
Citation
Loc Nguyen, Hassan I. Abdalla and
Ali A. Amer (2024), Adversarial
Variational Autoencoders to Extend
and Improve Generative Model. AI,
Computer Science and Robotics
Technology 3(1), 1–19.

DOI
https://doi.org/10.5772/acrt.20240003

Copyright
© The Author(s) 2024.

This is an Open Access article
distributed under the terms of the
Creative Commons Attribution
License (https://creativecommons.
org/licenses/by/4.0/), which permits
unrestricted reuse, distribution, and
reproduction in any medium,
provided the original work is properly
cited.

Received: 25 January 2024
Accepted: 29 July 2024
Published: 28 August 2024

R E S E A R C H PA P E R

Adversarial Variational Autoencoders to
Extend and Improve Generative Model
Loc Nguyen1,*, Hassan I. Abdalla2 and Ali A. Amer2

1 Loc Nguyen’s Academic Network, Vietnam
2 College of Technological Innovation, Zayed University, Abu Dhabi, UAE
*Corresponding author. E-mail: ng_phloc@yahoo.com; URL: www.locnguyen.net

Abstract
Generative artificial intelligence (GenAI) has been advancing with many notable
achievements like ChatGPT and Bard. The deep generative model (DGM) is a
branch of GenAI, which is preeminent in generating raster data such as image and
sound due to the strong role of deep neural networks (DNNs) in inference and
recognition. The built-in inference mechanism of DNN, which simulates and aims at
synaptic plasticity of the human neuron network, fosters the generation ability of
DGM, which produces surprising results with the support of statistical flexibility.
Two popular approaches in DGM are the variational autoencoder (VAE) and
generative adversarial network (GAN). Both VAE and GAN have their own strong
points although they share and imply the underlying theory of statistics as well as
significant complex via hidden layers of DNN when DNN becomes effective
encoding/decoding functions without concrete specifications. This research unifies
VAE and GAN into a consistent and consolidated model called the adversarial
variational autoencoder (AVA) in which the VAE and GAN complement each other;
for instance, the VAE is a good data generator by encoding data via the excellent
ideology of Kullback–Leibler divergence and the GAN is a significantly important
method to assess the reliability of data as to whether it is real or fake. In other words,
the AVA aims to improve the accuracy of generative models; besides, the AVA
extends the function of simple generative models. In methodology, this research
focuses on the combination of applied mathematical concepts and skillful

1/19

https://doi.org/10.5772/acrt.20240003
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:ng_phloc@yahoo.com
mailto:ng_phloc@yahoo.com
mailto:ng_phloc@yahoo.com
mailto:ng_phloc@yahoo.com
mailto:ng_phloc@yahoo.com
mailto:ng_phloc@yahoo.com
mailto:ng_phloc@yahoo.com
mailto:ng_phloc@yahoo.com
mailto:ng_phloc@yahoo.com
mailto:ng_phloc@yahoo.com
mailto:ng_phloc@yahoo.com
mailto:ng_phloc@yahoo.com
mailto:ng_phloc@yahoo.com
mailto:ng_phloc@yahoo.com
mailto:ng_phloc@yahoo.com
mailto:ng_phloc@yahoo.com
mailto:ng_phloc@yahoo.com
mailto:ng_phloc@yahoo.com
https://www.locnguyen.net

techniques of computer programming in order to implement and solve complicated
problems as simply as possible.

Keywords: deep generative model (DGM), variational autoencoder (VAE),
generative adversarial network (GAN)

1. Introduction
The variational autoencoder (VAE) and the generative adversarial network (GAN)
are two popular approaches for developing a deep generative model (DGM) [1] with
the support of a deep neural network (DNN). The high capacity of DNN contributes
significantly to the success of GAN and VAE. Some works have combined the VAE
and the GAN. Larsen et al. [2] proposed a traditional combination of VAE and GAN
by considering a decoder of VAE as a generator of GAN [2, p. 1558]. They constructed
the target optimization function as the sum of the likelihood function of VAE and
the target function of GAN [2, p. 1560]. This research is similar to theirs [2, p. 1561]
except that the construction optimization function is slightly different. The
construction optimization function in this research does not include the target
function of GAN according to the traditional approach of GAN. However,
uncorrelated variables are removed after gradients are determined. Moreover,
because the encoded data z is basically randomized, this work does not construct a
new random z′ to included in the target function of GAN. This study also mentions
skillful techniques of derivatives in a backpropagation algorithm.

Mescheder et al. [3] transformed the gain function of VAE including
Kullback–Leibler divergence into the gain function of GAN via a so-called
real-valued discrimination network [3, p. 2394] related to the Nash equilibrium
equation and the sigmoid function. Then they trained the transformed VAE by
the stochastic gradient descent (SGD) method. They estimated three parameters
[3, p. 2395] as in this research, but their method focused on mathematical
transformation while this work focuses on skillful techniques in implementation. In
other words, Mescheder et al. [3] tried to fuse VAE into GAN whereas this work
combines them in a mutual and balancing manner; but both studies try to unify
VAE and GAN. Rosca et al. [4, p. 4] used a density ratio trick to convert the
Kullback–Leibler divergence of VAE into the mathematical form log(x∕(1 − x)),
which is similar to the GAN target function log(x) + log(1 − x). Actually, they
carried out a fusion of VAE and GAN like Mescheder et al. did. The essence of their
methods is based on the convergence of the Nash equilibrium equation.

