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Abstract
The future of portfolio management is evolving from relying on human expertise to
incorporating artificial intelligence techniques. Traditional techniques such as
fundamental and technical analysis will eventually be replaced by more
sophisticated deep reinforcement learning (DRL) algorithms. However, it is still a
long way from designing a profitable strategy in the complex and dynamic stock
market. While previous studies have focused on the American stock market, this
paper applies two DRL algorithms, the proximal policy optimization (PPO) and the
advantage actor–critic (A2C), to trade the constituent stocks of the Australian
Securities Exchange 50 (ASX50) Index. This paper also incorporates a weighted
moving average into the action space and introduces a transaction threshold to help
agents minimize trivial trades that lead to high transaction costs. The results are
presented and benchmarked against the ASX50 Index. The A2C agent was better at
following trends and had the higher upside potential but can suffer from more
severe damage during bearish markets. On the other hand, the PPO agent had the
lowest annual volatility and the highest maximum drawdown, which is more helpful
in a bearish or volatile market.

Keywords: deep reinforcement learning, portfolio optimization, proximal policy
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1. Introduction
Portfolio management is a time-honored topic that has been widely discussed and
studied in the modern financial world. Traditionally, portfolio management has
relied on expert human knowledge on financial markets, asset valuation, and risk
management, which was primarily the domain of wealthy individuals and
institutions.

However, the advent of online brokerages and social media greatly lowered the
barrier of entry into the world of investment. Online brokerages are offering low
commission cost and benefits to new investors. Additionally, sharing of trading
strategies and successes on social media has brought a lot of attention to the stock
market. On top of that, the perfect storm of pandemic-induced boredom and
disposable income from reduced spending further drives the average person’s
interest to an all-time high. Brokerages are reporting record new retail investors and
trading volume [1], with assets worth billions of dollars being traded daily.

Even though the stock market is more accessible to the average person now, it still
remains complex and deciding on what stocks to invest still remain an intimidating
question. The common techniques to help investors with their decisions include
fundamental analysis, which measures the intrinsic value of a stock using macro-
and microeconomic factors; technical analysis, which evaluates a stock using
statistical trends related to price and volume; and algorithmic trading [2] with
machine learning techniques.

With remarkable progress in the artificial intelligence field, it is no surprise that
about 75% of the trading volume on the United States stock market is made through
algorithmic trading [2]. The main challenges to algorithmic trading are extracting
information from noisy stock data and designing a suitable trading strategy [3].
Many studies have attempted to forecast the stock market by leveraging the use of
sophisticated deep learning methods for their strong feature extraction ability [4–6].
However, such models lack decision-making capabilities [7]. These models focus on
stock price forecasting. The trading strategies are then developed based on
pre-defined rules and instructions. Stock prices are influenced by many
unpredictable factors, from economic policies to natural disasters etc. [8], which
will lower the effectiveness of such static trading strategies. Further, Zulfiquar
et al. [9] performed research on the validity of the efficient market hypothesis and
reaffirmed the existence and profitability of momentum investment strategies in 40
countries around the world during the period 1996–2018. In [9], the findings were
robust to two distinct subperiod analyses, and there was a clear rejection of the
efficient market hypotheses. This research outcome was valuable to momentum
traders and stock market regulators.
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Most classical reinforcement learning (RL) algorithms do not consider the
exogenous nature and noise of financial time series data, which may lead to
treacherous trading decisions. To address this issue, Yue et al. [10] proposed a novel
anti-risk portfolio trading method based on deep reinforcement learning (DRL). It
consists of a stacked sparse denoising autoencoder network and an
actor–critic-based RL agent. Reinforcement learning is an autonomous self-teaching
system that aims to develop an agent capable of making decisions through trial and
error. The stock market can be modeled as a sequential decision-making process that
can be navigated using an RL approach. However, the sudden and rapidly changing
nature of the stock market makes it challenging for the agent to adapt and will
eventually overwhelm the agent.

Therefore, deep reinforcement learning, a combination of deep learning and
reinforcement learning, has emerged as a promising approach to portfolio
management. The adoption of deep learning techniques helps the RL algorithms
scale and manage big and noisy data. In recent years, there has been a growth in the
studies applying DRL to portfolio management [10–12]. Nevertheless, these studies
are not without some limitations.

First, the American stock market is heavily studied, especially the constituent
stocks in the Dow Jones Industrial Average. This has limited the scope of the studies.
Second, historical stock data between 2000 and 2020 was commonly used to train
and test the model. The stock market has undergone major transformations over the
past decade and is expected to continue evolving. The DRL models have a strong
tendency to overfit [12]; thus, using data that are too old may be detrimental to the
model.

It will be more interesting to study the application of DRL on the non-American
stock market within the past 5 years. Therefore, this paper studied the daily stock
data of the constituent stocks in the Australian Securities Exchange 50 (ASX50)
Index from 2017 to 2022 and applied two DRL algorithms, namely advantage
actor–critic (A2C) and proximal policy optimization (PPO), to manage the portfolio.
This paper introduces limitations on the agent’s action space through a weighted
moving average and a transaction threshold to mitigate risks and enforce specific
strategies that align with prior knowledge. However, this approach restricts
autonomy of the agent and its ability to explore novel strategy organically. Thus, this
paper explores how such interventions would influence the adaptability of the DRL
algorithms.

