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Abstract
Theories are required for artificial intelligence (AI) to make greater progress. Despite
the development of several AI theories, their use is minimal and their nature is not
widely known. An analogy with software engineering theories was used to analyze
kernel, genetic, design decision, task, and AI innovation theories to determine their
nature and characteristics. These theories were then applied to the CommonKAD
methodology in AI to explore how they could improve the methodology, potentially
contributing to the evolution of AI theories and increasing their application.
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1. Introduction
Theories are a language for comprehending the world; they shape what we observe
and perceive. A good theory is an asset while a wrong one can be a liability [1]. A
theory is a system of rules that mimic the real world in a cost-effective and painless
manner [2]. They enable sense-making, organizing, and leveraging large amounts of
knowledge. According to the postulates of systemism, all things or ideas are put
together into theories and artifacts that function as systems [3]. Ideas organized as
systems (theories) are more effective and efficient in achieving their goals than
those operating in isolation.
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Artificial intelligence (AI) is a science and engineering discipline [4]. The AI,
software engineering (SE), and science and engineering disciplines require theories
to advance as disciplines [5]. In the early days, civil, electronics, and aeronautical
engineering lacked explicit theories and relied on rules of thumb and trial and error,
making their work unpredictable. These fields are being developed rapidly by
creating theories with explanatory and predictive power over phenomena [2].
AI and SE are similar in that they both involve science and engineering, but AI has a
nearly equal balance of both, whereas SE is predominantly engineering-focused.
Hence, AI should ideally have more science theories or hybrids of science and
engineering compared to SE. Also, there are more similarities shared between SE
and AI compared to other computing disciplines such as computer science,
computer engineering, information systems (IS), and information technology.

AM/Eurisko is a program based on the principle that research is learning,
introducing a discovery-based learning approach [6]. Scientists form research
communities that create, apply, evolve, and retire theories that drive the growth of
their disciplines. The researchers Charniak and McDermott [6] applied this
principle to AI theory building, suggesting that research in AI is analogous to the
work of scientists.

This indicates that scientists learn through research to create theories. The
authors used the principle to determine implications for AI theory building. They
considered three philosophical theory change perspectives that apply to AI theory:

(1) Popper’sTheory of Falsification: Theories are tested and falsified through
experiments. Falsified theories are discarded and replaced with new ones. This
implies that while theories can be proven wrong, they can never be proven
right [7].

(2) Kuhn’s ParadigmShift: New fields develop new theories through paradigm
shifts, creating completely new frameworks for understanding [8].

(3) Lakatos’ Research Programs: A theory is replaced when a better theory
emerges, suggesting that experiments do not play a core role in theory change [9].

The derivation and application of these principles demonstrate a concurrent
analogy between AI solutions and human reasoning. While human reasoning has
predominantly inspired the development of AI solutions, the reverse derivation of
principles is largely an unexplored area. Analogy-inspired discovery, invention, and
innovation are widely used in science, engineering, and technology to solve new
problems based on existing solutions.

Artificial intelligence’s long road to becoming a more sustainable and mature
discipline involves creating new theories and evolving existing ones. This journey
may seemingly have a long path as AI deals with more complex intelligence
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phenomena than fields like physics or electronics and AI phenomena are not
governed by natural laws except in hardware domains like robotics. Physics
researchers have made great progress, but AI is unlikely to make similar advances
quickly due to the complexity of many causes and variables than physics that have
emerged from heterogeneous processes. Thus, AI-theory-building progress will be
slow and based on inventing, combining, and reorganizing an ever-increasing
collection of incomplete theories [10]. These incomplete theories will evolve into
micro-, mid-range, and kernel (general) theories. Although incomplete theories can
be useful for further development, these theories are not as effective as complete
theories, and combining them is less fruitful than working within a system of
completed theories. The perspectives of Charniak and McDermott [6], as well as
Minsky [10], on theories apply to varying degrees to AI engineering and science
paradigms. The theories analyzed in this study encompass science, engineering,
design, and hybrid categories. Most engineering and design theories cannot be
falsified due to the broad range of variables and causes. However, their productivity
may be demonstrated through widespread use among researchers and practitioners.