Ahmad et al. [5] combined VAE and GAN separately as did previous experimental
research. First, they trained VAE and swapped the encoder–decoder network to a
decoder–encoder network so that the output of VAE is transformed into some useful

2/19

information, which in turn becomes the input of GAN instead of random
information that is the usual input [5, p. 6]. Miolane et al. [6] combined VAE and
GAN by summing the target functions of VAE and GAN weighted with regular
hyperparameters [6, p. 974]. Later, they first trained VAE and then sent the output
of VAE to the input of GAN [6, p. 975]. Ding et al. [7] proposed an interesting
research that applies VAE and GAN to credit card fraud detection. The main point of
their research is that because small fraud data is not enough to train well-supervised
learning models like classification and discriminant analysis in a better way, VAE is
applied to generate pseudo training data so that GAN will be trained well based on
such sufficiently large training data in order to obtain a better discrimination
function for detecting credit card fraud. In their VAEGAN model [7, p. 83,682],
online credit data (original data) is fed into the VAE encoder to train the VAE
decoder as a generator. Then the generator is used to generate fake data so that such
fake data and the real data are integrated into sufficiently large data, which is used to
train a GAN discriminator. As a result, such a trained discriminator is applied to
detect credit card fraud.

In general, both VAE and GAN have their own strong points. For instance, they
not only take advantage of solid statistical theory as well as DNN but they also suffer
from drawbacks. For example, VAE does not have a mechanism to distinguish fake
data from real data and GAN does not handle explicitly probabilistic distribution of
encoded data. It is better to utilize their strong points and alleviate their weak points.
Therefore, this research focuses on incorporating GAN into VAE by skillful

techniques related to both SGD and software engineering architecture, which are
neither based on purely mathematical fusion nor on experimental tasks. In practice,
many complex mathematical problems can be solved effectively by some skillful
techniques of computer programming. Moreover, the proposed model called
adversarial variational autoencoder (AVA) aims to extend functions of VAE and
GAN as a general architecture for the generative model. For instance, AVA will
provide an encoding function that GAN does not possess and a discrimination
function that VAE needs to distinguish fake data from real data. The combination of
VAE and GAN into AVA is strengthened by a regular and balance mechanism, which
obviously is natural and like the fusion mechanism. In some cases, it is better than
the fusion mechanism because both built-in VAE and GAN inside AVA can retain
their own strong features. Therefore, the experiment in this work is not very
significant regarding large data when only AVA, VAE, and GAN are compared
within a small dataset, which aims to prove the proposed method mentioned in the
next section.

3/19

2. Methodology
This research proposes a method as well as a generative model that incorporates GAN
into VAE for extending and improving the DGM because GAN does not deal with the
coding of original data and VAE lacks mechanisms to assess the quality of generated
data. Note that data coding is necessary for some essential applications such
as image compression and recognition whereas auditing quality can improve the
accuracy of generated data. As convention, let vector variables x = (x1, x2, … , xm)T

and z = (z1, z2, … , zn)T be the original data and encoded data whose dimensions
are m and n (m > n), respectively. A generative model is represented by a function
f(x|𝛩) = z, f(x|𝛩) ≈ z, or f(x|𝛩) → z, where f(x|𝛩) is implemented by a DNN
whose weights are 𝛩, which converts the original data x to the encoded data z and
is called an encoder in VAE. A decoder in VAE that converts expectedly the encoded
data z back to the original data x is represented by a function g(z|Φ) = x′, where
g(z|Φ) is also implemented by a DNN whose weights are Φ with the expectation
that the decoded data x′ is approximated to the original data x as x′ ≈ x. The
essence of VAE developed by Kingma and Welling [8] is to minimize the following
loss function for estimating the encoded parameter 𝛩 and the decoded parameter Φ:

lVAE(Θ,Φ) = 1
2∥x – x′∥2 + KL(µ(x),Σ(x)|N(0, I)) (1)

such that

Θ∗ = argmin
Φ

KL(µ(x),Σ(x)|N(0, I))

Φ∗ = argmin
Θ

1
2∥x – x′∥2.

Note that ∥x − x′∥ is the Euclidean distance between x and x′ whereas KL(µ(x),
𝛴(x)|N (0, I)), is the Kullback–Leibler divergence between the Gaussian
distribution of x whose mean vector and covariance matrix are µ(x) and 𝛴(x),
respectively. The standard Gaussian distribution N (0, I) has the mean vector and
covariance matrix 0 and identity matrix I, respectively.

The GAN developed by Goodfellow et al. [9] does not act on the encoder f(x|𝛩) =
z but it focuses on optimizing the decoder g(z|Φ) = x′ by introducing a so-called
discriminator, which is a discrimination function d(x|𝛹): x → [0, 1] from the
considered data x or x′ to range [0,1] in which d(x|𝛹) can distinguish fake data from
real data. In other words, the larger the result the discriminator d(x′|𝛹) derives, the
more real the generated data x′. Obviously, d(x|𝛹) is implemented by a DNN whose
weights are𝛹 noting that this DNN has only one output neuron denoted by d0. The
essence of GAN is to optimize mutually the following target function for estimating
the decoder parameter Φ and the discriminator parameter𝛹 [9, p. 3]:

bGAN(Φ,Ψ) = log(d(x|Ψ)) + log(1 – d(g(z|Φ)|Ψ)) (2)

4/19

such that Φ and𝛹 are optimized mutually as follows:

Φ∗ = argmin
Φ

bGAN(Φ,Ψ∗)

Ψ∗ = argmax
Ψ

bGAN(Φ∗,Ψ).