The remainder of this paper is organized as follows. Section 2 reviews the related
works of this study. Section 3 defines the portfolio management problem. Section 4
describes the methodology of the study and the necessary backgrounds. Section 5
presents the results of the models, which are validated through analysis. Finally,
Section 6 concludes the paper and discusses interesting leads as future works.
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2. Related work
Studies related to stock trading often involves large sums of money. Private firms are
secretive about their study results [12]. As such, state-of-the-art models and
promising results are not publicly available. Nevertheless, there is still study
accessible on the topic of portfolio management. This section discusses the
conventional approach to portfolio management and the recent works in the DRL
approach to the problem.

2.1. Conventional methods

The volatility and uncertainty in the stock market will introduce risk to any
investment in a stock portfolio. There is no single solution to portfolio management.
Modern portfolio theory or mean-variance analysis [13], is one of the prominent
methods used for portfolio management. The model assumes investors are
risk-averse and rational, aiming to diversify the portfolio by minimizing the
variance given a certain level of expected return [14]. The portfolio with the
minimal variance is identified: this is called the minimum-variance portfolio.
However, the minimum-variance portfolio does not account for market fluctuations
and sees the market from a very long-term view. Future asset volatility is difficult to
ascertain in practice [15]. This results in a considerable amount of estimation error
and unstable composition of the portfolio.

Another well-known method for portfolio management is momentum trading.
Investors identify the inertia of a price trend to seek profit from the herding
behavior of market psychology. Momentum effects can be observed in stock markets
across the world and are not limited to any particular market [14]. However,
momentum strategies suffer heavily from sudden changes in market volatility. Any
changes in price trends will inflict significant losses for investors trading based on
the momentum.

Overall, conventional methods rely on static assumptions about the market such
as the market is efficient or asset returns and risks can be accurately estimated [16].
These assumptions do not accurately reflect the dynamic nature of the market. Thus,
the conventional models lack adaptability and is profitable only in the very long run.

2.2. Deep reinforcement learning methods

The DRL algorithms, on the other hand, are able to learn directly from raw sensory
input without much domain-specific knowledge. The DRL aims to approximate
optimal value or policy functions using deep neural networks and feedback signals
from the environment. For example, Brini et al. [17] considered DRL agents that
leverage classical strategies to increase their performances, and showed that this
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approach guarantees flexibility, outperforming the benchmark strategy when the
price dynamics was misspecified and some original assumptions on the market
environment were violated in the presence of extreme events and volatility
clustering. In addition, Chaoki et al. [18] demonstrated the potential of model-free
RL methods to derive trading policies. The environments were chosen such that an
optimal or close-to-optimal trading strategy was known. Their research showed that
an RL agent can successfully recover the essential features of the optimal trading
strategies and achieve close-to-optimal rewards. The DRL approaches can be divided
into three main categories: critic-only, actor-only, and actor–critic.

2.2.1. Critic-only approach

The core idea of a critic-only or value-based method is to estimate the state–action
values based on the Q-value function using a neural network. An investment
decision will then be made by selecting the action with the highest predicted
Q-value.

Researchers such as Chen et al., Dang, and Li et al. [3, 7, 19–21] applied variations
of the Deep Q-Network (DQN), which is the classic critic-only model, and were able
to outperform conventional methods. Brim et al. [22] generated candlestick images
as input to the convolutional neural network within a double DQN model.
Li et al. [21] explored the inclusion of market sentiment as an input to the DQN
model.

The limitation of the critic-only approach stems from its inherent reliance on
discrete state and action space, which limits the actions that the agent can take.
Adapting DQN to work with continuous action spaces in the case of portfolio
management is challenging due to its reliance on discrete Q-values for each possible
action.

2.2.2. Actor-only approach

On the other hand, an actor-only or policy-based method is where the agent learns
the optimal policy directly without the need to compute and compare expected
outcomes of actions by generating an optimal probability distribution over the
possible actions. An investment decision will then be made by selecting the action
with the highest probability.

Wang et al. [11] proposed a portfolio generator with a market scoring unit that
embeds the macro market conditions and an asset scoring unit that evaluates the
individual stock. The policy gradient algorithm is then applied to optimize the
trading policy. In addition, Liang et al. [23] presented the performances of the policy
gradient under different settings, including different learning rates, objective
functions, and feature combinations in order to provide insights into parameter
tuning, feature selection, and data preparation.
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The actor-only model is not a popular approach in portfolio management. The
limitation of the actor-only approach is the tendency to converge to a local optimum,
which results in high variance when evaluating the policy. Although there are
techniques to reduce this variance, there is a better approach to portfolio
management: the actor–critic approach.

2.2.3. Actor–critic approach

The actor–critic framework is made up of two models: the actor network
representing the policy that decides the action to take in a given state and the critic
network representing the value function that evaluates the action that was taken.
The actor–critic approach is able to combine the strengths of the critic-only and the
actor-only model, making it the most popular approach for portfolio management.

