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Abstract
Statistical methods for automatic change detection, in heterogeneous bitemporal
satellite images, remains a challenging research topic in remote sensing mainly
because this research field involves the processing of image data with potentially
very different statistical behaviors. In this paper, we propose a new Bayesian
statistical approach, relying on spatially adaptive class conditional likelihoods which
are also adaptive to the considered imaging modality pair and whose parameters are
estimated in a first preliminary estimation step. Once that estimation is done, a
second stage is dedicated to the change detection segmentation itself based on this
likelihood model defined for each pixel and for each imaging modality. In this
context, we compare and discuss the performance of different Markovian
segmentation strategies obtained in the sense of several non-hierarchical or
hierarchical Markovian estimators on real satellite images with different imaging
multi-modalities. Based on our original pixel-wise likelihood model, we also
compare these Markovian segmentation strategies over the existing state-of-the-art
heterogeneous change detection algorithms proposed in the literature.

Keywords: change detection, heterogeneous satellite captors/sensors, Markovian
segmentation, multimodal or multisource or multisensor or mutilooking satellite
images, parameter estimation, Markovian estimators

1. Introduction
Multimodal change detection (MCD) is a recent area of research that has grown and
developed considerably over the past decade, mainly due to the rapid development
of new sensor systems, new data processing techniques and easier access to remote
sensing data. In satellite imagery, multimodal (or heterogeneous) change detection
(CD) [1] is the process of detecting or identifying, in a given geographical area, any
changes, based on two (or more) images acquired at different instances. The pair (or
set) of satellite images (also commonly referred to as bi (or multi)-temporal images
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to be analyzed) are usually acquired either by different (or heterogeneous) sensors
or with the same sensor but with different specifications or conditions.

More precisely, in MCD systems, the heterogeneous bitemporal images may be;
(in order of increasing difference from the conventional monomodal CD and
difficulty of processing), either provided by different (active or passive) types of
sensors, like passive optical and active SAR systems (and leading to bitemporal
multisource images), or provided by different passive systems (e.g., different optical
sensors) or active remote sensors such as lidars and radar (in the case of bitemporal
multisensor or cross-sensor images). Heterogeneous bitemporal images can also be
acquired with the same sensing system, but either in different wavelength ranges
(hyperspectral or multispectral images) or with different internal settings or
different looks (possibly different look angles) or different and complementary
speckle noise pre-filtering processes (for mutilooking images) or with unbalanced
data or noise distributions possibly due to lighting, weather or phenological or
chemical changes which also influences the imaging system (unbalanced image
data [2]).

MCD is a difficult image processing problem that can only be solved with a
sufficiently flexible, intelligent and robust model for processing image data with
different statistical behaviors. This low-level image processing task allows us to solve
the same issues usually handled by homogeneous CD techniques [3–8] required for
the development, for example, of damage detection and evaluation systems
(earthquake, flooding, hurricane, tsunami, forest fire, volcanic activation, etc.) or
environmental, agricultural, mineral exploration, or urban growth, monitoring or
planning systems etc. MCD has shown an increasing trend and a great interest over
the past decade in the geoscience community, mainly because this approach is much
less demanding on the origin of the data acquired compared to the conventional
homogeneous CD technique. In fact, this low-level processing allows us to fully and
intelligently use the multiple heterogeneous (and ever increasing) data sourced
from existing archives or from the many and very varied Earth observation satellites
existing or planned. In addition, due to advances in this field and the
format/specifications evolving through time, it is expected that the heterogeneity of
these satellites or aerial image data will be increasing in the years to come. Finally,
we include the complementarity of these different imaging methods, which can be
used to our advantage. More precisely, a technique of fusion of imaging modalities
could potentially be exploited (not only in geo-scientific imagery [9]) to further
improve the detection and the analysis of surface changes.

The problem of change detection for homogeneous satellite datasets has been
extensively studied in the literature since the advent of digital imaging techniques.
The Geoscience research community waited until this problem was recently well
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enough understood to investigate the MCD problem. This explains why until now,
relatively little research has been proposed on MCD.