The proposed generative model in this research is called adversarial variational
autoencoder because it combines VAE and GAN by the fusing mechanism in which
the loss function and the balance function are optimized parallelly. The AVA loss
function implies loss information in encoder f(x|𝛩), decoder g(z|Φ), and
discriminator d(x|𝛹) as follows:

lAVA(Θ,Φ,Ψ) = 1
2∥x – x′∥2 + KL(µ(x),Σ(x)|N(0, I)) + log(1 – d(g(z|Φ)|Ψ)). (3)

The balance function of AVA is to supervise the decoding mechanism, which is the
GAN target function as follows:

bAVA(Φ,Ψ) = bGAN(Φ,Ψ) = log(d(x|Ψ)) + log(1 – d(g(z|Φ)|Ψ)). (4)

The key point of AVA is that the discriminator function occurs in both the loss
function and the balance function via the expression log(1 − d(g(z|Φ)|𝛹)), which
means that the capacity of how to distinguish fake data from real data by the
discriminator function affects the decoder DNN. As a result, the three parameters 𝛩,
Φ, and𝛹 are optimized mutually according to both the loss function and the
balance function as follows:

Θ∗ = argmin
Θ

lAVA(Θ,Φ∗,Ψ∗)

Φ∗ = argmin
Φ

lAVA(Θ∗,Φ,Ψ∗)

Ψ∗ = argmax
Ψ

bAVA(Φ∗,Ψ).

Because the encoder parameter 𝛩 is independent of both the decoder parameter Φ
and the discriminator parameter 𝛹, its estimate is specified as follows:

Θ∗ = argmin
Θ

(KL(µ(x),Σ(x)|N(0, I))).

Because the decoder parameter Φ is independent of the encoder parameter 𝛩, its
estimate is specified as follows:

Φ∗ = argmin
Φ

(1
2∥x – x′∥2 + log(1 – d(g(z|Φ)|Ψ∗))

)
.

Note that the Euclidean distance ∥x − x′∥ is only dependent on Φ. Because the
discriminator tries to increase the credible degree of real data and decrease the

5/19

credible degree of fake data, its parameter𝛹 has the following estimate:

Ψ∗ = argmax
Ψ

(log(d(x|Ψ)) + log(1 – d(g(z|Φ∗)|Ψ))).

By applying the SGD algorithm to the backpropagation algorithm, these estimates
are determined based on gradients of the loss function and the balance function as
follows:

Θ = Θ – γ∇Θ(KL(µ(x),Σ(x)|N(0, I)))

Φ = Φ – γ∇Φ

(1
2∥x – x′∥2 + log(1 – d(g(z|Φ)|Ψ∗))

)
Ψ = Ψ + γ∇Ψ(log(d(x|Ψ)) + log(1 – d(g(z|Φ∗)|Ψ))),

where γ (0 < γ ≤ 1) is the learning rate. Let af (.), ag(.), and ad(.) be activation
functions of encoder DNN, decoder DNN, and discriminator DNN, respectively,
and so, let a′f(.), a′g(.), and a′d(.) be derivatives of these activation functions,
respectively. The encoder gradient regarding 𝛩 is ([8, p. 5], [10, p. 9], [11, p. 43])

∇Θ(KL(µ(x),Σ(x)|N(0, I))) =
(
µ(x) – 1

2 (Σ(x))–1 + 1
2 I
)
a′f(x).

The decoder gradient regarding Φ is

∇Φ

(1
2∥x – x′∥2 + log(1 – d(g(z|Φ)|Ψ∗))

)
= –
(

(x – x′) +
a′d(d(x′|Ψ∗))
1 – d(x′|Ψ∗)

)
a′g(x′),

where

g(z|Φ) ∼= g(z|Φ∗) = x′.

The discriminator gradient regarding𝛹 is

∇Ψ(log(d(x|Ψ)) + log(1 – d(x′|Ψ))) =
a′d(d(x|Ψ))
d(x|Ψ) –

a′d(d(x′|Ψ))
1 – d(x′|Ψ) .

As a result, the SGD algorithm incorporated into the backpropagation algorithm for
solving AVA is totally determined as follows:

Θ = Θ – γ
(
µ(x) – 1

2 (Σ(x))–1 + 1
2 I
)
a′f(x) (5)

Φ[i] = Φ[i] + γ

(
(x[i] – x′[i]) +

a′d(d(x′|Ψ∗))
1 – d(x′|Ψ∗)

)
a′g(x′[i]) (6)

Ψ = Ψ + γ

(
a′d(d(x|Ψ))
d(x|Ψ) –

a′d(d(x′|Ψ))
1 – d(x′|Ψ)

)
, (7)

6/19

where notation [i] denotes the ith element in the vector. Note the derivatives a′f(.),
a′g(.), and a′d(.) because they are helpful techniques to consolidate AVA. The reason
for two different occurrences of derivatives a′d(d(x′|𝛹∗)) and a′g(x′) in the decoder
gradient regarding Φ is nontrivial because the unique output neuron of the
discriminator DNN is considered the effect of the output layer of all output neurons
in the decoder DNN.

Figure 1. Causality–effect relationship between decoder DNN and discriminator
DNN.

When weights are assumed to be 1, the error of the causal decoder neuron is the
error of the discriminator neuron multiplied by the derivative at the decoder neuron.
Moreover, the error of the discriminator neuron, in turn, is the product of its minus
bias − d′(.) and its derivative a′d(.), where d′(.) is the derivative of the
discriminator, shown in Figure 1.

error(x′[i]) = 1 ∗ error(d0)a′g(x′[i])

error(d0) = –d′(d0)a′d(d0).

