Moreover, backtracking quickly increases the planner's running time.

An alternative to velocity tuning, called prioritized planning, is proposed in (Erdmann, 1986).
It consists of processing the robots in some predefined order and planning the path of each
robot by treating the robots whose paths have already been planned as moving obstacles of
known trajectories. A problem with this approach is finding a good way of defining the
priorities for the robots, as this assignment affects the likelihood of finding the solution.

In (Sánchez, 2002), we describe the use of the SBL planner to implement both the centralized
and the decoupled approaches. Interestingly, SBL can be invoked at each stage of decoupled
planning, not only to plan individual paths of robots, but also to coordinate these paths
(velocity tuning). We give experimental results obtained for the model of a 6-robot spot-
welding station shown in Fig. 3, comparing the relative performance and reliability of
centralized planning, decoupled planning with global coordination, and decoupled
planning with pairwise coordination (these terms will be precisely defined below). The
results reveal that, in the context of multi-robot spot welding, which requires rather tight
robot coordination, decoupled planning is too un-reliable to be practical. This is an
important observation, since it invalidates the assumption that the loss of completeness in
adopting decoupled planning is not very significant in practice and indicates that
centralized planning is a more desirable approach. By no means, however, does this imply
that decoupled planning is useless. First, it may be reasonably reliable for other applications
where interactions among robots are less constraining. Second, there are distributed-robot
systems where centralized planning is not possible because no robot or processor knows the
global state of the system or the goals of all robots. Finally, even in cases where decoupled
planning is possible but unreliable, a decoupled planner may still have some utility if it
receives interactive hints from a human user.

Fig. 5. Snapshot of a path obtained in Maya using SBL Planner

We have recently programmed SBL inside Autodesk Maya software, using Python. In Fig 5.
it is shown the path obtained by SBL (red) and the optimized path (yellow). In general,
computing such paths take less than a second for uncluttered 3D environments and a robot
with 2-3 dofs.

5. Multiple-Robot Planning as Multi-Agent Systems

A somewhat different way of dealing with the coordination of multiple robots is based on
the idea of the robots forming a multi-agent system. A multi-agent system (MAS) is a
system composed of multiple interacting intelligent agents. Multi-agent systems can be used
to solve problems which are difficult or impossible for an individual agent to solve.
The agents in a multi-agent system have several important characteristics (Shoham, 2008):

 Autonomy: the agents are at least partially autonomous.

 Local views: no agent has a full global view of the system, or the system is too
complex for an agent to make practical use of such knowledge.

* Decentralization: there is no designated controlling agent (or the system is effectively
reduced to a monolithic system).

Typically multi-agent systems research refers to software agents. However, the agents in a
multi-agent system could equally well be robots, humans or human teams. A multi-agent
system may contain combined human-agent teams.

Multi-agent systems can manifest self-organization and complex behaviors even when the
individual strategies of all their agents are simple.

Agents are assumed to operate in a planar (R2) or three dimensional (R3) environment or
(vectorial) space, called workspace W. This workspace will often contain obstacles; let WOi
be the i-th obstacle. Motion planning, however, does not usually occur in the workspace.
Instead, it occurs in the configuration space (also called C-space).

www.intechopen.com

Mobile Robots Navigation320

The game industry is demanding algorithms that allow multiple agents to plan for non-
colliding routes on congested-dynamical environments (Pottinger, 1999), such problems also
appear in flock traffic navigation (FTN) based on negotiation (Astengo, 2007).

FTN uses A* for path planning and, only at intersections, flocks use the Dresner and Stone
reservation algorithm (Dresner, 2005). We intend to improve this algorithm using
cooperative strategies.

Cooperative Pathfiding

In cooperative pathfinding each agent is assumed to have full knowledge of all other agents
and their planned routes (Silver, 2005). The complementary problem is called “non-
cooperative pathfinding”, where the agents have no knowledge of each other’s plans and
must predict their future movements. There is also another approach called “antagonist
pathfinding” where agents try to reach their own goals while preventing other agents from
reaching theirs.

FTN based on negotiation uses a decoupled approach called local repair A*: each agent
searches for a route to the destination using A*, ignoring all other agents except for its
current neighbors. It is in this neighborhood that negotiation takes place and the flock is
created. The agents then follow their route (according to the bone-structure) until a collision
is imminent.

It is clear that collisions will happen at the intersections, so there are, with this approach,
two possible solutions:

1. The Dresner and Stone reservation method (Dresner, 2004; 2005; 2006; 2007).
2. The Zelinsky (Zelinsky, 1992) brute force algorithm: whenever an agent or a flock is
about to move into an occupied position it instead recalculates the remainder of its route.

The implementation of each method depends on the information and the time that the agent
or flock has at that particular moment. The Zelinsky algorithm usually suffers from cycles
and other severe breakdowns in scenarios where bottlenecks are present (Pottinger, 1999;
Zelinksy, 2992).

The Dresner and Stone reservation model was developed for individual agents that can
accelerate or decelerate according to the reservation agenda. In simulations performed it
was shown that, at the beginning, it works properly, but as time moves on the agents are
eventually stopped.

Cooperative Pathfinding with A*

The task is decoupled into a series of single agent searches. The individual searches are
performed in three-dimensional space-time and takes the planned routes of other agents
into account. A wait move is included in the agent’s action set to enable it to remain
stationary. After each agent’s route is calculated the states along the route are marked into a

reservation table. Entries in the reservation table are considered impassable and are avoided
during searches by subsequent agents.