Despite this, and depending on the modeling strategy used, four main groups of
approaches are reported in the recent remote sensing literature and can be easily
identified.

The first and most basic techniques are based on similarity metrics [10–12] or rely
on empirical (generally hand-crafted) features or local and non parametric operators
or detectors [12–14] with supposed good invariance to sensor characteristic.

The second group is made up of non-parametric (possibly statistical) based
models whose structure is not a priori fixed in advance (unlike so-called parametric
models for which a distribution law with a finite number of parameters is a priori
specified as main data structure). It refers to the methods based on a structure
consistency [15, 16] or a K-nearest neighbor graph [17] to represent the structure of
each image or using a regression strategy based on this structural consistency [18].
This category also contains machine learning (ML), and deep learning (DL) based
models which learn representation of (training) data samples (examples) with
possibly several levels of abstraction for DL [2, 19–28]. Additionally, image
translation with convolutional neural networks (with prior-weighted loss functions
that reduce the impact of change pixels on the learning objective) [29] has recently
been used as an approach to MCD. It is also made up of unsupervised
non-parametric based techniques, that are not based on training examples like the
cost function-based model presented in [30].

Thirdly, one can also identify algorithms based mainly on a projection or
transformation of the bi-temporal heterogeneous images into a common
representation space, in which the pair of multimodal satellite images have the same
behavior in statistical terms and on which conventional change detection techniques
using homogeneous multitemporal satellite images can then be adopted [31–43].
Belonging to this category but also to the previous one, image mapping from one
domain to another domain was also exploited via deep translation based change
detection network [44], multiscale deep pyramid feature learning network [45] or
cross-resolution difference learning [46].

Finally the last class is given by parametric methods, which we will detail more
precisely below since the model described in this work falls into this group. In this
strategy, a (possibly finite mixture of) parameterized multivariate distribution
law(s) are usually (a priori specified as main data structure and) employed to
describe the joint statistic or to account the links between the two different sensor
systems or to exploit the statistical dependence between the two measured remote
sensing modalities [47]. For example, local statistical analysis of dependence
between unchanged areas is derived using the copula representation in [48, 49] and
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Kullback-Leibler-based comparisons of those statistics are applied to define a
similarity map which is then subsequently segmented by thresholding, into change
and no-change classes. In [50], the authors base their model on the preliminary
estimation of a mixture of flexible multidimensional and multivariate laws using
various skewness and kurtosis parameters and supposed to be particularly well
adapted for estimating the difference changes in multitemporal Synthetic Aperture
Radar (SAR) images given by various multi-looking techniques or with SAR data
having different look numbers. In [51–53], a multivariate statistical method, using an
estimation step followed by a final segmentation step, has also been proposed; the
preliminary stage aims at estimating a statistical model of the sensor response
consisting of a mixture of multivariate densities which take into account both the
sensor responses to the observed scene and the system noise. Based on this model, a
difference map is generated and then subsequently binarized, via a statistical test, to
detect the changes. Recently, an original method based on linear algebra, using the
Kronecker product between the two image representations, has also been proposed
in [54] for the MCD problem.

Finally, the authors in [55] use a pixel pair modeling and find the likelihood laws
for these two possible class labels; i.e., “identical” (for the couple of labels; change |
change or no-change | no-change) or “different” (for the pair of classes; change |
no-change or no-change | change) of these two groups of pixel pairs and, based on this
pixel pair modeling, then use the simulated annealing to find the segmentation
solution in the MAP sense.