Yang et al. [24] proposed an ensemble trading strategy using three actor–critic
algorithms: PPO, A2C, and DDPG. The three models are validated using a 3-month
rolling window to select the best-performing agent with the highest Sharpe ratio
(SR). The selected agent would trade for the next interval. A turbulence index was
included in the model to detect any extreme market conditions. The agents were able
to sell off all the currently held stocks in the 2020 stock market crash and waited for
the market to return to normal before trading again.

Sadriu [25] applied A2C and DDPG to optimize a stock portfolio trading 28
constituent stocks of the OMX Stockholm Index. The paper evaluated the
performance of the two models during the 2020 stock market crash and noticed that
the conventional methods actually outperformed the DRL models. Although the
DRL models could recover from the crash faster, this shows the inability of the DRL
models to respond to extreme conditions in the stock market.

Instead of using the usual open, high, low, close price, and volume (OHLCV) and
technical indicators of the stocks, Yue et al. [10] proposed an anti-risk portfolio
trading method based on the A2C algorithm with a sparse denoising autoencoder to
first reconstruct the original financial data to minimize the impact of external
factors such as political news, natural disasters, etc. Koratamaddi et al. [26]
proposed a sentiment-award approach as an extension to the DDPG. The market
sentiment score is first calculated using headlines from Google News and Twitter
and passed as input to the model. Zhang et al. [27] experimented with both a
discrete action space using a DQN and the policy gradient algorithm and a
continuous action space with an A2C algorithm.

3. Problem definition
Portfolio management is the process of continuous reallocation of capital to create
and maintain a diversified portfolio. We modeled portfolio management process as a
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Markovian decision process (MDP). An MDP is defined as the tuple (S, A, p, r)
consisting of the following:

• S as the state space, which includes the stock price information and the
composition of the current portfolio

• A as the action space, which is the desired composition of the portfolio
• p(st, at, st+1) as the probability of transitioning to st+1 from state st by taking

action at
• r(st, at, st+1) as the immediate reward obtained from taking action at at state st

and transitioning to state st+1.

The goal of the trading agent was to find an optimal policy 𝜋∗ that determines the
best course of action to take at any given state. There are three assumptions made
about the portfolio management process:

• The liquidity of the market is high enough that there will be zero slippage. This
implies that each trade the trading agent makes will be carried out at the market
price.

• The capital invested by the trading agent is not significant enough to have any
influence on the market.

• All transactions will be made at the closing price.
• Short selling is not allowed.

4. Materials and methods

4.1. Dataset description

The ASX50 Index consists of the top 50 companies listed on the Australian Stock
Exchange based on market capitalization [28]. The index is weight-adjusted by the
market capital of the constituent stocks. These stocks have a high trading volume,
which suggests higher market liquidity, justifying our first assumption.

We extracted the daily OHLCV data of the stocks between 2017/01/01 and
2023/01/06 from EODData. The stocks selected were from the index composition at
the end of the time period. Although there have been changes to the constituent
stocks in the index over the 5-year period, it is not in our interest to mimic
the index.

Although there are 50 companies in the ASX50 Index, 5 companies had been listed
on the exchange later than 2017 and did not have data for the whole period. We
removed these stocks from the portfolio. Therefore, the final dataset consisted of 45
stocks in total (see Appendix A).
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Figure 1 shows the closing price of the ASX50 Index over the past 5 years. The
ASX50 Index has fluctuated wildly over the past 5 years: strong growth in 2019
followed by the COVID-19 crash in the first half of 2020. The index has recovered
steadily since the crash but is experiencing some volatility in 2022.

Figure 1. Closing price of the ASX50 Index (2017/01/01–2023/01/06).

The dataset was split into three periods as shown in Figure 2. Data from
01/01/2017 to 12/31/2019 were used for training, while data from 01/01/2020 to
12/31/2020 were used for validation. Finally, we would test our agent’s performance
on data from 01/01/2021 to 06/01/2023.

Figure 2. Training, validation, and testing periods.

4.1.1. Technical indicators

Apart from the OHLCV data, we computed the financial technical indicators to help
describe the market. Technical indicators reflect the stock market movements from
a different perspective and reduce the impact of noise on the data [29]. The technical
indicators fit into four categories: trend, momentum, volume, and volatility. Table 1
shows a summary of the technical indicators used. (See Appendix B for the details.)

4.2. Portfolio management environment

Our portfolio management environment was built using OpenAI Gym [30], an
open-source Python library for developing RL algorithms. It is important to build an
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Table 1. Summary of financial technical indicators.

Category Financial technical indicators

Trend 5-day exponential moving average (EMA)
Trend 20-day exponential moving average (EMA)

Momentum Moving average convergence divergence (MACD)
Momentum Relative strength index (RSI)
Momentum Stochastic oscillator

Volume On-balance volume (OBV)
Volume Volume price trend (VPT)
Volume Money flow index (MFI)

Volatility Bollinger Bands

environment that simulates real-world trading as closely as possible so that the
optimal policy learned can be applicable in the real world.