A fourth philosophical perspective, distinct from falsification, paradigm shifts,
and the creation of better theories, suggests that AI theories develop through
dialectics, in which a set of theories is proposed as the thesis, opposing theories
form the antithesis, and the synthesis stage combines the thesis and antithesis,
harmonizing them. In this synthesis, unproductive parts of theories are removed
and contradictory yet useful elements are harmonized. In the work proposed by
Johnson [11], five paradigms of computing have been discussed: the dialectical
thesis, antithesis, and synthesis; proof by demonstration (where building something
demonstrates its viability); empiricism (develops theory by generating hypotheses
and validating them with data); hermeneutics (involves creating and operating
artifacts in real environments); and mathematical proof (involves creating and
proving theories mathematically). Theories of change, falsification, paradigm shift,
and the creation of better theories are broadly applicable across different disciplines.
Meanwhile, Johnson’s [11] dialectics, hermeneutics, and empiricism are general
approaches adapted from outside computing, while mathematical proof and proof
by demonstration are specific to computing.

The SE shares many similarities with AI as both involve developing software that
executes on computers and acquiring knowledge and experience by learning from
doing, inventing, and then systemizing what is learned. The limited use of theories
in both disciplines has been identified as an obstacle preventing their maturation as
engineering disciplines [5, 12]. Finally, disciplines and other fields should impart
knowledge to one another.

The Institute of Electrical and Electronics Engineers (IEEE) [13] defines SE as a
systematic, disciplined, and quantifiable approach to the development, operation,
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and maintenance of software, emphasizing the application of engineering principles
to software. By substituting “SE” with “AI” and adapting “software” to “intelligent
software” and “engineering discipline” to include both science and engineering, the
derived definition would qualify as an AI definition.

Since its inception, SE has aspired to be recognized as an engineering discipline
while AI has aimed to replicate human intelligence in machines, integrating both
science and engineering. Early definitions of AI were focused on the technology of
creating machines that think and act like humans, imitating complex human skills,
or making intelligent machines. Others defined AI by analogy to human intelligence,
deep learning, machine learning, and cognition. The author McCarthy defined AI as
the science and engineering of making intelligent machines [14]. Initially, AI
emphasized scientific exploration more than engineering, contrasting with SE’s
early focus on engineering principles with less emphasis on science.

CommonKAD is an expert, knowledge-based, [15] and knowledge
management [16] systems development methodology created by the European
ESPRIT project. It contrasts with agile methods by emphasizing comprehensive
planning and designing. As a comprehensive literature review of AI methodologies,
the AI theories discussed in this study will also cover several aspects of
CommonKAD.This study selected CommonKAD to apply AI theories, aiming to
understand the nature of these theories and discover ways to improve them, while
reporting the advantages and disadvantages of the aforementioned CommonKAD
methodology. AI can benefit from learning through analogy with SE by creating
relationships between AI theories and CommonKAD similar to those between agile
methods and Software Engineering Method andTheory (SEMAT) SE theory. The
SEMAT SE theory enhances agility by, for example, providing teams with tools to
improve their working methods by comparing and contrasting practices [17]. The
study’s exploration and application of AI theories to improve CommonKAD is
partially inspired by the way SEMAT theory is used to improve agile methods.