The reservation table represents the agents' shared knowledge about each other's planned
routes. The reservation table is a three-dimensional grid: two spatial dimensions and one
time dimension. Each cell that is intersected by the agent’s planned route is marked as
impassable for precisely the duration of the intersection, thus preventing any other agent
from planning a colliding route. Only a small proportion of grid locations will be touched,
and so the grid can be efficiently implemented as a hash table (Silver, 2005).

New Cooperative Pathfinding Algorithm

Using the Cooperative A* a D* algorithms as a starting point, we can propose a new
algorithm that can use similar techniques to plan paths in a dynamic environment in which
several agents exist.

As in Cooperative A*, a reservation table is used to store the agents’ planned paths and the
time at which they will occupy certain regions in space. Assuming a three-dimensional
space, we need a four-dimensional table that allows us to reference a specific point in space
at a certain point in time. Any dynamic elements of the environment and their movement
need to be included in the table as well.

Agents rely on a visibility index to determine how far ahead in time they can detect potential
collisions with other agents or objects. In a fully cooperative environment where all agents
have complete access to the planning information of other agents, this index is equal to the
total amount of time required for all agents to move through their planned paths.

Once the visibility index has been established, all agents will be added to a priority queue,
where their priority will be the delay the agent has suffered due to adjustments made to its
path in order to avoid collisions. At first, all agents start with a priority value of zero.

During execution, each agent will be removed from the queue and then, assuming an initial
planned path that was the result of an A* algorithm, will attempt to make a reservation in
the table that covers the different points in space-time that correspond to the path of the
agent within the visibility index previously established.

If the reservation is successful, then we update the agent’s position according to its planned
path and velocity. If not, then we need to roll back any entries made to the table within the
current reservation for this particular agent and detect at which point in time the collision
would have occurred.

Once, and if, we have set the collision time, we can use it to calculate a lower velocity that
would allow us to avoid it. Agents can optionally set a speed threshold which would prompt
the agent to calculate a new path, using A*, from its current position to its desired position in
case the new speed would fall below it. In any case, the delay caused by the modifications is
calculated and then stored. This is the value that determines the agent’s priority when making
a reservation, which ensures that agents do not receive preferential treatment.

www.intechopen.com

Multi-robot collective path inding in dynamic environments 321

The game industry is demanding algorithms that allow multiple agents to plan for non-
colliding routes on congested-dynamical environments (Pottinger, 1999), such problems also
appear in flock traffic navigation (FTN) based on negotiation (Astengo, 2007).

FTN uses A* for path planning and, only at intersections, flocks use the Dresner and Stone
reservation algorithm (Dresner, 2005). We intend to improve this algorithm using
cooperative strategies.

Cooperative Pathfiding

In cooperative pathfinding each agent is assumed to have full knowledge of all other agents
and their planned routes (Silver, 2005). The complementary problem is called “non-
cooperative pathfinding”, where the agents have no knowledge of each other’s plans and
must predict their future movements. There is also another approach called “antagonist
pathfinding” where agents try to reach their own goals while preventing other agents from
reaching theirs.

FTN based on negotiation uses a decoupled approach called local repair A*: each agent
searches for a route to the destination using A*, ignoring all other agents except for its
current neighbors. It is in this neighborhood that negotiation takes place and the flock is
created. The agents then follow their route (according to the bone-structure) until a collision
is imminent.

It is clear that collisions will happen at the intersections, so there are, with this approach,
two possible solutions:

1. The Dresner and Stone reservation method (Dresner, 2004; 2005; 2006; 2007).
2. The Zelinsky (Zelinsky, 1992) brute force algorithm: whenever an agent or a flock is
about to move into an occupied position it instead recalculates the remainder of its route.

The implementation of each method depends on the information and the time that the agent
or flock has at that particular moment. The Zelinsky algorithm usually suffers from cycles
and other severe breakdowns in scenarios where bottlenecks are present (Pottinger, 1999;
Zelinksy, 2992).

The Dresner and Stone reservation model was developed for individual agents that can
accelerate or decelerate according to the reservation agenda. In simulations performed it
was shown that, at the beginning, it works properly, but as time moves on the agents are
eventually stopped.

Cooperative Pathfinding with A*

The task is decoupled into a series of single agent searches. The individual searches are
performed in three-dimensional space-time and takes the planned routes of other agents
into account. A wait move is included in the agent’s action set to enable it to remain
stationary. After each agent’s route is calculated the states along the route are marked into a

reservation table. Entries in the reservation table are considered impassable and are avoided
during searches by subsequent agents.

The reservation table represents the agents' shared knowledge about each other's planned
routes. The reservation table is a three-dimensional grid: two spatial dimensions and one
time dimension. Each cell that is intersected by the agent’s planned route is marked as
impassable for precisely the duration of the intersection, thus preventing any other agent
from planning a colliding route. Only a small proportion of grid locations will be touched,
and so the grid can be efficiently implemented as a hash table (Silver, 2005).

New Cooperative Pathfinding Algorithm

Using the Cooperative A* a D* algorithms as a starting point, we can propose a new
algorithm that can use similar techniques to plan paths in a dynamic environment in which
several agents exist.

As in Cooperative A*, a reservation table is used to store the agents’ planned paths and the
time at which they will occupy certain regions in space. Assuming a three-dimensional
space, we need a four-dimensional table that allows us to reference a specific point in space
at a certain point in time. Any dynamic elements of the environment and their movement
need to be included in the table as well.

Agents rely on a visibility index to determine how far ahead in time they can detect potential
collisions with other agents or objects. In a fully cooperative environment where all agents
have complete access to the planning information of other agents, this index is equal to the
total amount of time required for all agents to move through their planned paths.

Once the visibility index has been established, all agents will be added to a priority queue,
where their priority will be the delay the agent has suffered due to adjustments made to its
path in order to avoid collisions. At first, all agents start with a priority value of zero.