It is necessary to describe AVA architecture because skillful techniques cannot be
applied to AVA without clear and solid architecture. The key point to incorporate
GAN into VAE is that the error a′d(d(x′|Ψ∗))

1–d(x′|Ψ∗) of generated data is included in both the
decoder and the discriminator besides the decoded data x′, which is the output of
the decoder DNN and which becomes the input of the discriminator DNN:

Φ[i] = Φ[i] + γ

(
(x[i] – x′[i]) +

a′d(d(x′|Ψ∗))
1 – d(x′|Ψ∗)

)
a′g(x′[i])

Ψ = Ψ + γ

(
a′d(d(x|Ψ))
d(x|Ψ) –

a′d(d(x′|Ψ))
1 – d(x′|Ψ)

)
.

Figure 2 shows the AVA architecture.

7/19

Figure 2. AVA architecture.

The AVA architecture follows an important aspect of VAE where the encoder
f(x|𝛩) does not produce directly decoded data z as f(x|𝛩) = z. It actually produces
the mean vector µ(x) and the covariance matrix 𝛴(x) belonging to x instead. In this
research, µ(x) and 𝛴(x) are flattened into an array of neurons’ output layer of the
encoder f(x|𝛩):

f(x|Θ) =
(
µ(x)
Σ(x)

)→ z.

The actual decoded data z is calculated randomly from µ(x) and 𝛴(x) along with a
random vector r:

z = µ(x) + (Σ(x))
1
2 r, (8)

where r follows the standard Gaussian distribution with mean vector 0 and identity
covariance matrix I, and each element of (𝛴(x))1∕2 is the square root of the
corresponding element of 𝛴(x). This is an excellent finding in the traditional
literature that made the calculation of Kullback–Leibler divergence much easier
without loss of information.

The balance function bAVA(Φ,𝛹) aims to balance the decoding task and the
discrimination task without partiality, but it can lean forward the decoding task for
improving the accuracy of the decoder by including the error of the original data x
and the decoded data x′ into the balance function as follows:

bAVA(Φ,Ψ) = bGAN(Φ,Ψ) – 1
2∥x – x′∥2

= log(d(x|Ψ)) + log(1 – d(g(z|Φ)|Ψ)) – 1
2∥x – x′∥2. (9)

8/19

As a result, the estimate of the discriminator parameter𝛹 is

Ψ = Ψ + γ

(
a′d(d(x|Ψ))
d(x|Ψ) –

a′d(d(x′|Ψ))
1 – d(x′|Ψ) + a′d(d0)

∑
i

(x[i] – x′[i])a′g(x′[i])
)

, (10)

where d0 = d(x′|𝛹) as usual. In a reverse causality–effect relationship, the unique
output neuron of discriminator DNN is the cause of all output neurons of decoder
DNN as shown in Figure 3.

Figure 3. Reverse causality–effect relationship between discriminator DNN and
decoder DNN.

Suppose the bias of each decoder output neuron is bias[i] and the error of the
discriminator output neuron, error[i], is the sum of weighted biases, which is in
turn multiplied with the derivative at the discriminator output neuron noting that
every weighted bias is also multiplied with the derivative at every decoder output
neuron. Suppose all weights are 1; we have

error[i] = a′d(d0)
∑
i

bias[i]a′g(x′[i])

bias[i] = x[i] – x′[i].

Because the balance function bAVA(Φ,𝛹) aims to improve the decoder g(z|Φ), it is
possible to improve the encoder f(x|𝛩) by a similar technique noting that the output
of the encoder is the mean vector µ(x) and the covariance matrix 𝛴(x). This
research proposes another balance function BAVA(𝛩, 𝛬) to assess the reliability of
the mean vector µ(x) because µ(x) is very important to randomize z and µ(x) is
linear. Let D(µ(x)|𝛬) be the discrimination function for encoder DNN from µ(x) to
range [0,1] in which D(µ(x)|𝛬) can distinguish fake mean µ(x′) from real mean
µ(x). Obviously, D(µ(x)|𝛬) is implemented by a so-called encoding discriminator
DNN whose weights are 𝛬 noting that this DNN has only one output neuron

9/19

denoted by D0. The balance function BAVA(𝛩, 𝛬) is specified as follows:

BAVA(Θ,Λ) = log(D(µ(x)|Λ)) + log(1 – D(µ(x′)|Λ)). (11)

Note that

g(z|Φ) = x′.

The AVA loss function is modified with regard to the balance function BAVA(𝛩,𝛬) as
follows:

lAVA(Θ,Φ,Ψ,Λ) = 1
2∥x – x′∥2 + KL(µ(x),Σ(x)|N(0, I)) + log(1 – d(x′|Ψ))

+ log(1 – D(µ(x′)|Λ)). (12)

By following a similar way of applying the SGD algorithm, it is easy to estimate the
encoding discriminator parameter 𝛬 as follows:

Λ = Λ + γ

(a′D(D(µ(x)|Λ))
D(µ(x)|Λ) –

a′D(D(µ(x′)|Λ))
1 – D(µ(x′)|Λ)

)
, (13)

where aD(.) and a′D(.) are activation functions of the discriminator D(µ(x)|𝛬) and
its derivative, respectively.

The encoder parameter 𝛩 consists of two separate parts 𝛩µ and 𝛩𝛴 because the
output of encoder f(x|𝛩) consists of mean vector µ(x) and covariance matrix 𝛴(x):

Θ =
(
Θµ

ΘΣ

)
,

where

Θµ = Θµ – γµ(x)a′f(x)

ΘΣ = ΘΣ – γ
(
– 1

2 (Σ(x))–1 + 1
2 I
)
a′f(x).