4.2.1. State space

The state space of our portfolio management environment at any given time t
consisted of two components: a 3D tensor (Pt) with the OHLCV and technical
indicator information and a vector (wt) that represents the current portfolio weight.
The tensor Pt has dimensions (n, w, f), where n = 45 is the number of available
stocks, w = 10 is the length of the observations in days, and f = 17 is the number of
features (OHLCV and technical indicators). A 10-day window was chosen based on
the idea that recent market trends and momentum changes hold greater significance
for decision making [31]. The observations were then normalized using
MinMaxScaler from scikit-learn. The transformation is given by

xscaled = x – min(x)
max(x) – min(x) . (1)

Here, wt = (wt, 0, wt, 1, … , wt, n)T has length n + 1, where wt,0 is the proportion of
cash and ∀i > 0, wt, i is the proportion of stock i in the portfolio at time t. The
elements of wt will always sum to 1 by definition. Then wt is initialized to (1, 0, 0, … ,
0)T, indicating that all the capital is in cash.

4.2.2. Action space

The action space of our agent was designed to handle continuous allocation of
capital across a portfolio of assets, including cash:

1. Action vector: at = (at,0, at,1, … , at, n) has length n + 1, where at,0 is the
proportion of cash and ∀i > 0, at, i is the proportion of capital allocated to stock i.
2. The elements of at must sum to 1:

∑n
i=0 at,i = 1.

3. No short selling of the stock: 0 ≤ at, i ≤ 1, ∀i.
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The policy output would consist of a vector of length n + 1 that directly represents
the allocation strategy of the agent based on its observations of the environment.

4.2.3. Initial balance and transaction cost

In order to minimize the impact of the trades on the stock market, we gave the agent
a smaller initial balance of $50,000. This is also a more reasonable amount for retail
investors to start with.

Different brokerage platforms charge different amounts of commission fees.
Given the small starting capital the agent has, the agent would be incurring the
minimum fee for each trade. Hence, a fixed commission fee of $20 per trade was
introduced, instead of a linear or quadratic cost model.

The introduction of a transaction fee should deter greedy algorithms that aim at
achieving an optimal portfolio at every time t [23]. The transaction fee is very much
present in the real world and can be very impactful to retail investors with low
capital.

4.2.4. Reward function

The ultimate goal of all investors would be to maximize their returns. Therefore, we
set the reward function as the logarithmic rate of returns:

rt = ln
(

pt
pt–1

)
(2)

where pt is the net returns at time t.

Saturation and inefficiency in learning can be an issue if the output is too sparse.
When the reward function has a large range of values, certain actions may be
assigned unnecessarily high importance, which can be disadvantageous in the long
run. As such, we applied a reward scale of 0.1. This will compress the space of
estimated expected returns and prevent any numerical instability [8].

4.3. Deep reinforcement learning models

We applied PPO and A2C algorithms from the Stable-Baselines3 library, which is a
set of pre-built RL algorithms with the TensorFlow library [32].

4.3.1. Proximal policy optimization

The PPO is an on-policy algorithm that optimizes the policy function while ensuring
that the distance between the new and old policies is not too large. This constraint
helps to prevent the policy from changing too much in each iteration, which could
lead to instability or suboptimal convergence.

The PPO uses a surrogate objective function to approximate the objective
function. The surrogate objective function restricts the range within which the
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policy can change. The clipped ratio is introduced to clip the policy update to a range
between 1 − ε and 1 + ε, where ε is a small positive number.

4.3.2. Advantage actor–critic

The A2C is an on-policy algorithm and an extension to the baseline actor–critic
algorithm. In the baseline actor–critic algorithm, there are two models: an actor
network that generates the policy and a critic network that measures how good the
chosen action is. However, the log probability in the objective function has very high
variance as it involves taking logarithms of small probabilities.

Instead of the action value function, A2C uses an advantage function. The idea of
the advantage function is to determine how much better a certain action is
compared to the average action. The advantage function provides a baseline that
leaves behind only the part that is attributable to the action. This helps to mitigate
the high variance in the policy gradients and ensure more stable training.

4.4. Performance metrics

We looked at five metrics to evaluate the performance of the agents. This includes
compound annual growth rate (CAGR), cumulative return, annual volatility, Sharpe
ratio, and maximum drawdown (MDD).

The CAGR is the measure of the annual return of an investment over time. The
CAGR can be expressed as follows:

CAGR = Vfinal
Vinitial

1
t

– 1 (3)

where Vfinal is the final value, Vinitial is the initial value, and t is time in years.

Cumulative return is the cumulative sum of the daily returns and can be
expressed as follows:

CR = Vfinal – Vinitial
Vinitial

. (4)

Annual volatility represents the dispersion of the returns and can be expressed as
follows:

σp = √252 × σ (5)

where 𝜎 is the standard deviation of the returns.

The SR is the measure of risk-adjusted return, which describes how much excess
return you are receiving for the volatility incurred. We defined risk-free rate to be
the Australia 10-Year Government Bond in this study. The SR can be expressed
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as follows:

SR =
Rp – Rf
σp

(6)

where Rp is the return of portfolio and Rf is the risk-free rate.

The MDD is the maximum drop in the value of the investment by finding the
value between the peak and a trough before a new peak is attained.

5. Results
As shown in Figure 3, the performance of both the PPO and A2C fell short of
expectations with the returns constantly plunging over time and eventually hitting
rock bottom. Further investigations suggest that the underachieving results were
due to the high volume of daily transactions in the first quarter of 2020.