During execution, each agent will be removed from the queue and then, assuming an initial
planned path that was the result of an A* algorithm, will attempt to make a reservation in
the table that covers the different points in space-time that correspond to the path of the
agent within the visibility index previously established.

If the reservation is successful, then we update the agent’s position according to its planned
path and velocity. If not, then we need to roll back any entries made to the table within the
current reservation for this particular agent and detect at which point in time the collision
would have occurred.

Once, and if, we have set the collision time, we can use it to calculate a lower velocity that
would allow us to avoid it. Agents can optionally set a speed threshold which would prompt
the agent to calculate a new path, using A*, from its current position to its desired position in
case the new speed would fall below it. In any case, the delay caused by the modifications is
calculated and then stored. This is the value that determines the agent’s priority when making
a reservation, which ensures that agents do not receive preferential treatment.

www.intechopen.com

Mobile Robots Navigation322

COOPERATIVE_PF()
Until all agents have reached their goals do
 For each agent in priority queue do
 Remove agent from queue
 For t=0 to t=v
 Calculate position occupied at t according to current path
 Attempt to make reservation
 if reservation not successful
 Undo previous reservations
 set collision Time
 set collision Agent
 break;
 end
 if collision Time = -1 do
 update agent position according to its velocity and path
 else
 calculate speed decrease required to avoid collision
 if speed after decrease < speed threshold
 calculate new path from goal to current position

 calculate time difference between modified time and speed and
 original time and speed.

 Use that value to re-insert the agent into priority queue
 Store it in agent.total-delay
 end
 Insert all agents into queue using their total delays as priority values.
END COOPERATIVE_PF

Once all agents have been removed from the priority queue, they are inserted back in if they
haven’t reached their goals yet.

New Cooperative Pathfinding Algorithm Applied to Flock Traffic Navigation

We will explain the classic FTN based on Negotiation algorithm and then propose an
improvement to avoid collisions at intersections.

Flock Traffic Navigation

Flock Traffic Navigation (FTN) based on negotiation is a new approach for solving traffic
congestion problems in big cities (Astengo, 2007). In FTN, vehicles can navigate
automatically in groups called flocks allowing the coordination of intersections at the flock
level, instead of at the individual vehicle level, making it simpler and far safer. To handle
flock formation, coordination mechanisms are issued from multi-agent systems.

The mechanism to negotiate (Astengo, 2006) starts with an agent who wants to reach its
destination. The agent knows an a priori estimation of the travel time that takes to reach its
goal from its actual position if he travels alone. In order to win a speed bonus (social bonus)
he must agree with other agents (neighbors) to travel together at least for a while. The point
in which the two agents agree to get together is called the meeting point and the point
where the two agents will separate is called the splitting point. Together they form the so-
called "bone" structure diagram.

Individual reasoning plays the main role in this approach. Each agent must compare its a
priori travel time estimation versus the new travel time estimation based on the bone-
diagram and the social bonus and then make a rational decision. Decision will be made
according to whether they are in Nash equilibrium (there is no incentive for either of them
to choose another neighbor agent over the agreed one) or if they are in a Pareto Set
(Wooldridge, 2002).

If both agents are in Nash equilibrium, they can travel together as partners and can be
benefited with the social bonus. In this moment a new virtual agent is created in order to
negotiate with future candidates. Agents in a Pareto Set can be added to this “bone”
diagram if their addition benefits them without affecting the original partners negatively.
Simulations indicate that flock navigation of autonomous vehicles could substantially save
time to users and let traffic flow faster (Astengo, 2007).
Until now, Agents make their own path planning according to A* and only at intersections
use the Dresner-Stone Algorithm.

A Collision Detection Flock Traffic Navigation Algorithm

FTN based on Negotiation now are decoupled in two main parts:

OFFLINE Algorithm
 For each Agent do
 plan using A* and find
 an optimal path traveling and
 an arrival time estimation.

REAL Time Algorithm
 For each spirit flock do
 A reservation δ-time units forward according to its path
 If reservation = TRUE
 Follow previous calculated A*-path
 else
 Conflict Module

The critical issue is the conflict Module that can be changed according to the social rules.
Here we present a conflict module according to the rules in (Astengo 2006).

www.intechopen.com

Multi-robot collective path inding in dynamic environments 323

COOPERATIVE_PF()
Until all agents have reached their goals do
 For each agent in priority queue do
 Remove agent from queue
 For t=0 to t=v
 Calculate position occupied at t according to current path
 Attempt to make reservation
 if reservation not successful
 Undo previous reservations
 set collision Time
 set collision Agent
 break;
 end
 if collision Time = -1 do
 update agent position according to its velocity and path
 else
 calculate speed decrease required to avoid collision
 if speed after decrease < speed threshold
 calculate new path from goal to current position

 calculate time difference between modified time and speed and
 original time and speed.

 Use that value to re-insert the agent into priority queue
 Store it in agent.total-delay
 end
 Insert all agents into queue using their total delays as priority values.
END COOPERATIVE_PF

Once all agents have been removed from the priority queue, they are inserted back in if they
haven’t reached their goals yet.

New Cooperative Pathfinding Algorithm Applied to Flock Traffic Navigation

We will explain the classic FTN based on Negotiation algorithm and then propose an
improvement to avoid collisions at intersections.

Flock Traffic Navigation

Flock Traffic Navigation (FTN) based on negotiation is a new approach for solving traffic
congestion problems in big cities (Astengo, 2007). In FTN, vehicles can navigate
automatically in groups called flocks allowing the coordination of intersections at the flock
level, instead of at the individual vehicle level, making it simpler and far safer. To handle
flock formation, coordination mechanisms are issued from multi-agent systems.