When the balance function BAVA(𝛩, 𝛬) is included in the AVA loss function, the
part 𝛩µ is recalculated whereas the part 𝛩𝛴 is kept intact as follows:

Θµ[i] = Θµ[i] – γ

(
µ(x)[i] –

a′D(D(x′|Λ))
1 – D(x′|Λ)

)
a′f(x[i]). (14)

Figure 4 shows the AVA architecture with the support of the assessing encoder.

Similarly, the balance function BAVA(Φ, 𝛬) can lean forward the encoding task
for improving the accuracy of encoder f(x|𝛩) by considering the error of original

10/19

Figure 4. AVA architecture with support of assessing encoder.

mean µ(x) and decoded data mean µ(x′) as follows:

BAVA(Φ,Λ) = log(D(µ(x)|Λ)) + log(1 – D(µ(x′)|Λ)) – 1
2∥µ(x) – µ(x′)∥2. (15)

Without repeating explanations, the estimate of discriminator parameter 𝛬 is

modified as follows:

Λ = Λ + γ

(
a′D(D(µ(x)|Λ))
D(µ(x)|Λ) –

a′D(D(µ(x′)|Λ))
1 – D(µ(x′)|Λ)

+ a′D(D0)
∑
i

(µ(x)[i] – µ(x′)[i])a′g(µ(x′)[i])
)

, (16)

where D0 = D(x′|𝛬) as usual. These variants of AVA are summarized, and their tests

are described in the next section. Moreover, the ideology of fusing VAE and GAN

like AVA does is not new when reviewing the research by Larsen et al. [2] in which

their unification mechanism is like AVA. The contribution of this research is to

propose a solid architecture of a generative model based on two powerful models

VAE and GAN, which aims at flexibility with plentiful functions including encoder,

decoder, and leaning mechanism that allows developers to customize AVA according

to their individual purposes. The generative AI application supporting AVA is

available at https://github.com/ngphloc/ai/tree/main/3_implementation, which

requires Java 15.

11/19

https://github.com/ngphloc/ai/tree/main/3_implementation

3. Experimental results and discussion

In this experiment, AVA is tested with VAE and GAN; but there are five versions of

AVA such as AVA1, AVA2, AVA3, AVA4, and AVA5. Recall that AVA1 is the normal

version of AVA whose parameters are listed as follows:

Θ = Θ – γ
(
µ(x) – 1

2 (Σ(x))–1 + 1
2 I
)
a′f(x)

Φ[i] = Φ[i] + γ

(
(x[i] – x′[i]) +

a′d(d(x′|Ψ∗))
1 – d(x′|Ψ∗)

)
a′g(x′[i])

Ψ = Ψ + γ

(
a′d(d(x|Ψ))
d(x|Ψ) –

a′d(d(x′|Ψ))
1 – d(x′|Ψ)

)
.

AVA2 leans forward, improving the accuracy of decoder DNN by modifying

discriminator parameter𝛹 as follows:

Θ = Θ – γ
(
µ(x) – 1

2 (Σ(x))–1 + 1
2 I
)
a′f(x)

Φ[i] = Φ[i] + γ

(
(x[i] – x′[i]) +

a′d(d(x′|Ψ∗))
1 – d(x′|Ψ∗)

)
a′g(x′[i])

Ψ = Ψ + γ

(
a′d(d(x|Ψ))
d(x|Ψ) –

a′d(d(x′|Ψ))
1 – d(x′|Ψ) + a′d(d0)

∑
i

(x[i] – x′[i])a′g(x′[i])
)

.

AVA3 supports the balance function BAVA(𝛩, 𝛬) for assessing the reliability of

encoder f(x|𝛩). Its parameters are listed as follows:

Θµ[i] = Θµ[i] – γ

(
µ(x)[i] –

a′D(D(x′|Λ))
1 – D(x′|Λ)

)
a′f(x[i])

ΘΣ = ΘΣ – γ
(
– 1

2 (Σ(x))–1 + 1
2 I
)
a′f(x)

Φ = Φ + γ(x – x′)a′g(x′)

Λ = Λ + γ

(a′D(D(µ(x)|Λ))
D(µ(x)|Λ) –

a′D(D(µ(x′)|Λ))
1 – D(µ(x′)|Λ)

)
.

AVA4 is a variant of AVA3 along with the leaning forward mechanism, improving

the accuracy of encoder f(x|𝛩) like AVA2. Its parameters are listed as follows:

Θµ[i] = Θµ[i] – γ

(
µ(x)[i] –

a′D(D(x′|Λ))
1 – D(x′|Λ)

)
a′f(x[i])

ΘΣ = ΘΣ – γ
(
– 1

2 (Σ(x))–1 + 1
2 I
)
a′f(x)

Φ = Φ + γ(x – x′)a′g(x′)

12/19

Figure 5. Images for DGM training and testing.

Λ = Λ + γ

(
a′D(D(µ(x)|Λ))
D(µ(x)|Λ) –

a′D(D(µ(x′)|Λ))
1 – D(µ(x′)|Λ)

+ a′D(D0)
∑
i

(µ(x)[i] – µ(x′)[i])a′g(µ(x′)[i])
)

.

The last version AVA5 supports all functions such as decoder supervising, leaning
decoder, encoder supervising, and leaning encoder:

Θµ[i] = Θµ[i] – γ

(
µ(x)[i] –

a′D(D(x′|Λ))
1 – D(x′|Λ)

)
a′f(x[i])

ΘΣ = ΘΣ – γ
(
– 1

2 (Σ(x))–1 + 1
2 I
)
a′f(x)

Φ[i] = Φ[i] + γ

(
(x[i] – x′[i]) +

a′d(d(x′|Ψ∗))
1 – d(x′|Ψ∗)

)
a′g(x′[i])

Ψ = Ψ + γ

(
a′d(d(x|Ψ))
d(x|Ψ) –

a′d(d(x′|Ψ))
1 – d(x′|Ψ) + a′d(d0)

∑
i

(x[i] – x′[i])a′g(x′[i])
)

Λ = Λ + γ

(
a′D(D(µ(x)|Λ))
D(µ(x)|Λ) –

a′D(D(µ(x′)|Λ))
1 – D(µ(x′)|Λ)

+ a′D(D0)
∑
i

(µ(x)[i] – µ(x′)[i])a′g(µ(x′)[i])
)

.