Figure 3. Cumulative return for PPO and A2C portfolios against ASX50. Both agents
were unable to overcome the steep transaction cost.

Figures 4 and 5 show the distribution and trend of number of transactions made
per day by the PPO agent, respectively. The PPO agent made around 30.67
transactions, paying a transaction cost of $613.40 per day. Figures 6 and 7 show the
distribution and trend of number of transactions made per day by the A2C agent,
respectively. The A2C agent made around 18.27 transactions, paying a transaction
cost of $365.40 per day.

We noticed that at and at−1 often differ greatly. In order to achieve the new
portfolio wt+1 = at, the agents would need to make many different trades. Sometimes,
the transactions only involve selling or buying a very small number of stocks.

To tackle the issue of having an overly high number of daily transactions, we
introduced threshold k, which acts as a cut-off point in deciphering whether the
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Figure 4. Distribution of number of transactions per day for PPO agent. Agent was
averaging 30.67 transactions per day.

Figure 5. Trend of number of transactions per day for PPO agent. Large number of
transactions at the start of the trading period resulting in the agent running out of
money towards the end.

Figure 6. Distribution of number of transactions per day for A2C agent. Agent was
averaging 18.27 transactions per day.
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Figure 7. Trend of number of transactions per day for A2C agent. Similar trading
pattern to the PPO agent resulting in A2C agent running out of money due to
transaction cost.

trade should be exercised. The trade involving stock i was allowed only if

at,i – wt,i > k. (7)

Trades would only occur if the agent decided that the weight of a certain stock needs
to change by at least k. To achieve an optimal threshold value for both agents, we
conducted cross-validation across a range of values from 0.04 to 0.06 with an
interval of 0.005. It was observed in Figures 8 and 9 that the performance of the PPO
and A2C agents had improved.

Figure 8. Cumulative returns of PPO agents with different transaction thresholds.
PPO agents still made too many transactions, which resulted in the balance going to
zero.

However, the results were still undesirable. The PPO agent continued to spiral out
of control, while the A2C agent failed to beat the ASX50 market. We also noticed
that the A2C agent (k = 0.06) did not make any transactions, which resulted in a
stagnant trendline.
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Figure 9. Cumulative returns of A2C agents with different transaction thresholds.
The balance of the A2C agents did not go to zero but they were still underperforming.

5.1. High transaction frequency

We investigated the trading history of the A2C agent with the best results (k = 0.045).
Figures 10 and 11 show the distribution and trend of number of transactions made
per day, respectively. The A2C agent made around 2.47 transactions, paying a
transaction cost of $49.40 per day. The number of transactions per day has decreased
significantly. However, we observed that the frequency of transactions remained
very high. We could increase the threshold further, but as shown in Figure 9, the
result did not improve and eventually k will be too high for the agent to make any
trades.

Figure 10. Distribution of number of transactions per day for A2C agent (k = 0.045).
Transactions per day had gone down significantly.

We then looked into one of the holdings the A2C agent (k = 0.045) had. In
Figure 12, we noticed that the agent was making some peculiar trades. The agent had
the intention to hold CBA.ax for a very long term. However, once in a while, it will
sell the entire holding before buying it back shortly after. Every such sell and buy
would cost the agent $40, which was an unnecessary expense. The agent was very
rash in making its decisions and did not have a long-term plan in mind.
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Figure 11. Trend of number of transactions per day for A2C agent (k = 0.045). The
agent is transacting almost every single day, which is too frequent.

Figure 12. CBA holdings in the A2C portfolio (k = 0.045). There were many peculiar
instances where the agent sells the whole portfolio before buying it all back.

Therefore, instead of simply comparing at against wt, we computed a weighted
moving average of at. The agent would only be able to execute a trade involving
stock i if

WSw(t, i) =
w∑
j=0

(w – j) × at–j,i
w (8)

WMAw(t, i) = WSw(t, i)∑n
j=1 WSw(t, j) (9)

WMAw(t, i) – wt,i > k (10)

where WSw(t, i) is the weighted sum of at in a window w.

Trades would only occur if the agent decided that the weight of a certain stock
needs to change by k for a time period w. To achieve an optimal threshold value for
both agents, we conducted cross-validation across three values: w = 5, 10, and 15. 
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The results of the PPO agent improved substantially as shown in Figure 13. The
agent is able to beat the index, with a few models achieving decent returns. The PPO
agent (k = 0.04, w = 15) reported a cumulative return of 13.25% but an annual
volatility of 15.56% as shown in Table 2. However, the market experienced a crash in
the first quarter of 2020. A model like the PPO agent (k = 0.045, w = 15) is too
conservative. It has a much lower annual volatility but the upside after the crash was
not as high as the PPO agent (k = 0.04, w = 15). Therefore, we chose the PPO agent (k
= 0.04, w = 15) as our final PPO model.

Figure 13. Cumulative returns for PPO agent with weighted moving average weights.