In this work, we present a quite different approach, in a non-parametric
statistical framework, whose originality is to rely on a set of class conditional
likelihoods also conditioned to the spatial neighborhood of each pixel. This set of
spatially adaptive likelihoods allows us to formally define the MCD issue in the
Bayesian setting with a reliable and spatially (or neighborhood) adaptive likelihood
model whose parameters are estimated in a first preliminary estimation step. Once
the estimation stage is achieved, a second stage is dedicated to the binarization (or
detection of multimodal change) itself given this set of estimated spatially adaptive
likelihoods. In this context, we compare and discuss the accuracy of the CD
segmentation map obtained in the sense of several Markovian estimators such as the
Maximum Likelihood (ML), MAP (Maximum A Posteriori) [56], MPM (Marginal
Posterior Mode) [57], SMAP (or Sequential MAP) estimator using the multiscale
and hierarchical Bayesian segmentation framework of Bouman et al. [58] and finally
the SCMAP (Scale Causal MAP) estimator proposed in [59] and based on a
multi-level prior model involving both scale-causal and spatial interactions
combined with a parameterization multigrid technique derived from the finest level.
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2. Proposed MRF CD model
Let yt1 and yt2 , a pair of bi-temporal (previously spatially co-registered) satellite
images (of N pixels) captured at two separate time periods (usually before and after
a natural or man-made event), over the same region of interest, and coming from
heterogeneous sensors. Let (yt1 , yt2 ) be a realization of the random variable
Y = {(Yt1s ,Yt2s ), s ∈ S} which is the so-called random field of observations associated
to these two images and defined on a rectangular grid S of N sites s. We also consider
X = {Xs, s ∈ S} the random label field defined on the same grid related to the
bi-temporal satellite images, with each xs, its realization at site s, taking its label in
the set of classes 𝛬label = {e0 = no-change,  e1 = change}.

2.1. Estimation step

In the unsupervised Bayesian framework proposed in this work, it is necessary, first
of all, to estimate the likelihoods (i.e., the so-called marginal or conditional
distributions) for both each detection class (namely; e0 = no-change and e1 = change)
and for each pixel or more precisely and according to our modeling approach, for
each spatial neighborhood 𝜂s around each pixel.

To this end, for each pixel yt1s , at site s, we first look for the Nk best (squared) sub
images (with size Sw × Sw pixels), existing in the before image yt1 , which most looks
like, in the Least Square (LS) sense, to the spatial neighborhood 𝜂s (with the same
size Sw × Sw) surrounding s. Since the imaging systems used in remote sensing are
generally spatially invariant, this similarity search is performed in order to be
invariant towards the 8 spatial isometric transformations (rotations and flips) of the
neighborhood. In our application, this search is efficiently and quickly achieved by a
kd-tree nearest neighbor searching method [60].

In our experiments, we have noticed that the distribution of the grey levels
associated to each central pixel of these Nk sub images positioned, at the same
coordinate, but in the after image yt2 is well approximated by a Gaussian law whose
parameters are estimated via the empirical mean ms and variance 𝜎2

s . This
observation allows us to define the conditional data likelihood PYs∕Xs, 𝜂s

associated to
the class label e0 = no-change of each pixel s (or equivalently, conditioned to a site s or
its spatial neighborhood 𝜂s surrounding it).

Regarding the class label e1 = change, the type of empirical distribution PYs∕Xs, 𝜂s

obtained varies a lot and can be very different depending either on the nature of the
multi-modalities (considered here; namely multisensor, multisource and
mutilooking), or the variety of changed conditions or events (river drying up or
flooding, urban construction or inundation, volcano activation, etc.) or with the
different possible resolution levels or image sizes. Due to the lack of an appropriate
statistical tool to adaptively model this highly variable behavior, the marginal
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likelihood associated to the class label change should be as less informative as
possible. In our application, we have thus adopted a rectangular distribution (also
called uniform distribution) over the range of grey-scale levels covered by the after
image yt2 thus reflecting the large entropy (or great uncertainty) of this change
class-conditional likelihood. Let us note that this type of distribution has often been
widely used, as universal non-informative likelihood, for many applications [61].
Finally, the complete data model, different for each pixel s located on the rectangular
lattice S, is defined by:

PYs/Xs,𝜂s
(ys/e0, 𝜂s) ∝ 𝒩(𝜇s, 𝜎2

s )
PYs/Xs,𝜂s

(ys/e1, 𝜂s) ∝ 𝒰(yt2min, yt2max) (1)

we recall that 𝜇s and 𝜎2
s , are the empirical mean and variance computed on the set of

the grey levels associated to each central pixel of the Nk sub images which first most
looks like (in the LS sense) to the spatial neighborhood 𝜂s surrounding s in yt1 and
which is then re-located at the same coordinate but in the after image yt2 . 𝒰(.), yt2min
and yt2max are respectively the Uniform law, and the minimal and maximal grey level
existing in the after image yt2 .