The experiment is performed on a laptop with CPU AMD64 4 sub-processor core,
4 GB RAM, Windows 10, and Java 15. The given dataset is a set of thirty-six 100 × 64
images available at https://github.com/ngphloc/ai/tree/main/3_implementation/
datasets/orbit/base-100x64. The 36 images are animated images that imitate the
movements of a dragon and a tiger in a bamboo jungle. Each image depicts the
position of a dragon or a tiger; note that the background, which is the bamboo
jungle, is not changed. For example, the following two images (Figure 5) depict two
positions of a dragon and a tiger among 36 positions. For each tested image, DGMs
are not retrained for fair testing because there is no splitting of the training set and
the testing set.

13/19

https://github.com/ngphloc/ai/tree/main/3_implementation/datasets/orbit/base-100x64
https://github.com/ngphloc/ai/tree/main/3_implementation/datasets/orbit/base-100x64

It is necessary to define how efficient DGMs such as VAE, GAN, and AVA are. Let
imageGen be the best image generated by a DGM, which is compared with the ith
image denoted by images[i] in the dataset. Then let dij be the pixel distance between
imageGen and the ith image at the jth pixel as follows:

dij = ∥imageGen[j] – image[i][j]∥.

Obviously, image[i][j] (imageGen[j]) is the jth pixel of the ith image (the generated
image). The notation ∥⋅∥ denotes the norm of a pixel. For example, the norm of the
RGB pixel is

√
r2 + g2 + b2, where r, g, and b are red, green, and blue colors of such

pixels. Suppose all pixel values are normalized in the interval [0,1]. The quantity dij
implies the difference between two images, and so it expresses the similarity quality
of the generated image, which is as small as possible. The inverse 1 − dij expresses the
diversity quality of the generated image, which is as large as possible. Therefore, the
best image should balance the quantities dij and 1 − dij so that the product dij(1 − dij)
becomes as larger as possible:

dij(1 – dij) → max .

Because the product dij(1 − dij) is a second-order function, its maximizer exists, and
so the generated image whose product dij(1 − dij) is larger is the better image when
its balance is more stable. As a result, let the balance metric (BM) be the metric to
assess the quality of the generated image (the best image) with regard to the ith
image, which is formulated as follows:

BMi = 1
ni

∑
j
dij(1 – dij),

where ni is the number of pixels of the ith image. The larger the BMi, the better the
generated image and the better the balance of similarity and diversity. The overall
BM of a DGM is the average BM[i] over N = 36 test images as follows:

BM = 1
N

∑
i

BMi = 1
N

∑
i

1
ni

∑
j
dij(1 – dij), (17)

where

dij = ∥imageGen[j] – image[i][j]∥.

Recall that the larger the BM, the better the DGM. However, regarding the similarity
quality, the DGM will be better when its BM is smaller because a small BM implies
good similarity in this test; note that such a small BM implies small distance or small
diversity. Therefore, the DGM whose BM is largest or smallest is preeminent. The

14/19

DGM whose BM is the largest is the best in balance of similarity and diversity. The
DGM whose BM is the smallest is the best in similarity. Both the maximum and
minimum of BM, which indicate both balance quality and similarity quality,
respectively, are considered in this test but the balance quality with a large BM is
more important.

The four AVA variants (AVAs) as well as VAE and GAN are evaluated by BM with
19 learning rates (γ = 1, 0.9, … , 0.1, 0.09, … , 0.01) because the SGD algorithm is
affected by the learning rate and the accuracy of AVA varies slightly within a
learning rate because of randomizing encoded data z in the VAE algorithm. Table 1
shows the BM values of AVAs, VAE, and GAN with 10 learning rates: γ = 1, 0.9, 0.8,
0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1.

Table 1. BM regarding learning rates from 1 down to 0.1.

AVA1 AVA2 AVA3 AVA4 AVA5 VAE GAN

γ = 1.0 0.2298 0.2301 0.0642 0.0766 0.2301 0.0583 0.2298
γ = 0.9 0.2307 0.2294 0.0546 0.0594 0.2293 0.0681 0.2283
γ = 0.8 0.2309 0.2316 0.0596 0.0546 0.2301 0.0587 0.2311
γ = 0.7 0.2316 0.2305 0.0629 0.0631 0.2305 0.0665 0.2311
γ = 0.6 0.2309 0.2317 0.0555 0.0657 0.2318 0.0623 0.2315
γ = 0.5 0.2318 0.2319 0.0591 0.0598 0.2313 0.0610 0.2311
γ = 0.4 0.2322 0.2329 0.0629 0.0732 0.2322 0.0568 0.2312
γ = 0.3 0.2318 0.2321 0.0741 0.0655 0.2326 0.0651 0.2325
γ = 0.2 0.2300 0.2312 0.0740 0.0929 0.2302 0.0735 0.2315
γ = 0.1 0.2103 0.2105 0.1230 0.1217 0.2114 0.1238 0.2107

Table 2 shows the BM values of AVAs, VAE, and GAN with nine learning rates:
γ = 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01.

Table 2. BM regarding learning rates from 0.09 down to 0.01.