Theories analyzed in this study include kernel, genetic, design decision, task, and
innovation theories. Kernel theories encompass most intelligence activities; genetic,
decision design, and innovation theories are domain-specific while task theories are
domain-independent and address the basic, smallest atomic unit of an activity. Each
theory will be used to explore possible ways of understanding, discovering, and
improving CommonKAD. Methodologies are constructed by combining
microtheories, best practices, and design advice while theories are built by
integrating concepts and theory fragments. The study aims to: (1) determine the
nature of AI theories; (2) explore how analogy can be used to improve AI theorizing
by learning from engineering and software engineering theory building; and
(3) investigate how these theories can contribute to understanding and discovering
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possible ways to improve the CommonKADmethodology, with the possibility of
applying lessons learned to improve the theories.

2. Designing and creating theories
This section addresses the first and second research objectives by analogizing the
nature of theorizing and learning with engineering and SE theory building.

2.1. AI philosophy and relationship with design theory

Philosophies such as those proposed by Popper, Kuhn, and Lakatos apply broadly to
most disciplines. In contrast, specific philosophies apply to disciplines like AI or
related fields like computing and engineering. The AI philosophy, traditionally
framed within the philosophy of science, should be expanded to include engineering
and technology, contributing to the philosophy of engineering [18]. While
transdisciplinarity is based on duality, [19] AI involves both duality and either–or
logic. Design theory, central to the philosophy of technology [20], should be
integrated into AI philosophy to encompass engineering aspects. Design theory,
initially developed within design disciplines, has been adopted by fields such as AI
as both science and engineering theory. Design science research frameworks
contribute to creating new knowledge through scientific research methods and also
innovative artifacts through engineering methods [21]. These design research
methods are used in all computing disciplines [22], often being adapted or
developed based on existing computing theories. Some of these are frameworks that,
in addition to research, create artifact innovations. When theories and
method-based theories are applied across computing disciplines, the underlying
concepts are implicitly applied. Computing disciplines sometimes borrow methods
from other disciplines and later adapt these methods to fit computing theories [22].
This ability to create theories and methods applicable to all computing disciplines
shows that these disciplines have many similarities. This interconnectedness can be
used by bioinspired design to create theories for one computing discipline from the
existing theories of other computing disciplines.

Wieringa et al. [23] created the first SE design theory with inspiration from
engineering theories, which are practical and widely usable as design theories.
Similarly, AI design theories could be adapted to function as design research and
innovation theories as demonstrated with IS design research [24]. This adaptation
could streamline AI artifact research, development, and innovation.

The integration of philosophy and AI theory has become mainstream [25], with
AI philosophy essential for neuroscience and neurophysiology to successfully
reverse-engineer human and mammalian brains and to advance robotics [26].
Reverse engineering neuroscience and neurophysiology will benefit AI and other
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disciplines, especially through inspired design. AI theory is crucial for systematically
transforming basic research into applied research and inventions, complementing
AI philosophy.

The classical “computationalist” view is that AI and cognitive science are two
sides of the same coin, with computing representations applicable across computing
natural, artificial, and cognitive science systems [25], reflecting a transdisciplinary
duality. Various paradigms, such as connectionist and symbolic, can design
intelligent agents [27]. These paradigms may eventually be replaced by others such
as behavioral robotics and neural networks [25]. Theories should ideally be derived
from philosophy, and designers use design strategy to translate user and AI
knowledge into AI products [28], leveraging multiple perspectives and alternatives.

Engineering design theories can be considered as user-friendly as they elucidate
phenomena in terms of mechanisms, while most SE theories are statistical theories
that are difficult to use [23]. The theories analyzed in this study are categorized as
incomplete design theories to varying degrees. Previously, the author Wang [29]
suggested that there are no widely used design theories in AI. In the aforementioned
work, one of the potential reasons for this is that design theories are more difficult to
use than design methods as design theories are formulated at a higher abstraction
level than design methods. Another reason is that creating computing design
theories is a more recent endeavor compared to the longstanding use of design
methods. Currently, only pioneering innovators are experimenting with and
adopting these theories, often through a process of trial and error and
experimentation [30]. The lack of a critical mass of early adopters makes it difficult
for subsequent groups of adopters as these groups rely on the knowledge and
experience of early adopters.