The mechanism to negotiate (Astengo, 2006) starts with an agent who wants to reach its
destination. The agent knows an a priori estimation of the travel time that takes to reach its
goal from its actual position if he travels alone. In order to win a speed bonus (social bonus)
he must agree with other agents (neighbors) to travel together at least for a while. The point
in which the two agents agree to get together is called the meeting point and the point
where the two agents will separate is called the splitting point. Together they form the so-
called "bone" structure diagram.

Individual reasoning plays the main role in this approach. Each agent must compare its a
priori travel time estimation versus the new travel time estimation based on the bone-
diagram and the social bonus and then make a rational decision. Decision will be made
according to whether they are in Nash equilibrium (there is no incentive for either of them
to choose another neighbor agent over the agreed one) or if they are in a Pareto Set
(Wooldridge, 2002).

If both agents are in Nash equilibrium, they can travel together as partners and can be
benefited with the social bonus. In this moment a new virtual agent is created in order to
negotiate with future candidates. Agents in a Pareto Set can be added to this “bone”
diagram if their addition benefits them without affecting the original partners negatively.
Simulations indicate that flock navigation of autonomous vehicles could substantially save
time to users and let traffic flow faster (Astengo, 2007).
Until now, Agents make their own path planning according to A* and only at intersections
use the Dresner-Stone Algorithm.

A Collision Detection Flock Traffic Navigation Algorithm

FTN based on Negotiation now are decoupled in two main parts:

OFFLINE Algorithm
 For each Agent do
 plan using A* and find
 an optimal path traveling and
 an arrival time estimation.

REAL Time Algorithm
 For each spirit flock do
 A reservation δ-time units forward according to its path
 If reservation = TRUE
 Follow previous calculated A*-path
 else
 Conflict Module

The critical issue is the conflict Module that can be changed according to the social rules.
Here we present a conflict module according to the rules in (Astengo 2006).

www.intechopen.com

Mobile Robots Navigation324

Conflict Module
Rules
 Priority 1: Larger Flock goes first
 Then tile is marked as obstacle.
 Priority 2: If Size of Flocks are equal
 compare delay-table
 delayed Flock goes first
 Then tile is marked as obstacle
 Priority 3: If none previous priority is accomplished
 Use Stone-Dresner Algorithm

Application to Continuous Domains

When applied to computer games, path finding usually takes place on top of one of two
representations: A grid structure that wholly describes the traversable game world or a
waypoint graph that samples the continuous space over which game agents can move.

The first variant can usually be seen in Real-Time Strategy Games (RTS) and bi-dimensional
role-playing games (RPG). The cooperative path finding algorithm in dynamic
environments is a perfect fit for these representations and allows game agents to react
realistically to the presence of other agents and unforeseen obstacles. Other genres,
however, require the simulation of a continuous space updated in fixed time-steps.

Applying a grid-like structure to such spaces can be prohibitively expensive. The algorithm
can be modified to work in continuous domains by replacing the reservation table with an
analysis of world geometry.

The algorithm consists of an update function, responsible for advancing the state of each
agent by a single time-step. The agents are stored in a priority queue that uses each agent’s
total delay as its key. The function calculates the time elapsed between the last and the
current call and uses this value to update the agents. The agents are updated by first
performing a collision-detection test between the Minkowsky sum of the agent’s path and
an assigned bounding volume and each of the Minkowsky sums of the other agents’
predicted paths and their bounding volumes. If a collision is detected, the agent will try to
adjust its speed to avoid the intersection point at the intersection time. If this value falls
under a specified threshold, the agent will, instead, attempt to calculate a different path.

The predicted paths are calculated using only the other agent’s current position, orientation,
and speed. These predictions are also limited by the forecasting index, which indicates how
far in time are agents willing to predict.

This approach allows the path-planning operation to be distributed across frame updates
and the individual update steps for each agent cause no side-effects, making them trivially
parallelizable. The algorithm can be further optimized by pruning the collision-detection
search by using spatial partitioning schemes such as kd-Trees and by limiting the path used
to calculate the Minkowsky sums with the forecasting index.

The update function is presented below:

INPUTS: agents[0…N], forecastIdx[0…N], agentPositions[0…N], agentSpeeds[0…N], speedBound,
agentOrientations[0…N], agentDelays[0…N], agentPaths[0…N], boundingVolumes[0…N]

 WHILE agents NOT EMPTY
 a <- agents[0]
 removeFromQueue(a)
 currentPath <- minkowski(agentPaths[a], boundingVolumes[a], forecastIdx[a])
 FOR o IN 0…N
 otherPath <- minkowski(predictPath(agentPositions[o], agentSpeeds[o],
 agentOrientations[o], forecastIdx[a]), boundingVolumes[o], forecastIdx[a])
 IF intersects(currentPath, otherPath) THEN
 slowdown <- calculateSlowdown(agentPaths[a], agentSpeeds[a], intersectionPoint,
 intersectionTime)
 IF slowdown < speedBound THEN
 IF isOtherPathAvailable(a) THEN
 previousPath <- agentPaths[a]
 agentPaths[a] <- calculateNewPath(a)
 delay <- calculatePathDelay(agentPaths[a], previousPath)
 agentDelays[a] <- agentDelays[a] + delay
 addToQueue(a, agentDelays[a])
 ELSE
 delay <- calculateSpeedDelay(agentSpeeds[a], slowdown)
 agentSpeeds[a] <- slowdown
 agentDelays[a] <- agentDelays[a] + delay
 addToQueue(a, agentDelays[a])
 END
 ELSE
 agentPositions[a] <- updatePosition(agentPaths[a], agentSpeeds[a])
 END
 END
 END
 agents <- buildPriorityQueue(agentDelays)

5. Concluding Remarks and future work

Pathfinding is a critical element of AI in many modern applications like multiple mobile
robots, game industry and flock traffic navigation based on negotiation (FTN).