AVA1 AVA2 AVA3 AVA4 AVA5 VAE GAN

γ = 0.09 0.2038 0.2015 0.1319 0.1328 0.2026 0.1338 0.2031
γ = 0.08 0.1924 0.1938 0.1417 0.1446 0.1978 0.1435 0.1916
γ = 0.07 0.1842 0.1826 0.1566 0.1574 0.1834 0.1555 0.1818
γ = 0.06 0.1685 0.1772 0.1662 0.1659 0.1785 0.1676 0.1699
γ = 0.05 0.1664 0.1617 0.1792 0.1785 0.1621 0.1805 0.1628
γ = 0.04 0.1675 0.1655 0.1918 0.1906 0.1662 0.1924 0.1665
γ = 0.03 0.1845 0.1832 0.2017 0.2014 0.1855 0.2021 0.1857
γ = 0.02 0.2047 0.2032 0.2098 0.2098 0.2028 0.2099 0.2046
γ = 0.01 0.2147 0.2146 0.2147 0.2147 0.2146 0.2147 0.2148

15/19

Table 3. Evaluation of AVAs, VAE, and GAN.

AVA1 AVA2 AVA3 AVA4 AVA5 VAE GAN

Mean 0.2093 0.2092 0.1202 0.1225 0.2096 0.1207 0.2089
Maximum 0.2322 0.2329 0.2147 0.2147 0.2326 0.2147 0.2325
Minimum 0.1664 0.1617 0.0546 0.0546 0.1621 0.0568 0.1628

SD 0.0249 0.0251 0.0606 0.0586 0.0244 0.0606 0.0252

Table 3 shows BM means, BM maxima, BM minima, and BM standard deviations
(SDs) of AVAs, VAE, and GAN.

Note that VAE and GAN represent a pole of similarity quality and a pole of
balance quality, respectively. From the experimental results shown in Table 3, AVA5
is the best DGM because it gains the highest BM mean (0.2096), which is also larger
than the BM mean (0.2089) of the pole GAN. It is easy to explain this result because
AVA5 is the one that improves both the decoding task and the encoding task when it
embeds both the decoder discriminator and the encoder discriminator as well as
both the leaning decoder and the leaning encoder. Moreover, both AVA1 and AVA2
are better than GAN because their BM means (0.2093, 0.2092) are larger than the
BM mean (0.2089) of GAN. If the similarity quality is considered, AVA3 is the best
DGM because it gains the lowest BM mean (0.1202), which is also smaller than the
BM mean (0.1207) of the pole VAE. It is easy to explain this result because AVA3 is
the one that improves the encoding task when it embeds the encoder discriminator.
Moreover, AVA1, which is a fair AVA because it embeds the decoder discriminator
but does not support the leaning decoder, is better than the pole GAN whereas AVA3,
which is a fair AVA because it embeds the encoder discriminator but does not
support the leaning encoder, is better than the pole VAE. This result is important
because the best AVA5 is not a fair one because it supports both the leaning decoder
and the leaning encoder. Therefore, about the BM mean, which is the most
important metric, all AVA variants are better than traditional DGMs such as VAE
and GAN with regard to both similarity quality and balance quality.

Although the BM mean is the most important metric, it is necessary to check other
metrics related to extreme values that are BM maximum and BM minimum, where
BM maximum implies the best balance quality and BM minimum implies the best
similarity quality. Note from experimental results shown in Table 3 that the decoder
improvement with AVA1 and AVA2 aims to improve balance quality with high
BM and the encoder improvement with AVA3 and AVA4 aims to improve similarity
quality with low BM whereas AVA5 improves both the decoder and the encoder.
AVA2 and AVA5 are better DGMs about the extreme balance quality because their BM
maxima (0.2329, 0.2326) are larger than the BM maximum (0.2325) of GAN. Similarly,
AVA3 and AVA4 are better DGMs about the extreme similarity quality because their

16/19

BM minima (0.0546, 0.0546) are smaller than the BM minimum (0.0568) of VAE.
Therefore, about BM extreme values, AVA variants are better than traditional DGMs
such as VAE and GAN with regard to both similarity quality and balance quality.

Because the two poles VAE and GAN are stabler than AVAs in theory as each AVA
includes functions from VAE and GAN so that each AVA is more complicated than
VAE and GAN, it is necessary to check the SD of BM, which reflects the stability of
DGMs. The smaller the SD, the stabler the DGM. AVA1 and AVA2 are stabler than
GAN when their SDs (0.0249, 0.0251) are smaller than the SD (0.0252) of GAN.
AVA3 and AVA4 are slightly stabler than VAE when their SDs (0.0606, 0.0586) are
smaller than or equal to the SD (0.0606) of VAE. Moreover, AVA5 is the best one
about the stability quality when its SD (0.0244) is the smallest. Therefore, AVA
variants are stabler than traditional DGMs such as VAE and GAN.

Figure 6 depicts BM means, BM maxima, BM minima, and BM standard
deviations of AVAs, VAE, and GAN by charts.

Figure 6. Evaluation of AVAs, VAE, and GAN.

It is concluded that the combination of GAN and VAE, which produces AVA in
this research, results in better encoding and decoding performance of the DGM
when metrics such as BM means, BM maxima, BM minima, and BM standard
deviations of AVAs are better with regard to contexts of balance quality and
similarity quality. Moreover, AVA5, which is full of functions including the decoder
discriminator, decoder leaning, encoder discrimination, and encoder leaning,
produces the best results with the highest balance quality given the largest BM mean
(0.2096) and the highest stability given the smallest SD (0.0244).