Design theories have four characteristics: they address design issues, are
generative, accept the propositions and language of other design theories, and
utilize propositional logic [31]. These theories create solutions and designs, making
them observable and understandable to adopters. AI design theory could
incorporate elements from other design theories, building on existing research. The
transfield between AI and SE could provide a basis for these disciplines to use each
other’s theories [12].

2.2. How are AI and SE theories created?

Mature scientific disciplines build and accumulate knowledge primarily through
theory development. In contrast, SE has historically placed less emphasis on theory
building than these disciplines, and AI even less so [32]. For example, the annual
SEMAT workshop focuses on general theory development in SE, starting with
identifying the SE kernel common to all software engineering [33]. An equivalent
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focus on theory development in AI through workshops, conferences, or journals
could play a similar role.

Science, engineering, and computing follow the same Technology Innovation,
Development, andTheory Creation (TIDTC) cycle [5], which makes it possible for
AI to learn from SE theory building. For example, the SEMAT SE kernel theory
prevents teams from being constrained by methods by continuously improving
them [33]. AI theories could similarly enhance the CommonKADmethodology.
While there has been some borrowing between SE and AI, there is undoubtedly
room for improvement. Borrowing theories is widely recognized as beneficial,
though opinions differ on which and howmany theories to borrow.The AI and SE
communities should engage more through collaboration and share knowledge
during major development and research projects across the TIDTC cycle steps:
folklore, knowledge codification, and theory development.

The Function–Behavior–Structure (FBS) engineering design theory, initially
from engineering [34], has been borrowed by SE. Although there are few studies on
theory borrowing in computing, IS have conducted several investigations. For
example, studies have found that even inappropriate theory borrowing may be
useful as a learning process, developing theory-borrowing skills [35]. The authors
Hall and Rapanotti [36] have found that borrowing similar ideas and knowledge
from IS by SE is useful, and similarities between computing disciplines can be
explored for potential borrowing. SE’s rational unified process, Pahl engineering,
and service design models when cast into FBS revealed many similarities,
indicating that design may be independent of the discipline [37]. This disciplinary
independence is a transdisciplinary principle. The similarities between design
theories and some design elements across disciplines suggest opportunities for
borrowing and extending some computing design theories. In the study by
Ralph [34], combining SE sense-making with FBS design theories for modeling
software systems has been proposed. The FBS theory proponents claim that the
theory is based on eight fundamental design processes [34, 38]. In addition, FBS
has been applied in different disciplines, providing some evidence supporting this
claim.

Theories make knowledge more transferable [39], and are important for
conceptualization and communication within a research field, aiding practitioners
in making strategic technology and project decisions [40]. The SE theories have a
higher degree of diversity than those of physics [39], but transdisciplinarity can help
reduce this variation [12]. AI is transdisciplinary [41], with a broader range of
theories compared to SE.The goal of intelligent SE is to apply SE knowledge to AI
and vice versa [42], increasing opportunities for theory use in both disciplines.
Figure 1 shows the evolution of theories and methods.
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Figure 1. Theory and method creation, adoption, and evolution.

Furthermore, the author Gruner [43] discussed that general theories of SE and IS
design could not exist, and any attempt to develop such theories is ineffective and
wastes resources. Also, the authors Shaw and Garlan [5] discussed developing SE to
mature the discipline into a true engineering field. Furthermore, in the study by
Gruner [43], the development of microtheories has been supported. In contrast,
Shaw and Garlan [5] advocate for three types of theories: general, mid-range, and
microtheories. There is a contradiction between these two studies on general
theories and agreement on microtheories. Moreover, Gruner [43] does not consider
mid-range theories. The contradiction can be resolved with SE dialectics. In
addition, Shaw and Garlan [5] present the thesis for general theories while Gruner
presents the antithesis. Another study supporting the thesis for the development of
general theories proposed a unified theory of intelligence, unifying artificial,
human, and other types of intelligence [44]. A synthesis could resolve the
contradiction by, for example, stating situations when developing general theories is
appropriate and when it is not.