We develop a new algorithm capable of planning paths for multiple agents on partially
known and changing environments inspired by cooperative A* and D*.

From a distributed approach (Decoupled) our collective pathfinding in dynamic
environments algorithm decomposes the task of individual plan into weakly-dependent
problems for each agent. Each agent can search greedily for a path according to its
destination, given the current state of all other agents. Then based on a space-time search
space each agent attempt to make a reservation on (x,y,t,δ) where x,y are in the Euclidean
space, t is a time measure and δ is a forward planning-vision measure (forecasting index).

www.intechopen.com

Multi-robot collective path inding in dynamic environments 325

Conflict Module
Rules
 Priority 1: Larger Flock goes first
 Then tile is marked as obstacle.
 Priority 2: If Size of Flocks are equal
 compare delay-table
 delayed Flock goes first
 Then tile is marked as obstacle
 Priority 3: If none previous priority is accomplished
 Use Stone-Dresner Algorithm

Application to Continuous Domains

When applied to computer games, path finding usually takes place on top of one of two
representations: A grid structure that wholly describes the traversable game world or a
waypoint graph that samples the continuous space over which game agents can move.

The first variant can usually be seen in Real-Time Strategy Games (RTS) and bi-dimensional
role-playing games (RPG). The cooperative path finding algorithm in dynamic
environments is a perfect fit for these representations and allows game agents to react
realistically to the presence of other agents and unforeseen obstacles. Other genres,
however, require the simulation of a continuous space updated in fixed time-steps.

Applying a grid-like structure to such spaces can be prohibitively expensive. The algorithm
can be modified to work in continuous domains by replacing the reservation table with an
analysis of world geometry.

The algorithm consists of an update function, responsible for advancing the state of each
agent by a single time-step. The agents are stored in a priority queue that uses each agent’s
total delay as its key. The function calculates the time elapsed between the last and the
current call and uses this value to update the agents. The agents are updated by first
performing a collision-detection test between the Minkowsky sum of the agent’s path and
an assigned bounding volume and each of the Minkowsky sums of the other agents’
predicted paths and their bounding volumes. If a collision is detected, the agent will try to
adjust its speed to avoid the intersection point at the intersection time. If this value falls
under a specified threshold, the agent will, instead, attempt to calculate a different path.

The predicted paths are calculated using only the other agent’s current position, orientation,
and speed. These predictions are also limited by the forecasting index, which indicates how
far in time are agents willing to predict.

This approach allows the path-planning operation to be distributed across frame updates
and the individual update steps for each agent cause no side-effects, making them trivially
parallelizable. The algorithm can be further optimized by pruning the collision-detection
search by using spatial partitioning schemes such as kd-Trees and by limiting the path used
to calculate the Minkowsky sums with the forecasting index.

The update function is presented below:

INPUTS: agents[0…N], forecastIdx[0…N], agentPositions[0…N], agentSpeeds[0…N], speedBound,
agentOrientations[0…N], agentDelays[0…N], agentPaths[0…N], boundingVolumes[0…N]

 WHILE agents NOT EMPTY
 a <- agents[0]
 removeFromQueue(a)
 currentPath <- minkowski(agentPaths[a], boundingVolumes[a], forecastIdx[a])
 FOR o IN 0…N
 otherPath <- minkowski(predictPath(agentPositions[o], agentSpeeds[o],
 agentOrientations[o], forecastIdx[a]), boundingVolumes[o], forecastIdx[a])
 IF intersects(currentPath, otherPath) THEN
 slowdown <- calculateSlowdown(agentPaths[a], agentSpeeds[a], intersectionPoint,
 intersectionTime)
 IF slowdown < speedBound THEN
 IF isOtherPathAvailable(a) THEN
 previousPath <- agentPaths[a]
 agentPaths[a] <- calculateNewPath(a)
 delay <- calculatePathDelay(agentPaths[a], previousPath)
 agentDelays[a] <- agentDelays[a] + delay
 addToQueue(a, agentDelays[a])
 ELSE
 delay <- calculateSpeedDelay(agentSpeeds[a], slowdown)
 agentSpeeds[a] <- slowdown
 agentDelays[a] <- agentDelays[a] + delay
 addToQueue(a, agentDelays[a])
 END
 ELSE
 agentPositions[a] <- updatePosition(agentPaths[a], agentSpeeds[a])
 END
 END
 END
 agents <- buildPriorityQueue(agentDelays)

5. Concluding Remarks and future work

Pathfinding is a critical element of AI in many modern applications like multiple mobile
robots, game industry and flock traffic navigation based on negotiation (FTN).

We develop a new algorithm capable of planning paths for multiple agents on partially
known and changing environments inspired by cooperative A* and D*.

From a distributed approach (Decoupled) our collective pathfinding in dynamic
environments algorithm decomposes the task of individual plan into weakly-dependent
problems for each agent. Each agent can search greedily for a path according to its
destination, given the current state of all other agents. Then based on a space-time search
space each agent attempt to make a reservation on (x,y,t,δ) where x,y are in the Euclidean
space, t is a time measure and δ is a forward planning-vision measure (forecasting index).

www.intechopen.com

Mobile Robots Navigation326

Because these kinds of algorithms are problem dependent we developed a modification of
our collective pathfinding in dynamic environments algorithm in the FTN context. Taking
care that in FTN the main issue is that it is based on negotiation a conflict-solver module
that has the social rules within.