17/19

4. Conclusions
It is certain that AVA is better than the traditional VAE and GAN due to the support
of Kullback–Leibler divergence that establishes the encoder as well as the built-in
discriminator function of GAN that assesses the reliability of data. It is possible to
think that VAE and GAN are solid models in both theory and practice when their
mathematical foundation cannot be changed or transformed. However, it is still
possible to improve them by modifications or combinations as well as applying them
to specific tools where their strong points are brought into play. In applications
related to raster data like images, VAE has a drawback of consuming much memory
because probabilistic distribution represents the entire image whereas some other
DGMs focus on representing the product of many conditional probabilistic
distributions for pixels. Although this approach for modeling pixels by the recurrent
neural network may consume less memory, it is significantly useful to fill in or
recover smaller damaged areas in a bigger image. In the future, we will try to apply
the pixel approach to AVA; for instance, AVA processes a big image block by block
and then every block is modeled by a conditional probability distribution with a
recurrent neural network as well as a long short-term memory network.

Conflict of interest
The authors declare no conflict of interest.

References
1 Ruthotto L, Haber E. An Introduction to Deep Generative Modeling [Internet]. arXiv; 2021. Available

from: https://arxiv.org/10.48550/arXiv.2103.05180.

2 Larsen AB, Sønderby SK, Larochelle H, Winther O. Autoencoding beyond pixels using a learned
similarity metric [Internet]. In: International Conference on Machine Learning, vol. 48, New York: JMLR;
2016. p. 1558–1566. Available from: http://proceedings.mlr.press/v48/larsen16.pdf.

3 Mescheder L, Nowozin S, Geiger A. Adversarial variational Bayes: unifying variational autoencoders and
generative adversarial networks [Internet]. In: Proceedings of the 34th International Conference on Machine,
vol. 70, Sydney: PMLR; 2017. p. 2391–2400. Available from:
http://proceedings.mlr.press/v70/mescheder17a/mescheder17a.pdf.

4 Rosca M, Lakshminarayanan B, Warde-Farley D, Mohamed S. Variational Approaches for Auto-encoding
Generative Adversarial Networks [Internet]. arXiv; 2017. Available from:
https://arxiv.org/abs/1706.04987.

5 Ahmad B, Sun J, You Q, Palade V, Mao Z. Brain tumor classification using a combination of variational
autoencoders and generative adversarial networks. Biomedicines. 2022;10(2):1–19.
doi:10.3390/biomedicines10020223.

6 Miolane N, Poitevin F, Li Y-T. Estimation of orientation and camera parameters from cryo-electron
microscopy images with variational autoencoders and generative adversarial [Internet]. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New Orleans: IEEE; 2020.

18/19

https://arxiv.org/10.48550/arXiv.2103.05180
http://proceedings.mlr.press/v48/larsen16.pdf
http://proceedings.mlr.press/v70/mescheder17a/mescheder17a.pdf
https://arxiv.org/abs/1706.04987
https://doi.org/10.3390/biomedicines10020223

p. 970–971. Available from: http://openaccess.thecvf.com/content_CVPRW_2020/papers/w57/Miolane_
Estimation_of_Orientation_and_Camera_Parameters_From_Cryo-
Electron_Microscopy_Images_CVPRW_2020_paper.pdf.

7 Ding Y, Kang W, Feng J, Peng B, Yang A. Credit card fraud detection based on improved variational
autoencoder generative adversarial network. In: Abbott D, editor. IEEE Access, vol. 11, 2023.
p. 83680–83691. doi:10.1109/ACCESS.2023.3302339.

8 Kingma DP, Welling M. Auto-encoding Variational Bayes [Internet]. arXiv; 2022. 1–14. Available form:
https://arxiv.org/10.48550/arXiv.1312.6114.

9 Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial nets
[Internet]. In: Ghahramani Z, Welling M, Cortes C, Lawrence N, Weinberger K, editors. Advances in
Neural Information Processing Systems 27 (NIPS 2014), vol. 27, Montreal: NeurIPS; 2014 Available from:
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf.

10 Doersch C. Tutorial on Variational Autoencoders [Internet]. arXiv; 2016. Available form:
https://arxiv.org/abs/1606.05908.

11 Nguyen L. In: Evans C, editor. Matrix analysis and calculus [Internet]. 1st ed. Hanoi, Vietnam: Lambert
Academic Publishing; 2015 [cited 2014 Mar 3]. Available from:
https://www.shuyuan.sg/store/gb/book/matrix-analysis-and-calculus/isbn/978-3-659-69400-4.

19/19

http://openaccess.thecvf.com/content_CVPRW_2020/papers/w57/Miolane_Estimation_of_Orientation_and_Camera_Parameters_From_Cryo-Electron_Microscopy_Images_CVPRW_2020_paper.pdf
http://openaccess.thecvf.com/content_CVPRW_2020/papers/w57/Miolane_Estimation_of_Orientation_and_Camera_Parameters_From_Cryo-Electron_Microscopy_Images_CVPRW_2020_paper.pdf
http://openaccess.thecvf.com/content_CVPRW_2020/papers/w57/Miolane_Estimation_of_Orientation_and_Camera_Parameters_From_Cryo-Electron_Microscopy_Images_CVPRW_2020_paper.pdf
https://doi.org/10.1109/ACCESS.2023.3302339
https://arxiv.org/10.48550/arXiv.1312.6114
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://arxiv.org/abs/1606.05908
https://www.shuyuan.sg/store/gb/book/matrix-analysis-and-calculus/isbn/978-3-659-69400-4

	1. Introduction
	2. Methodology
	3. Experimental results and discussion
	4. Conclusions
	Conflict of interest