Premature theorizing is likely to be wrong but not fruitless and is preferable to
delayed theorizing, which can result in more significant issues [32]. Failure and
success in theorizing produces useful lessons and helps develop theory-building
skills. The same applies to borrowing the wrong theories [35]. Failure helps discover
what does not work while delayed theorizing prolongs the creation of knowledge on
shaky foundations, leading to diminishing returns on research efforts.

Furthermore, Shaw and Garlan [5] developed their general science–engineering
cycle theory method by using analogies from engineering. General theories of
theory building apply across science, engineering, and technology disciplines and,
therefore, to AI. Some non-general engineering and software engineering theories
can be generalized or unified to make them applicable to AI.
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3. Analysis of selected AI theories
This section addresses the third research objective by analyzing five types of AI
theories and exploring how they can assist in understanding and improving
CommonKAD.

3.1. Kernel artificial intelligence theories

The kernel theories are general and cover a broad range of phenomena. Three kernel
AI theories are analyzed here.

Intelligent decision-making theory (IDMT) unifies decision-making theory with
known probability distribution and Solomonoff’s universal induction theory with
unknown probability distribution [45]. Unification enables the theory to deal with
problems with known and unknown probability distributions. The IDMT is
agent-oriented and based on a universal agent that learns by inferring and acting
using decision theory and induction.

Unified intelligence theory (UIT) is a kernel theory unifying human, biological,
and cognitive intelligence [44]. It is transdisciplinary since it transcends different
intelligence disciplines. It unifies knowledge from different disciplines of computing,
AI, psychology, and cognitive science. Transdisciplinary principles applied to create
theory are unifying knowledge, dealing with socially relevant issues, and
transcending disciplines [46]. The theory deals with socially relevant issues by using
human intelligence.

The core of UIT theory is abstract intelligence, consisting of a mechanism of
models and types of intelligence components and their interactions.The interactions
are either direct or indirect through other components. Abstract intelligence
provides mechanisms for advanced intelligence, for example, thinking, inference,
and perception [44]. The UIT has functional, logical, cognitive, and neural models.
Natural intelligence interacts with abstract intelligence through AI. Computational
intelligence interacts with abstract intelligence through machinable intelligence.
Also, UIT is a design theory that has a defined architecture and environment for
intelligent systems carrying out transformations and implementing mechanisms of
phenomena [23] in all its components. Humans and intelligent systems are
environmental components that carry out transformation. However, the theory does
not entirely explain how it is accomplished. Its architecture provides the structure
and interaction between its components.

Mathematical intelligence structures (MIS) theory provides a mathematical
framework for natural, biological, and artificial intelligence, aiming to collapse the
distinction between human brains and artificial mechanisms [47]. Its mathematical
formulation makes it easy to apply simulation. However, it primarily focuses on
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human intelligence, with limited integration of other biological or non-biological
intelligence. It is not clear how non-biological intelligence can be integrated into the
three kernel theories.

3.1.1. Kernel theories and CommonKAD

TheUIT theory can help understand the types of knowledge and perspectives
necessary for developing knowledge-based systems (KBS) and capture different
kinds of expertise. Tasks required for an organization to function can be carried out
by humans, IS, and AI systems with the necessary expertise and capabilities. The
MIS can provide an interface for humans and artificial systems to work together in
developing a system using CommonKAD. Also, IDMT can support the
decision-making needed to create expert systems with CommonKAD.