Evidently in FTN we will not in general obtain a globally optimal path from the individual
agent perspective but it is a at least a better plan compared with traveling alone (the worst
scenario is if an agent can’t find Nash or Pareto partners in the whole path so, it becomes a
1-individual flock).

It was shown that the algorithm can, with relatively few modifications, work on continuous
domains updated in fixed time-steps, such as those used by most 3D computer games. The
shift from using a reservation table to analyzing world geometry allows the work to be
cleanly distributed amongst the agents. This creates a clear separation of concerns and the
lack of side-effects makes it trivially parallelizable.

6. References

R. Alami and F. Ingrand and S. Qutub (1998), A Scheme for Coordinating Multi-Robot
Planning Activities and Plans Execution, Proc. 13th European Conf. on Artificial
Intelligence ECAI 98, pp. 617-621.

N. M. Amato, C. Jones & D. Vallejo. (1998), An Adaptive Framework for "Single Shot''
Motion Planning, Technical Report 98-025, Texas A&M University.

N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones & D. Vallejo. (1998), OBPRM: An Obstacle-
Based PRM for 3D Workspaces, Ed. P. K. Agarwal et al., Robotics: The Algorithmic
Perspective, pp. 155-168.

B. Aronov, M. de Berg, A. F. Van der Stappen, P. Svestka & J. Vleugels. (1999), Motion
Planning for Multiple Robots, Discrete and Computational Geometry, Vol. 22, pp. 505-
525.

C. Astengo-Noguez and G. Sánchez-Ante G. (2007), Collective Methods on Flock Traffic
Navigation Based on Negotiation. Proc. 6th Mexican International Conference on
Artificial Intelligence, Springer.

C. Astengo-Noguez and R. Brena (2006) Flock Traffic Navigation Based on Negotiation.
Proc. of 3rd International Conference on Autonomous Robots and Agents (ICARA 2006) .
Palmerston North, New Zealand, pp. 381-384.

J. Barraquand & J. C. Latombe. (1990), A Monte-Carlo Algorithm for Path Planning with
Many Degrees of Freedom, Proc. IEEE Int. Conf. Rob. & Autom., pp. 1712-1717.

J. Barraquand & J. C. Latombe. (1991), Robot Motion Planning: A Distributed Representation
Approach, Int. J. of Robotics Research, Vol. 10, Nr. 6, pp. 628-649.

J. Barraquand, B. Langlois & J. C. Latombe. (1992), Numerical Potential Field Techniques for
Robot Path Planning, IEEE Trans. on Systems, Man and Cybernetics, Vol. 22, Nr. 2, pp.
224-241.

R. Bohlin & L. E. Kavraki. (2000), Path planning using lazy PRM, Proc. IEEE Int. Conf. Rob. &
Autom., pp. 521-528.

J. F. Canny & J. Reif. (1987), New Lower Bound Techniques for Robot Motion Planning
Problems}, Proc. 28th Symp. Foundations of Computer Science, pp. 49-60.

J. F. Canny, (1988), The Complexity of Robot Motion Planning, MIT Press, Cambridge, MA.
B.R. Donald. (1987), A Search Algorithm for Motion Planning with Six Degrees of Freedom,

Artificial Intelligence, Vol. 31, Nr. 3, pp. 295-353.
K. Dresner and P. Stone (2004), Multiagent Traffic Management: A Reservation-Based

Intersection Control Mechanism. Proc. Third International Joint Conference On
Autonomous Agents and Multiagent Systems, pp. 530-537.

K. Dresner and P. Stone (2005), Multiagent Traffic Management: An Improved Intersection
Control Mechanism. Proc. Fourth International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 05). pp. 471-477.

K. Dresner and P. Stone (2006), Human-Usable and Emergency Vehicle–Aware Control
Policies for Autonomous Intersection. Hakodate, Japan. Proc. Fourth Workshop on
Agents in Traffic and Transportation (ATT 06). pp. 17-25.

K. Dresner and P. Stone (2007) Sharing the Road: Autonomous Vehicles Meet Human
Drivers. Sharing the Road: Autonomous Vehicles Meet Human Drivers.
Hyderabad, India. Proc. Twentieth International Joint Conference on Artificial
Intelligence (IJCAI 07). pp. 1263-1268.

D. Hsu, J. C. Latombe & R. Motwani. (1997), Path Planning in Expansive Configuration
Spaces, Proc. IEEE Int. Conf. Rob. & Autom., pp. 2719-2726.

D. Hsu. (2000), Randomized Single-Query Motion Planning in Expansive Spaces, PhD Thesis,
Stanford University, Stanford, CA, USA.

L. E. Kavraki. (1994), Random Networks in Configuration Space for Fast Path Planning, PhD
Thesis, Stanford University, Stanford, CA, USA

L. E. Kavraki, P. Svestka, J. C. Latombe & M. H. Overmars. (1996), Probabilistic Roadmaps
for Path Planning in High-Dimensional Configuration Spaces, IEEE Trans. on
Robotics and Automation, Vol. 12, Nr. 4, pp. 566-580

K. Kondo. (1991), Motion Planning with six degrees of freedom by multistrategic,
bidirectional heuristic free space enumeration, IEEE Trans. on Robotics and
Automation, Vol. 7, Nr. 3, pp. 267-277.

J. J. Kuffner, Jr., & S. M. LaValle. (2000), RRT-Connect: An Efficient Approach to Single-
Query Path Planning, Proc. IEEE Int. Conf. Rob. & Autom.