The results of the A2C agent improved substantially as shown in Figure 14. The
agent is able to beat the index, with one model achieving remarkable returns. The
A2C agent (k = 0.05, w = 15) reported a cumulative return of 23.68% but an annual
volatility of 15.64% as shown in Table 3. Therefore, we chose the A2C agent (k = 0.05,
w = 15) as our final A2C model.
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Table 2. Summary of validation results for PPO agent with weighted moving average weights. The best PPO agent is
k = 0.04, w = 15 with 13.25% validation CAGR.

Transaction threshold

Window size 0.04 0.045 0.05 0.055 0.06

5 −16.76%
(25.29%)

−12.23%
(27.02%)

4.56%
(24.44%)

6.45%
(22.64%)

−2.79%
(17.79%)

10 7.83%
(25.77%)

6.17%
(17.09%)

11.05%
(12.14%)

1.71%
(4.10%)

−0.39%
(1.49%)

15 13.25%
(15.56%)

12.06%
(9.04%)

4.56%
(3.68%)

0.85%
(1.37%)

0.61%
(0.88%)

Figure 14. Cumulative returns for A2C agent with weighted moving average weights.
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Table 3. Summary of validation results for A2C agent with weighted moving average weights.

Transaction threshold

Window size 0.04 0.045 0.05 0.055 0.06

5 −1.41%
(25.28%)

2.27%
(24.97%)

−9.71%
(21.29%)

8.71%
(18.8%)

0.0%
(0.0%)

10 −1.82%
(24.85%)

0.0%
(0.0%)

2.04%
(23.75%)

9.44%
(17.1%)

0.0%
(0.0%)

15 7.53%
(17.14%)

0.58%
(21.52%)

23.68%
(15.64%)

5.46%
(13.26%)

1.95%
(11.28%)

5.2. Overall performance

Figure 15 illustrates the cumulative returns of the final PPO and A2C agents against
the benchmark, ASX50 Index. The PPO agent was able to achieve a higher CAGR
compared to the A2C agent. Both agents reported a positive cumulative return;
however, both agents fell short of beating the index.

Figure 15. Cumulative returns of the final PPO and A2C agents against ASX50 Index.

Table 4 shows the summary statistics of the performance metrics by the agents
and the ASX50 Index. Both the PPO (4.83%) and A2C (1.32%) had a lower
cumulative return than the index (8.03%). The PPO portfolio had the lowest annual
volatility (9.47%) while the A2C (13.98%) and the index (13.43%) had similar annual
volatility. The A2C had the highest maximum drawdown (−24.59%) while the PPO
had the lowest maximum drawdown (−11.76%). This shows that the PPO portfolio
takes much lower risk as compared to the A2C model and was able to perform better.
However, the SR of the PPO portfolio is only 0.29. The reduced level of risk taken did
not produce sufficient returns.

However, if we examined each year of the testing period separately, we would get
completely different results. Table 5 shows the summary statistics of the
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Table 4. Summary statistics of final PPO and A2C agents against ASX50 Index.

Portfolio CAGR (%) Cumulative return (%) Annual volatility (%) SR MDD(%)

PPO 2.34 4.83 9.47 0.29 −11.76
A2C 0.65 1.32 13.98 0.12 −24.59

ASX50 3.85 8.03 13.43 0.35 −14.59

Table 5. Summary statistics of final PPO and A2C agents against ASX50 Index (2021). Both agents performed well in a
bullish market. A2C agent was able to generate twice the CAGR compared to PPO agent and the index.

Portfolio CAGR (%) Cumulative
return (%)

Annual
volatility (%)

Sharpe ratio Maximum
drawdown (%)

PPO 10.41 10.41 4.95 2.06 −4.67
A2C 21.78 21.78 9.38 2.18 −6.73

ASX50 10.38 10.38 11.16 0.95 −6.75

performance metrics by the agents and the ASX50 Index in 2021. This was a bull
market, evident from the cumulative return of ASX50 (10.38%). Both the A2C
(21.78%) and PPO (10.41%) portfolios had higher returns than the index.
Additionally, both PPO (4.95%) and A2C (9.38%) recorded lower annual volatility
than the index (11.15%). The SR was “very good” for both the PPO (2.06) and A2C
(2.18) portfolios [33]. The PPO (−4.67%) portfolio was able to report the lowest
maximum drawdown again.

Table 6 shows the summary statistics of the performance metrics by the agents
and the ASX50 Index in 2022. This was a bear market, evident from the negative
cumulative return of ASX50 (−2.14%). Both the A2C (−16.37%) and PPO (−4.70%)
portfolios had lower returns than the index. The PPO portfolio was able to report
the lowest maximum drawdown and annual volatility at −11.76% and 12.29%,
respectively.

Table 6. Summary statistics of final PPO and A2C agents against ASX50 Index (2022). Both agents performed worse
than the index in a bearish market. A2C suffered more compared to PPO agent.

Portfolio CAGR (%) Cumulative
return (%)

Annual
volatility (%)

Sharpe ratio Maximum
drawdown (%)

PPO −4.70 −4.70 12.29 −0.31 −11.76
A2C −16.37 −16.37 17.18 −0.91 −24.59

ASX50 −2.04 −2.14 15.30 −0.06 −14.46
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5.2.1. PPO portfolio

Table 7 shows the top gains and top losses in the PPO portfolio. The PPO agent had
made trades with 37 out of the 45 available stocks. The agent made profit in 21 of
them with an average of $392.69 per stock and suffered a loss in 16 of them with an
average of −$341.74 per stock. The agent made 66 (40 buys and 20 sells) transactions
over the 2-year period paying $1320 in transaction cost.