3.2. Task theories

Two task-based theories are principles task theory (PTT) [48] and classification task
theory (CTT) [49]. These theories focus on dividing the activities required for
developing a computing system into tasks, the smallest atomic units of work
assignable to a teammember. The PTT supports the abstraction and concretization
of tasks, differentiating between them, determining complexity, estimating required
resources, and constructing tasks [48]. It is based on three task mechanisms: casual
relations, task difficulty, and level of detail [50]. Activities are divided into tasks,
establishing relationships between those tasks, while principles are the basis of
reasoning that guides how actions are executed to perform tasks.

Furthermore, CTT supports AI system development by classifying tasks based on
their roles in constructing a system.The theory is based on generic operations
required to construct a system by considering input, output, and process by asking
what problems the system can solve in mechanical, electronic, and biological
systems [51]. The classification is based on system theory: input, output, and process.
The tasks are classified into two categories, interpret and construct, each of which is
divided into subcategories [49]. Interpret involves identifying, predicting, and
controlling while construct involves specifying, designing, and assembling.

The PTT is a partial design theory because it focuses primarily on mechanism and
environmental transformational components. Also, CTT has mechanism and
environmental transformational components, making it a partial design theory as
well.

3.2.1. Task theories and CommonKAD

The CTT can help understand how best to perform the operations required in
developing a KBS. Human operations transform different types of knowledge to
tackle tasks for creating a KBS. Design strategy transforms AI knowledge,
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experience, and perspectives innovatively and continuously into AI products [28].
The various tasks for developing a KBS require different types of knowledge and
perspectives.

Moreover, PTT can assist in reasoning about development and knowledge
transformation activities, helping improve the CommonKAD task model step by
applying task principles. Task theories can guide CommonKAD task model
development. The two theories lack ways of dealing with the capabilities to perform
tasks required for developing a CommonKAD task model. Capabilities are necessary
for task theories because system development cannot take place if the required
capabilities are not available.

3.3. Innovation theory

Creativity is a fundamental feature of human intelligence that is challenging for AI
to replicate [52]. Machines are still lagging behind human creativity, invention, and
innovation in most cases. However, in some areas, AI creativity and innovation are
useful in specific contexts. The synergy between AI and human creativity and
innovation can be leveraged through human–AI cocreation systems.

AI innovation theory consists of three innovation theories: combinational,
transformational, and exploratory [53]. Combinatorial innovation combines
existing elements in new ways. Transformational innovation transforms concept
space. Transformational innovation applies when concept space is insufficient
for innovation [54], which requires adding, dropping, and modifying concepts and
relationships to make the concept space sufficient. Exploratory innovation involves
exploring the innovation landscape to discover new elements required for innovation.

The Boden theory was used to develop a creative problem-solving framework [54]
for creating innovative artifacts. This framework involves problem formulation
through planning and learning, with knowledge represented using both symbolic
and non-symbolic formalisms. The concept of space is manipulated using various
innovation theories. Researchers investigated how to integrate Boden’s innovation
theories into this framework and ultimately created it to facilitate innovative
thinking and problem-solving.

3.3.1. Innovation theory and CommonKAD

Innovation theories can model the evolution of CommonKAD, assist in post-mortem
analyses, and identify novel elements for future projects. Artifacts, knowledge
produced, and processes used are possible sources for mining novel features. Many
software professionals and practitioners know that the methodology they adopt is
not the whole truth, so they only adopt parts of it [55]. Applying innovation theory
can aid in understanding which parts of CommonKAD to adopt and which parts
could be improved for projects.
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3.4. Artificial intelligence decision design theory

Crowdsourcing system design theory combines collective intelligence (CI) and AI to
support decision-makers in evaluating large amounts of user-generated content [56].
Crowdsourcing is a way of getting ideas from a distributed system of people. Design
theory is being used in AI and AI in design, and both to improve systems [57].
Design theory is for developing innovative products.

CI is an emergent property of a distributed system of people using their
combined synergized intelligence. Motivation and trust are required by humans to
apply CI to design intelligent systems like robots [58]. Most AI systems are based on
human individual intelligence or derived intelligence of individuals or communities
of organisms, like in ant colony algorithms. Human individuals of a CI system
interacting with each other form an adaptive system [58] whose properties cannot
be understood by what individuals do but rather by the total sum of their actions.