J. C. Latombe. (1991), Robot Motion Planning, Kluwer Academic Publishers, Boston, MA.
S. M. LaValle & J.J. Kuffner, Jr. (2001), Randomized Kinodynamic Planning, Int. J. on

Robotics Research, Vol. 20, Nr. 5, pp. 378-400.
M. C. Lin & S. Gottschalk. (1998) Collision Detection Between Geometric Models: A Survey,

IMA Conference on Mathematics of Surfaces.
T. Lozano-Perez & M. A. Wesley (1979), An algorithm for planning collision-free paths

among polyhedral obstacles, Communications of the ACM, Vol. 22, Nr. 10, pp. 560-
570.

T. Lozano-Perez. (1983), Spatial Planning: A configuration Space Approach, IEEE Trans. on
Computers, Vol. 32, Nr. 2, pp. 108-120.

C. Nielsen & L. Kavraki. (2000), A Two level Fuzzy PRM for Manipulation Planning, Proc.
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems.

P. A. O'Donnell & T. Lozano-Perez. (1989), Deadlock-Free and Collision-Free Coordination
of Two Robot Manipulators, Proc. IEEE Int. Conf. Rob. & Autom., pp. 484-489.

D. C. Pottinger (1999), Coordinated Unit Movement . Game Developer Magazine, Vol. 3.

www.intechopen.com

Multi-robot collective path inding in dynamic environments 327

Because these kinds of algorithms are problem dependent we developed a modification of
our collective pathfinding in dynamic environments algorithm in the FTN context. Taking
care that in FTN the main issue is that it is based on negotiation a conflict-solver module
that has the social rules within.

Evidently in FTN we will not in general obtain a globally optimal path from the individual
agent perspective but it is a at least a better plan compared with traveling alone (the worst
scenario is if an agent can’t find Nash or Pareto partners in the whole path so, it becomes a
1-individual flock).

It was shown that the algorithm can, with relatively few modifications, work on continuous
domains updated in fixed time-steps, such as those used by most 3D computer games. The
shift from using a reservation table to analyzing world geometry allows the work to be
cleanly distributed amongst the agents. This creates a clear separation of concerns and the
lack of side-effects makes it trivially parallelizable.

6. References

R. Alami and F. Ingrand and S. Qutub (1998), A Scheme for Coordinating Multi-Robot
Planning Activities and Plans Execution, Proc. 13th European Conf. on Artificial
Intelligence ECAI 98, pp. 617-621.

N. M. Amato, C. Jones & D. Vallejo. (1998), An Adaptive Framework for "Single Shot''
Motion Planning, Technical Report 98-025, Texas A&M University.

N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones & D. Vallejo. (1998), OBPRM: An Obstacle-
Based PRM for 3D Workspaces, Ed. P. K. Agarwal et al., Robotics: The Algorithmic
Perspective, pp. 155-168.

B. Aronov, M. de Berg, A. F. Van der Stappen, P. Svestka & J. Vleugels. (1999), Motion
Planning for Multiple Robots, Discrete and Computational Geometry, Vol. 22, pp. 505-
525.

C. Astengo-Noguez and G. Sánchez-Ante G. (2007), Collective Methods on Flock Traffic
Navigation Based on Negotiation. Proc. 6th Mexican International Conference on
Artificial Intelligence, Springer.

C. Astengo-Noguez and R. Brena (2006) Flock Traffic Navigation Based on Negotiation.
Proc. of 3rd International Conference on Autonomous Robots and Agents (ICARA 2006) .
Palmerston North, New Zealand, pp. 381-384.

J. Barraquand & J. C. Latombe. (1990), A Monte-Carlo Algorithm for Path Planning with
Many Degrees of Freedom, Proc. IEEE Int. Conf. Rob. & Autom., pp. 1712-1717.

J. Barraquand & J. C. Latombe. (1991), Robot Motion Planning: A Distributed Representation
Approach, Int. J. of Robotics Research, Vol. 10, Nr. 6, pp. 628-649.

J. Barraquand, B. Langlois & J. C. Latombe. (1992), Numerical Potential Field Techniques for
Robot Path Planning, IEEE Trans. on Systems, Man and Cybernetics, Vol. 22, Nr. 2, pp.
224-241.

R. Bohlin & L. E. Kavraki. (2000), Path planning using lazy PRM, Proc. IEEE Int. Conf. Rob. &
Autom., pp. 521-528.

J. F. Canny & J. Reif. (1987), New Lower Bound Techniques for Robot Motion Planning
Problems}, Proc. 28th Symp. Foundations of Computer Science, pp. 49-60.

J. F. Canny, (1988), The Complexity of Robot Motion Planning, MIT Press, Cambridge, MA.
B.R. Donald. (1987), A Search Algorithm for Motion Planning with Six Degrees of Freedom,

Artificial Intelligence, Vol. 31, Nr. 3, pp. 295-353.
K. Dresner and P. Stone (2004), Multiagent Traffic Management: A Reservation-Based

Intersection Control Mechanism. Proc. Third International Joint Conference On
Autonomous Agents and Multiagent Systems, pp. 530-537.

K. Dresner and P. Stone (2005), Multiagent Traffic Management: An Improved Intersection
Control Mechanism. Proc. Fourth International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 05). pp. 471-477.

K. Dresner and P. Stone (2006), Human-Usable and Emergency Vehicle–Aware Control
Policies for Autonomous Intersection. Hakodate, Japan. Proc. Fourth Workshop on
Agents in Traffic and Transportation (ATT 06). pp. 17-25.

K. Dresner and P. Stone (2007) Sharing the Road: Autonomous Vehicles Meet Human
Drivers. Sharing the Road: Autonomous Vehicles Meet Human Drivers.
Hyderabad, India. Proc. Twentieth International Joint Conference on Artificial
Intelligence (IJCAI 07). pp. 1263-1268.