Table 7. Top gains and losses of the PPO agent. PPO agent made the most from trading WTC with $1254.56 profit and
lost the most with JHX with $1140.60 loss.

Figure 16 shows the cumulative return of the top loser JHX against the ASX50
Index. The agent bought 60 JHX at $45.31 on 22/02/2022 and it is down 41.96% as of
06/01/2023. The agent seemed to believe the stock will eventually rebound and still
held on to the stock. Figure 17 shows the cumulative return of the top winner WTC
against the ASX50 Index. The agent bought 85 WTC at $31.01 on 2021/07/05. The
stock price surges by 47.60% over the next 2 months. The agent then sold the stock at
$45.77 on 2021/09/01. The agent had not traded the stock again since.

Figure 16. Cumulative return of the top loser (JHX) against ASX50 Index.
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Figure 17. Cumulative return of the top winner (WTC) against ASX50 Index.

5.2.2. A2C portfolio

Table 8 shows the top gains and top losses in the A2C portfolio. The A2C agent had
made trades with 17 out of the 45 available stocks. The agent made profit in eight of
them with an average of $826.03 per stock and suffered a loss in nine of them with an
average of −$656.27 per stock. The agent made 19 transactions (17 buys and 2 sells)
over the 2-year period paying $380 in transaction cost. As compared to the PPO
agent, the A2C agent keeps a smaller portfolio and tends to hold on to a given stock
for a longer period of time.

Table 8. Top gains and losses of the A2C agent. A2C agent made the most from trading S32 with $2067.10 profit and lost
the most with TAH with $2484.12 loss.

Figure 18 shows the cumulative return of the top loser TAH against the ASX50
Index. The agent bought 652 TAH at $4.90 on 08/06/2022. The TAH share price
crashed significantly, dropping by a massive 82%. This hurt the returns of the A2C
portfolio really badly and is a major reason for the A2C portfolio’s bad performance
in 2022. Figure 19 shows the cumulative return of the top winner S32 against the
ASX50 Index. The agent bought 1090 S32 at $2.72 on 2021/02/23. The agent held on to
the stock for about a year and then sold 630 (58%) of the stock at $4.96 (82.35%
increase) on 2022/04/13. The agent held on to the remaining 430 stocks since.

The A2C agent has the tendency to buy a stock and hold it for a very long term. In
fact, it had only made two sells over the past 2 years but have built up a portfolio of
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Figure 18. Cumulative return of the top loser (TAH) against ASX50 Index.

Figure 19. Cumulative return of the top winner (S32) against ASX50 Index.

17 stocks. One was S32.ax as shown in Figure 19. The other sell was TLS as shown in
Figure 20. The threshold value that was determined by the validation process might
not be suitable for the market conditions in the testing periods, resulting in critical
trades not executed.

Figure 20. Cumulative return of TLS against ASX50 Index.
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6. Conclusion
In conclusion, we applied two DRL algorithms with continuous action space
to tackle the portfolio management problem in the Australian market. In order to
reduce the frequency and volume of trading made by the agents, we introduced a
weighted moving average and a transaction threshold to determine whether the
trade executed by the agents is necessary. The weighted moving average and
threshold were able to help reduce the number of trivia trades made by the
agent. The optimal windows for the moving average and the optimal threshold
were determined to be 15 and 0.04 for PPO and 15 and 0.05 for A2C,
respectively.

The trading agents were unable to outperform the ASX50 Index, but they were
still able to somewhat capture the patterns of the market movement. The A2C agent
was better at following trends and have the higher upside potential but can suffer
from more severe damage during bearish markets. On the other hand, the PPO
agent has the lowest annual volatility and the highest maximum drawdown, which is
more helpful in a bearish or volatile market. The opposite conclusion was drawn in
the study by Yang et al. In their study, they observed that the A2C agent had the
lowest annual volatility and the highest maximum drawdown while the PPO agent
acts better in generating more returns [24].

The DRL still has many limitations when being applied to portfolio management.
Some of the limitations include the following:

1. Data limitations: The DRL requires a large amount of high-quality data for the
agents to be trained effectively. However, high-quality financial data is not easily
accessible to the average person. The OHLCV data is very noisy and is influenced
by many external variables that are not predictable. This makes it very challenging
for one to develop an agent that can respond to any market conditions.
2. Overfitting: The DRL can be prone to overfitting, which can be evident in
this study. The agents were able to trade and perform well in the validation period
as well as the first half of the testing period. However, when faced with a situation,
they will make incorrect investment decisions resulting in poor
performance.
3. Black-box models: It is very difficult to interpret how the agents are able to
come up with those decisions. In our study, we were able to identify the top losers
of the portfolio, but we were unable to say for sure why the agent made such a bad
trade. We could only speculate based on the retrospective information. This can
make it hard to explain the agent’s decisions to investors, which is often more
important than the results itself.
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4. Real-world implementation: The simulated stock environment is built upon

many assumptions and cannot fully cover the complexity of the stock market in

the real world. There are many other hurdles that need to be overcome.