At this point, it is important to understand that some of the Nk sub images found
by the kd-tree search method could be (partially or completely) contaminated by
the post-event change (existing in the after image yt2 ) and this could affect the
estimation of the mean (and somewhat the variance) of each pixel-wise likelihood
distribution PYs∕Xs, 𝜂s

(ys∕e0, 𝜂s) defined for each site s. In fact, this problem is a bit
minimized by the fact that firstly, we take, not one, but Nk (closest in the LS sense)
sub images and secondly, by the use of a median filter which somewhat correct the
unwanted outlier estimations. In addition, in our application, we index each
estimation of the mean on the same rectangular grid S (already associated with the
two input images) and we use a 3 × 3 spatial median filter to somewhat get rid of
contaminated mean estimations. Nevertheless, these two previous strategies are not
sufficient to ensure a reliable estimation and that is why we resort to a two-step
estimation/segmentation procedure. A first estimation/segmentation step is
conducted with the estimation step previously explained (equation (1) followed by
median filtering) and a segmentation step (that will be explained in section 2.2) to
get the binary CD map x̃. A second estimation/segmentation step is then achieved in
which the kd-tree search method of the estimation step looks for the Nk best
sub-images, existing in the before image yt1 and which are not contaminated by a
pixel whose label x̃s has been previously classified e1 = change. It is also interesting to
note that this phenomenon of contamination by the post-event change can be
considered as noise (both for the estimation step and the segmentation procedure).
This being said, the Markovian regularization used in the segmentation step is well
adapted to infer a reliable solution in presence of (any) noise.
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2.2. Segmentation step

Once the estimation of the conditional likelihood distributions (see equations (1))
are defined for each site s, it is straightforward1 to extend the different1Code and data are accessible at

www.iro.umontreal.ca/ mignotte/
ResearchMaterial). state-of-the-art Markovian image segmentation algorithms defined as being optimal

in the sense of several Markovian estimators such as the ML [56], MAP [56], MPM
[57], SMAP [58] and SCMAP criteria [59].

At this point, it is interesting to recall the fundamental difference between these
different criteria commonly used in the Bayesian image segmentation framework.
To this end, let x be the segmentation or a particular realization (or configuration)
of the random label field X (to be estimated). A Bayesian segmentation considers, as
an estimation criterion, the (Bayesian) criterion of minimization of the expectation
of the loss function C (.) conditioned to the observations:

x̂ = argmin
x

E[C(xGT, x)|Y = y]

= argmin
x

{ ∑
x′∈Ω

C(xGT, x′) ⋅ PX/Y(x′/y)} (2)

where Ω designates the space of possible configurations. xGT represents the exact
solution and C (xGT, x) represents the price to be paid when x is chosen when the
exact solution is xGT. Several Bayesian estimators corresponding to different cost
functions can be chosen. MAP is associated with the cost function:

CMAP(xGT, x) △= 1 − 𝛿xGT
(x) (3)

where 𝛿x GT
(x) denotes the delta-Dirac mass located in xGT. This cost will penalize, in

the same way, all configurations different from xGT. In our case; with a Markovian
prior (we have herein considered a classical a priori isotropic, homogeneous
Ising/Potts model conditionally dependent on its 8 nearest neighbors. This loss
function is also that of the ML criterion for an uniform prior distribution. The
SCMAP criterion is also associated to this cost function but relatively to a
Markovian prior with a spatial second order neighborhood system including a scale
causal link with the (immediately) coarser resolution scale (figure 1). The MPM
estimator is associated with a less restrictive cost function penalizing the
configuration x in proportion to the number of incorrectly labeled sites:

CMPM(xGT, x) △= ∑
s∈S

(1 − 𝛿xs,GT
(xs)). (4)

The MAP estimator is generally poorly adapted to hierarchical Bayesian models.
Indeed, it will penalize an error regardless of the scale at which it occurs [58]. Ideally,
for these models, errors produced at coarse scales should be penalized more severely
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Figure 1. From left to right; Hierarchical Markovian structure of the SMAP with a
quad-tree structure (for the ascending Markovian process) and a pyramid structure
(for the descending pass) and SCMAP with a spatial second order neighborhood
system including a scale causal link with the (immediately) coarser resolution scale.

(since the misclassification of a label at a coarse scale then causes the
misclassification of a large number of labels at the finest resolution). This is what is
proposed by the SMAP estimator which is associated with the following cost
function:

CSMAP(xGT, x) △=
n

∑
i=0

2i ⎛⎜
⎝

1 −
n

∏
j=i

𝛿x j
GT

(x j)⎞⎟
⎠

(5)

where the label fields between scales are constructed, with a prior Markov chain in
scale, with a quad-tree structure (for the ascending Markovian process) and a
pyramid structure (for the descending pass) (see figure 1 at top) in which n is the
number of scale levels. In this model, xj is the segmentation at scale level j.
Qualitatively, this cost function penalizes a multi-resolution segmentation
(according to an hybrid quad-tree-graph structure) in proportion to the size of the
largest misclassified region [58]. We will refer the reader to the following studies
[56] (ML, MAP), [57] (MPM), [58] (SMAP) and [59] (SCMAP) for the detailed
implementation of these Markovian segmentation algorithms (which will be also
freely accessible at author’s web address1).

2.3. ICM segmentation model with adaptive class conditional
likelihood

We detail a little more in this section, the simplest Markovian segmentation
algorithm called ICM related to the classical a priori Markovian Potts prior with the
8-nearest neighborhood structure (with binary clique potential parameter 𝛽). For
more details about ICM, we refer the reader to [56], and for more details on the
derivation, implementation and optimization of the other Markovian segmentation
strategies, with their prior structure, we refer the reader to [57] (for the MPM), [58]
(for the SMAP) and [59] (for the Scale Causal MAP).
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In this Bayesian strategy, the segmentation in two classes 𝛬label = {e0 = no-change,
e1 = change} of yt2 can be viewed or stated as a statistical labelling problem according
to a global Bayesian formulation in which the posterior distribution PX∕Yt2 , 𝛷s

(x∕yt2 ,
𝜙s) ∝ exp[−U (x, yt2 , 𝜙s)] has to be maximized. In our case, the corresponding
posterior energy U (x, yt2 , 𝜙s) to be minimized is of the form:

U(x, yt2 , 𝜙s) = ∑
s∈S

Ψs(xs, y
t2
s , 𝜙s)

⏟⏟⏟⏟⏟⏟⏟
U1(x,yt2 ,𝜙s)

+ ∑
⟨s,t⟩

𝛽 ⋅ ℐ(xs, xt)
⏟⏟⏟⏟⏟⏟⏟

U2(x)

Where ℐ(z1, z2) = {0 if z1 = z2,
1 otherwise,

where U1 expresses the adequacy between observations and labels:

Ψs(xs, y
t2
s , 𝜙s) = − lnPYt2 /X,Φs

(yt2s /xs, 𝜙s)

and U2 is the energy of the a priori model (𝛽 is the clique potential whatever the
type of neighboring pair ⟨s, t⟩), with PYt2 /X,Φs

(yt2s /xs, 𝜙s), a likelihood function
parameterized (and preliminary estimated) for each site s, 𝜙s = (𝜇s, 𝜎2

s , yt2min, yt2max)
with P

Y
t2
s /Xs,Φs

(yt2s /e0, 𝜙s), a normal law 𝒩(𝜇s, 𝜎2
s ) and for P

Y
t2
s /Xs,Φs

(yt2s /e1, 𝜙s), a
uniform law 𝒰(yt2min, yt2max) (see equation (1) and section2.1).