3.4.1. Decision theory and CommonKAD

Decision-making is core to KBS development. The theory can help enhance
CommonKAD by integrating CI into the methodology, systematizing
decision-making, and converting tacit knowledge into explicit knowledge. CI is
greater than the sum of individual intelligence, making it better for developing KBS
as well as being captured in AI knowledge basis.

3.5. Genetic programming theory

Genetic theory is a genetics bioinspired design theory. It is based on schemata
theory [59] and evolutionary algorithms [60] that subdivide the search space into
subset spaces called schemata [59]. Schemata subspace programs are evolved using
generic operators of selection, crossover, and mutation. Selection determines
solutions to retain by eliminating a few of the worst solutions from the solution
population. Crossover combines parts of existing solutions to create new solutions
while mutation generates random novel solution parts. Genetic algorithms have been
used to design and model markets, innovation systems, and other types of systems.

3.5.1. Genetic programming theory and CommonKAD

The process of developing KBS innovations can be modeled as a genetic process,
considering different perspectives and knowledge types. Genetic programming
crossover operations can combine existing elements in new ways, and mutations
introduce novel elements. Mutation can be used to complete an innovation concept
space driven by AI transformation theory. Genetic programming and combinatorial
innovation can be used to combine different knowledge elements in CommonKAD
tasks that combine elements.
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3.6. Ways and challenges of integrating theories and CommonKAD

One loose way of integrating theories and CommonKAD is applying theories at the
beginning of each CommonKAD phase. Another way of loosely integrating them is
letting developers decide when to apply theories during development processes.
Loosely integrating theories increases the range of problems they can solve.
Alternatively, tight integration has the advantage of increasing developer
productivity and the disadvantages of reducing the number of problems the
combination can solve and the creativity developers can leverage because tight
combination leaves little room for flexibility.

CommonKAD is a heavyweight, plan-based methodology that emphasizes
comprehensive planning, analysis, design, and documentation. Integrating theories
with CommonKAD has both advantages and disadvantages. For example, it may
increase overhead costs like project costs beyond what is allowed by
small-to-medium AI systems’ project budgets [61]. One way to overcome this is by
applying the modeling principle of traveling light by creating only minimum viable
models that make it easier and faster to create software [62]. Another way is by
downscaling CommonKAD to make it lightweight, reducing overheads in
developing small-to-medium AI systems.

CommonKAD is modeling-oriented, whereas theories are not. Integrating
theories and methodology would require orienting theories towards modeling to
create a seamless development process, avoiding the need to switch between
modeling and non-modeling orientations. Switching between orientations makes
development difficult, requiring more effort and consequently increasing
development costs.

Combining theories into a system of theories would create a more powerful way
of understanding and improving CommonKADmethodology and other AI artifacts.
There are useful approaches combining computing into a system of theories and
methods that create a theory nexus [63] and a core design theory based on common
field elements [33]. A CommonKAD theory nexus would allow adding more AI and
SE methods to the nexus. SE agile methods are the most commonly combined
methods in full or partial phases with AI methods for developing AI-based
systems [64]. A theory nexus is a loose combination that enables the application of
parts of one or more methods on task by leveraging their strengths and
counteracting their weaknesses. This gives innovators more freedom to be creative.
Nexus solves the problem of having to tackle tasks in fixed ways. Design nexus can
be made more innovative by integrating it with AI innovation theories. Methods
follow design theories [36, 65]. Among design considerations for creating a design
nexus, design theories that methods can follow synergistically are included.
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4. Discussion
The theories analyzed in this study involve bioinspired designs that meet some
criteria for design theories. Design theories consist of mechanisms, architectural
components and their relationships, and environmental transformational
components [23]. However, they are often incomplete, either lacking one or more of
these three constituents or having incomplete elements. The AI theories considered
are based on different foundations and perspectives such as creativity, mathematics,
atomicity, genetics, decision theory, and hybrid AI and human CI. Bioinspired
designs are considered as an emerging approach combining biology and computing
techniques to create novel and useful algorithms.These theories span across multiple
disciplines, domains, components, and tasks, reflecting their transdisciplinary
nature.