D. Hsu, J. C. Latombe & R. Motwani. (1997), Path Planning in Expansive Configuration
Spaces, Proc. IEEE Int. Conf. Rob. & Autom., pp. 2719-2726.

D. Hsu. (2000), Randomized Single-Query Motion Planning in Expansive Spaces, PhD Thesis,
Stanford University, Stanford, CA, USA.

L. E. Kavraki. (1994), Random Networks in Configuration Space for Fast Path Planning, PhD
Thesis, Stanford University, Stanford, CA, USA

L. E. Kavraki, P. Svestka, J. C. Latombe & M. H. Overmars. (1996), Probabilistic Roadmaps
for Path Planning in High-Dimensional Configuration Spaces, IEEE Trans. on
Robotics and Automation, Vol. 12, Nr. 4, pp. 566-580

K. Kondo. (1991), Motion Planning with six degrees of freedom by multistrategic,
bidirectional heuristic free space enumeration, IEEE Trans. on Robotics and
Automation, Vol. 7, Nr. 3, pp. 267-277.

J. J. Kuffner, Jr., & S. M. LaValle. (2000), RRT-Connect: An Efficient Approach to Single-
Query Path Planning, Proc. IEEE Int. Conf. Rob. & Autom.

J. C. Latombe. (1991), Robot Motion Planning, Kluwer Academic Publishers, Boston, MA.
S. M. LaValle & J.J. Kuffner, Jr. (2001), Randomized Kinodynamic Planning, Int. J. on

Robotics Research, Vol. 20, Nr. 5, pp. 378-400.
M. C. Lin & S. Gottschalk. (1998) Collision Detection Between Geometric Models: A Survey,

IMA Conference on Mathematics of Surfaces.
T. Lozano-Perez & M. A. Wesley (1979), An algorithm for planning collision-free paths

among polyhedral obstacles, Communications of the ACM, Vol. 22, Nr. 10, pp. 560-
570.

T. Lozano-Perez. (1983), Spatial Planning: A configuration Space Approach, IEEE Trans. on
Computers, Vol. 32, Nr. 2, pp. 108-120.

C. Nielsen & L. Kavraki. (2000), A Two level Fuzzy PRM for Manipulation Planning, Proc.
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems.

P. A. O'Donnell & T. Lozano-Perez. (1989), Deadlock-Free and Collision-Free Coordination
of Two Robot Manipulators, Proc. IEEE Int. Conf. Rob. & Autom., pp. 484-489.

D. C. Pottinger (1999), Coordinated Unit Movement . Game Developer Magazine, Vol. 3.

www.intechopen.com

Mobile Robots Navigation328

J.H. Reif (1979), Complexity of the Mover's Problem and Generalizations, Proc. 20th Symp. on
the Foundations of Computer Science, pp. 421-427.

G. Sánchez-Ante & J. C. Latombe. (2002), On Delaying Collision-Checking in PRM Planning
-- Application to Multi-Robot Coordination, Int. J. of Robotics Research.

J. T. Schwartz & M. Sharir (1983), On the Piano Movers' Problem I: The Case of a Two-
Dimensional Rigid Polygonal Body Moving Amidst Polygonal Barriers,
Communications Pure and Applied Mathematics, Vol. 36, pp. 345-398.

Yoav Shoham and Kevin Leyton-Brown. (2008), Multiagent Systems: Algorithmic, Game-
Theoretic, and Logical Foundations, Cambridge University Press.

D. Silver (2005), Cooperative Pathfinding, American Association for Artificial Intelligence, 2005.
G. Song, S. Miller & N. Amato. (2000), Customizing PRM Roadmaps at Query Time, Proc.

IEEE Int. Conf. Rob. & Autom.
P. Svestka. (1997), Robot Motion Planning using Probabilistic Roadmaps, Ph.D. Thesis, Utrecht

University, The Netherland.
P. Tournassoud. (1986), A strategy for obstacle avoidance and its applications to multi-robot

systems, Proc. IEEE Int. Conf. Rob. & Autom., pp. 1224-1229.
D. Vallejo, I. Remmler & N. M. Amato. (2001), An Adaptive Framework for "Single Shot''

Motion Planning: A Self-Tuning System for Rigid and Articulated Robots, Proc.
IEEE Int. Conf. Rob. & Autom.

M. Wooldridge (2002), Introduction to Multiagent Systems. John Wiley and Sons.
A. A. Zelinsky (1992), Mobile Robot Exploration Algorithm, IEEE Transactions on Robotics

and Automation, Vol. 8.
D. Zhu & J. C. Latombe. (1990), Constraint reformulation in a hierarchical path planner,

Proc. IEEE Int. Conf. Rob. & Autom., pp. 1918-1923.

www.intechopen.com

Mobile Robots Navigation

Edited by Alejandra Barrera

ISBN 978-953-307-076-6

Hard cover, 666 pages

Publisher InTech

Published online 01, March, 2010

Published in print edition March, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting

sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii)

mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv)

localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the

strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor

actions are determined and adapted to environmental changes. The book addresses those activities by

integrating results from the research work of several authors all over the world. Research cases are

documented in 32 chapters organized within 7 categories next described.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Carlos Astengo-Noguez, Gildardo Sanchez-Ante, Jose Ramon Calzada and Ricardo Sisnett-Hernandez

(2010). Multi-Robot Collective Path Finding in Dynamic Environments, Mobile Robots Navigation, Alejandra

Barrera (Ed.), ISBN: 978-953-307-076-6, InTech, Available from: http://www.intechopen.com/books/mobile-

robots-navigation/multi-robot-collective-path-finding-in-dynamic-environments

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