In order to minimize this energy function, we use a iterative deterministic
optimization technique called ICM algorithm for which we recall the different steps
of this deterministic iterative minimization algorithm:

• For the initialization of ICM (iteration [0], in superscript), we choose an initial
configuration as close as possible to the optimal segmentation; for example a
segmentation in the ML sense:

x̂[0]
s = argmax

xs
{P

Y
t2
s /Xs,Φs

(yt2s /xs, 𝜙s)} (∀ s ∈ S)

• Estimation of x̂[k+1] from x̂[k]: x ← x̂[k]

1. For each pixel (or site) in lexicographic order:

• For each site s, we compute the local posterior energy term for each of the
possible classes:

U(xs, y
t2
s , 𝜙s) = − ln{Ψs(xs, y

t2
s , 𝜙s)} + ∑

⟨s,t⟩
𝛽 ℐ(xs, xt) (∀xs ∈ Λ)
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• We select the class xs which corresponds to the minimum local posterior
energy term:

x̂s = argmin
xs∈Λ

{U(xs, y
t2
s , 𝜙s)}

2. x̂[k+1] ← x
3. Return to 1.  until a criterion is reached, generally:

if x̂[k+1] ≉ x̂[k] k ← k + 1 & return to 1.

3. Experimental results

3.1. Heterogeneous dataset description & setup

To show the effectiveness of our approach, we have performed extensive
experiments involving different real heterogeneous datasets with different
multi-modality types (multi-sensor/source/looking) and exhibiting a wide diversity
of changed events and finally provided at different resolution levels and image sizes
(see table 1).

For all the tests we have performed, we have only used the luminance component
or the greyscale information of the image and thus converted the three color
channels (or the multi-spectral bands (possibly with the models introduced in
[62, 63])) into one single gray channel when it is necessary. In addition, to reduce
the computational load, we have chosen to sub-sample the image so that its
maximum length or width is less than 512 pixels (with a decimation technique given
by a simple moving average filter) and finally, we have used a double histogram
matching method [64] on yt1 and yt2 (more precisely, the before image is histogram
matched to the after image to give the pre-processed before image and the after image
is then histogram matched to the latter (pre-processed before) image).

The internal parameters of our estimation step model (see section 2.1) are; Nk, the
number of squared sub-windows that most closely resembles (in the LS sense) the
spatial neighborhoods of each pixel and its size Sw. In our application and
experiments; Nk = 20 and Sw = 5. For the segmentation step, we have considered, a
classical a priori Markovian Potts prior with a 8-nearest neighborhood structure
with binary clique potential parameter 𝛽 = 1 for the ICM algorithm (MAP estimator)
and for the Gibb’s sampler of the MPM and also for the spatial interactions (or
cliques) of the SCMAP model. We have used an inter-scale clique potential setting to
𝛽 = 0.5 for the SCMAP estimator and a hybrid quad-tree and pyramid-graph
structure for the SMAP along with a structure depth fixed to d = 9 and an inter-scale
regularization parameter for the Markov chains formed by the parent and child
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Figure 2. Multimodal datasets (see table 1). (a–c) pre-event image t1, post-event
image t2, ground truth segmentation provided by an expert; and (d–e) visualization
of the class confusion map (white: true negative, red: true positive, blue: false
positive, cyan: false negative) obtained by our Neighborhood and Class Conditional
Likelihood estimation combined with the SMAP (d) or SCMAP (e) estimator.

nodes in the quadtree (ascending step) and in the pyramid structure (descending
step) equals to 𝜃 = 1.0−. In fact, let us note that all these parameters are classic and
commonly used in this field. Nevertheless, we have also checked that these
parameters also guarantee, on average, the best detection results over the ten
heterogeneous data sets. These three internal parameters (Nk, Sw, 𝛽) were fixed after
three or four trials and the efficiency of our (low complexity) MRF-MCD algorithm
has the property to remain quite insensitive to the variation of its three internal
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Figure 3. Multimodal datasets (see table 1). (a–c) pre-event image t1, post-event
image t2, ground truth segmentation provided by an expert; and (d–e) visualization
of the class confusion map (white: true negative, red: true positive, blue: false
positive, cyan: false negative) obtained by our Neighborhood and Class Conditional
Likelihood estimation combined with the SMAP (d) or SCMAP (e) estimator.

parameters, insofar as these internal parameters vary within a reasonable range
(value of the parameter ±50%).