For future works, there is a limitation of using a fixed transaction threshold when

deciding on which trades are necessary and which are not. It will be interesting to

explore a more dynamic way to determine such a threshold. Second, many

researchers have proposed including market sentiment into the model, which we

agree is a crucial factor to stock trading. However, financial natural language

processing (NLP) is non-trivial and a separate field of research on its own. It will be

interesting to see if any breakthrough in the field of NLP will bring new perspectives

to DRL in portfolio management. Lastly, an explainable artificial intelligence (XAI)

set of frameworks can help understand and interpret the decisions made by the

agents. It will be interesting to explore improving the explainability of DRL agents

in portfolio management, which could give us new insights into how we approach

trading stocks.
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Appendix A. List of 45 constituent stocks of ASX50 used
in this study

SN Ticker Company

1 AIA Auckland International Airport Ltd

2 ALL Aristocrat Leisure Ltd

3 AMC Amcor Plc

4 ANZ Australia and New Zealand Banking Group Ltd

5 APA APA Group

6 ASX ASX Ltd

7 BHP BHP Group Ltd

8 BSL Bluescope Steel Ltd

9 BXB Brambles Ltd

10 CBA Commonwealth Bank of Australia

11 COH Cochlear Ltd

12 COL Coles Group Ltd

13 CSL CSL Ltd

14 DXS Dexus

15 FMG Fortescue Metals Group Ltd

16 FPH Fisher & Paykel Healthcare Corporation Ltd

17 GMG Goodman Group

18 IAG Insurance Australia Group Ltd

19 JHX James Hardie Industries Plc

20 MGR Mirvac Group

21 MQG Macquarie Group Ltd

22 NAB National Australia Bank Ltd

23 NCM Newcrest Mining Ltd
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24 NST Northern Star Resources Ltd

25 QBE QBE Insurance Group Ltd

26 REA REA Group Ltd

27 REH Reece Ltd

28 RHC Ramsay Health Care Ltd

29 RIO RIO Tinto Ltd

30 RMD Resmed Inc

31 S32 SOUTH32 Ltd

32 SCG Scentre Group

33 SEK Seek Ltd

34 SGP Stockland

35 SHL Sonic Healthcare Ltd

36 STO Santos Ltd

37 SUN Suncorp Group Ltd

38 TAH Tabcorp Holdings Ltd

39 TCL Transurban Group

40 TLS Telstra Corporation Ltd

41 WBC Westpac Banking Corporation

42 WES Wesfarmers Ltd

43 WOW Woolworths Group Ltd

44 WTC Wisetech Global Ltd

45 XRO Xero Ltd

Appendix B. Details of technical indicators

EMA is a trend-following indicator that places a greater emphasis on recent data

points. As compared to a simple moving average, EMA is more sensitive to recent

price movements, and thus is more reliable and relevant. EMA can be expressed
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as follows:

EMAn(t) = 2 × ct + (n – 1)EMAn(t – 1)
n + 1 (B.1)

where ct is the close price at time t and n is the time span.

MACD is a momentum indicator that shows the relationship between two EMAs,

calculated by taking the difference between a long-term EMA and a short-term

EMA. MACD can be expressed as follows:

MACD(t) = EMA12(t) – EMA26(t). (B.2)

RSI is a momentum indicator that measures the speed and magnitude of the stock

price movement to determine whether the stock is overbought or oversold by

comparing the average gains and loss over a specified time period. RSI can be

expressed as follows:

RSI = 100 – 100
1 + RS (B.3)

where RS is the average gains over average loss over a period.

Stochastic oscillator is a momentum indicator that compares the close price to its

price range over a specific period of time. The stochastic oscillator can be expressed

as follows:

%K = ct – L
H – L × 100 (B.4)

where L and H are the lowest and highest prices over a period.

OBV is a volume indicator that measures the buying and selling pressure of the

stock, using the trading volume movement to predict the stock price movement.

OBV can be expressed as follows:

OBVt =


OBVt–1 + vt, if ct > ct–1

OBVt–1 – vt, if ct < ct–1

OBVt–1, otherwise
(B.5)

where vt is the trading volume at time t.

VPT is a volume indicator that measures the strength of a trend based on the

relationship between the trading volume movement and stock price movement. VPT
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can be expressed as follows:

VPTt = VPTt–1 + vt ×
ct – ct–1
ct–1

. (B.6)

MFI is a volume indicator that measures the inflow and outflow of money into a

stock over a specific period of time. Similar to RSI, MFI is used to identify

overbought and oversold signals, but it incorporates both price and volume data.

MFI can be expressed as follows:

MFI = 100 – 100
1 + MFR (B.7)

TPt = ht + lt + ct
3 × vt (B.8)

where MFR is the average typical price (TP) gains over average loss over a period.

Bollinger Band is a volatility indicator that is defined by two trendlines, each at

two standard deviations away from a simple moving average (one above and one

below). The Bollinger Band can be expressed as follows:

BB = SMAn ± σn (B.9)

where SMAn(t) is the simple moving average and 𝜎n(t) is the standard deviation of

TP over the last n periods.
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