Some of the theories can detail others, overlap with them, or even embed within
one another. Like some SE methods, they may overlap and share many elements [55].
AI kernel theories cover nearly all intelligence phenomena and can embed the other
types of theories. Task theories can be embedded in other types of theories, detailing
theories they get embedded in since a task is the smallest atomic work unit for
developing AI artifacts. Many theories have been proposed, including developing
transdisciplinary AI theories. Johnson [11] concludes that each of the paradigms and
theories has its focus and limitations, and the selection of theories should be based
on context. Combining theories and methods in loose combinations like design
nexus allows for the application of the most appropriate theory and method to a
specific task, and methods have more than one theory they can follow.

A theory consists of a set of concepts and relationships between the concepts.
Methods consist of concepts, techniques, and best practices. Design theories can be
used to generate design methods [36]. The AI theories analyzed can be used to
generate AI methods that are easier to use than the theories they are generated from.
The AI methods can follow design theories, and frequently, methods can be used the
same as theories [36, 63]. Furthermore, methods following design theories and
design theories generating methods can be used to improve existing AI methods like
CommonKAD by generating method elements to improve and advance the method.
Adapting a method to create a theory is likely to carry over method biases into the
theory and present reality the way we think of it rather than as it is [65]. One way to
combine AI methods and theories is by establishing guidelines on howmethods
follow theories during the development of artifacts. Design nexus or methods
following theories can help artifacts counteract biases in methods. Although
methods and theories perform similarly, both approaches have their limitations.

However, to creatively implement and use SE methodologies, organizations need
to embrace a learning culture, be open to new ideas, and encourage experimentation.
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This can be improved by adopting the SEMAT framework [55]. The AI design
theories’ roles in SE methods should be similar to those of SEMAT theory. AI design
theories can support a learning culture and experimentation in organizations using
AI methodologies such as CommonKAD.

The “SE method wars” have been going on for 50 years, and the evolution of
methodologies has followed a zigzag path [55]. Although these method wars are not
unique to SE, they are more intense in SE due to its extensive array of technology
development methods, potentially more compared to other computing disciplines
like AI. The wars divert researchers and practitioners from focusing on real issues,
leading to wasted energy in defending methodologies based on biases rather than
effectiveness. The zigzag path is inefficient and ineffective, wasting resources and
reducing productivity. Using methods that follow theories and creating a design
nexus could mitigate these conflicts by reducing biases and providing a more
integrated approach.

5. Conclusion
AI theories, as analyzed in this study, are nascent design theories that require more
application to generate sufficient evidence. The process of applying these theories
not only tests their validity but also provides valuable lessons that could lead to the
development of better theories. In scientific fields, theories are often discarded
through falsification, while in engineering, they may be deemed not useful after
extensive use demonstrates their inadequacy.

Analyzing CommonKADmethodology with AI theories has led to a better
understanding and discovery of possible ways of improving it—by introducing new
novel perspectives and asking novel questions.

Researchers need to understand the nature of theories within their field to select
the most suitable theory for their research and practice and to identify theory gaps.
Practitioners can choose the theories that align with their methods as appropriate.
Additional research is needed to explore AI theories not covered in this study,
focusing on which AI theories have been applied or could have been applied to
published research. This can lead to a better understanding of the relevance of AI
theories in research and potentially increase their application, leading to theory
improvement and the creation of new theories to address identified gaps.
Furthermore, more research is necessary to combine and integrate theories to
establish a theory nexus and core theories.
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