3.2. Results & discussion

To discuss the efficiency of our neighborhood-adaptive class conditional data
likelihood model defined in equation (1), we have compared the obtained CD
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Figure 4. CD confusion maps (white: TN, red: TP, blue: FP, cyan: FN) for the dataset
#1 (top) and #2 (bottom), obtained in the sense of several Markovian estimators
combined with the data likelihood model defined in equation (1). (a) ML (b) MAP
(with ICM) (c) MPM (d) SMAP (e) SCMAP.

segmentation results on our heterogeneous dataset, in the sense of different existing

(non-hierarchical or hierarchical) Markovian estimators, a first quantitative study is

achieved and evaluated with the same evaluation measures proposed in [55] and

[40]; namely the F-measure and the total percentage of good classification

(accuracy).

We can notice (see table 2) that hierarchical Markovian estimators, like the SMAP

and SCMAP are in fact comparable, in terms of efficiency (while being quite

different in terms of hierarchical structures and algorithms) and clearly perform

better than the classical non-hierarchical Markovian estimators such as the MAP or

MPM. MAP (via the ICM algorithm) and MPM estimators are comparable in terms

of performance, while also being algorithmically quite different both of them.

Finally, we can compare the score results given by a classification approach without

Markovian regularization (ML strategy) and thus the obtained gain for each

Markovian regularization strategy over the ML estimator. Comparatively, SMAP is

slightly better in terms of mean F-measure than SCMAP, which is slightly better in

term of accuracy or overall correct classification percentage average (see table 2).

Second, a comparison of the SMAP and SCMAP segmentation results with

different state of the art approaches [13, 30, 39, 49, 51] is summarized in table 3.

AI, Computer Science and Robotics Technology 14/20



Table 2. Percentage of correctly classified pixels for the different single-scale (ML,
MAP, MPM) or hierarchical (SMAP, SCMAP) Markovian estimators. Top: in terms
of percentage of correct changed and unchanged pixels (PCC). Bottom: in terms of F
measure.

Estimator #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 PCCMean

ML 92.6 87.4 81.9 79.7 80.4 85.9 86.0 90.3 86.8 85.8 85.680
MAP 95.7 92.1 87.8 84.9 81.5 92.5 92.1 92.5 95.9 90.8 90.588
MPM 95.8 92.2 87.8 84.9 81.5 92.5 92.1 92.6 95.9 90.9 90.629
SMAP 96.5 92.8 88.3 85.9 82.3 93.7 94.4 95.2 97.0 94.8 92.095

SCMAP 96.1 94.1 89.4 85.8 82.6 94.3 94.8 95.4 97.1 94.8 92.451

Estimator #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 FmMean

ML 0.40 0.38 0.32 0.21 0.33 0.20 0.28 0.34 0.25 0.55 0.3256
MAP 0.66 0.56 0.48 0.29 0.40 0.32 0.42 0.46 0.59 0.72 0.4892
MPM 0.66 0.56 0.48 0.29 0.40 0.32 0.42 0.46 0.58 0.72 0.4894
SMAP 0.70 0.57 0.51 0.27 0.36 0.21 0.46 0.63 0.67 0.82 0.5193

SCMAP 0.63 0.60 0.54 0.25 0.34 0.26 0.44 0.61 0.66 0.82 0.5158

From figures 2 and 3 and from this latter table, we can see that the accuracy rate of
these two hierarchical Markovian methods outperforms in average the other
state-of-the-art non Markovian approaches and allows us to obtain good CD results
across a wide variety of existing satellite imagery heterogeneities. We can also notice
that a SCMAP or SMAP hierarchical approach combined with our likelihood model
allow us to achieve a relatively constant efficiency whatever the type of
multi-modality of satellite imagery encountered. It should be noted, however, that
this approach tends to underestimate the change class a little. On the contrary, a
non-hierarchical Markovian approach (ICM, MPM) combined with our likelihood
model tends to a bit overestimate the change class by detecting some false positives
(see figure 4).

4. Conclusion
In this paper, we have shown that a data likelihood model relying on a set of spatial
neighborhood adaptive class-conditional likelihoods, whose parameters have been
previously estimated in a first estimation step, combined with a hierarchical
Markovian segmentation procedure in a second step, turns out to be both a simple,
reliable, computationally efficient and good unsupervised statistical strategy for the
change detection issue, whatever the type of multi imaging modality encountered in
heterogeneous remote sensing imagery.
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Table 3. Percentage of good classification (accuracy) on the dataset described in
table 1 and obtained comparisons by the two hierarchical (SMAP or SCMAP)
segmentation methods based on our pixel-wise neighborhood and class conditional
likelihoods) versus the state-of-the-art multimodal change detectors existing in the
literature (first upper part of each table) and with the mono-modal change detectors
(second lower part of each table) [13, 14, 21, 25, 26, 30, 39, 41, 49–53, 55, 65].

NIRThermic/Optical [#1] Accuracy Optical/SAR [#2] Accuracy

Proposedmethod 0.965 0.961 Proposedmethod 0.928 0.941
Mignotte [41] 0.928 Mignotte [41] 0.971

Touati et al. [14] 0.847 Touati et al. [14] 0.943
Touati et al. [55] 0.964 Touati et al. [28] 0.961
Zhang et al. [21] 0.975 Touati et al. [55] 0.955

PCC [21] 0.882 Touati et al. [30] 0.949
Prendes et al. [52] 0.844
Correlation [52] 0.670
Mutual Inf. [52] 0.580

SAR/Optical [#3] Accuracy Optical/Optical [#4] Accuracy

Proposedmethod 0.883 0.894 Proposedmethod 0.859 0.858
Mignotte [41] 0.909 Mignotte [41] 0.859

Touati et al. [14] 0.881 Touati et al. [14] 0.877
Touati et al. [28] 0.892 Touati et al. [28] 0.880
Touati et al. [55] 0.909 Touati et al. [55] 0.862
Touati et al. [30] 0.867 Touati et al. [30] 0.853

Prendes et al. [53, 66] 0.918 Prendes et al. [52, 53] 0.844
Prendes et al. [51] 0.854 Correlation [52, 53] 0.679
Copulas [49, 51] 0.760 Mutual Inf0. [52, 53] 0.759

Correlation [49, 51] 0.688 Pixel Dif0. [53, 65] 0.708

SAR 3/5-looks [#5] Accuracy Optical/SAR [#6] Accuracy

Proposedmethod 0.823 0.826 Proposedmethod 0.937 0.943
Mignotte [41] 0.830 Mignotte [41] 0.952

Touati et al. [14] 0.840
Chatelain et al. [50] 0.749

Correlation [50] 0.713
Ratio edge [50] 0.737

SAR/Optical [#7] Accuracy SAR/Optical [#8] Accuracy

Proposedmethod 0.944 0.948 Proposedmethod 0.952 0.954
Mignotte [41] 0.940 Mignotte [41] 0.942

Touati et al. [28] 0.767 Touati et al. [14] 0.847
Touati et al. [28] 0.817

Liu et al. [25] 0.976

SAR/SAR [#9] Accuracy Optical/Optical [#10] Accuracy

Proposedmethod 0.970 0.971 Proposedmethod 0.948 0.948
Mignotte [41] 0.979 Mignotte [41] 0.962

Liu et al. [26] 0.957–0.964
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