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Abstract
The recent advancement in computational thinking (CT) research has reported
numerous learning benefits to school-age children. The long-standing perceived
difficulty of computer programming has challenged the acquisition of CT skills from
programming education. Several block-based programming environments (BBPEs)
have been developed to reduce this difficulty and enhance active engagement in
computational-related activities. Although numerous studies have examined
students’ level of interactions during block-based programming modality (BPM)
activities, a major gap in the literature is the paucity of research evidence reporting
the association between these interactions and CT. This study, therefore, investigates
the association between interaction patterns during BPM activities and CT skills.
The present study employed a longitudinal approach where the same participants
were observed over eight weeks. Thirty-five, second-year-level computer science
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and computer education students (mean age: 19.8; male = 23, female = 12) from a
research university in Nigeria were recruited. Their computational activities over the
study periods were video-recorded. The participants’ CT skills were collected using
the computational thinking test and the computational thinking scale. Findings
indicate four interaction patterns: learner–learner, learner–content, learner–teacher,
and learner–distractor. Learner–learner and learner–content were prevalent. The
interaction patterns significantly predict CT skills although significant differences
exist across gender, cognitive load, spatial ability, and programming proficiency. The
research has provided opportunities for educators to integrate BBPEs in learning
programming and CT concepts. Although such integration is likely to occur with the
help of strong educational policies, teachers are encouraged to cultivate the spirit of
collaboration in students during programming activities.

Keywords: computational thinking, block-based programming modality,
block-based programming environments, interaction patterns, students

1. Introduction
In recent years, the field of computer programming has
assumed a critical role in enhancing diverse cognitive competencies among students
[1]. In pursuit of augmenting these cognitive skills, numerous instructional

modalities have emerged, broadly classified into block-based (BPM) and text-based
(TPM) programming modalities [2]. The BPM presents a visual programming
paradigm, employing a metaphor akin to “programming-primitive-as-puzzle-piece,”
facilitating the conceptualization and execution of computer programming designs
[3].  Conversely, TPM adheres to a more traditional approach, necessitating learners’
proficiency in coding across diverse text-based programming languages such
as Python and Java. Proficiency in these languages holds relevance for undertaking
professional programming endeavors and pursuing careers in computer science [4].

Within the programming context, there has been consistent research evidence
reporting the close association between programming and computational thinking
(CT) [5–9]. In the process, teachers and researchers have put continuous effort
toward developing and integrating BPM and TPM into programming education to
improve learners’ CT skills [2, 10, 11]. On an overarching level, CT encompasses a
large intellectual foundation required to provide knowledge and understanding of
the computational world, and the ability to employ such knowledge in
problem-solving across different disciplines [12–14]. The recent advancement in CT
research has reported numerous learning benefits to school-age children, including
the ability to solve real-world problems systematically [15, 16]. There is a common
agreement that CT permits students to develop creative thinking and
problem-solving skills [17].
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However, the acquisition of CT skills from programming education has been
challenged by the long-standing perceived difficulty of computer programming [15].
To address these challenges, several block-based programming environments
(BBPEs), including prominent ones such as Scratch [18] and Alice [19], have been
proposed. These environments enable students to interact with programming code
through drag-and-drop interfaces, allowing the creation of animations and games
without the need for extensive typing. The pedagogical benefits of block-based
programs lie in their technological design. For instance, Alice and Scratch minimize
syntax errors—a major source of frustration for programming students—by
eliminating the need for traditional code typing [20, 21]. This allows students to
focus more on understanding programming concepts and logic rather than syntax.
Moreover, these environments provide immediate visual feedback, which helps
students quickly see the results of their actions and understand the effects of their
code. This immediate feedback loop is crucial for learning and helps maintain
student engagement and motivation.

However, research evidence has indicated that BPM does not always enhance
students’ interaction. One explanation is that the visual and interactive elements of
these programming environments can overload working memory [22]. This finding
is supported by Cognitive Load Theory [23], which suggests that extraneous
cognitive load can be imposed by factors such as visual clutter and the complexity of
managing numerous blocks. Additionally, understanding and organizing the logical
flow of programs in BBPE can be challenging, particularly for beginners. Even
though these environments simplify syntax, they still require learners to grasp
fundamental programming concepts like loops, conditionals, and variables.
Debugging in BPM can also be cognitively demanding as identifying and correcting
errors in a visual format requires careful attention and problem-solving skills.
Consequently, students often need a high level of spatial ability to effectively
navigate and interact with BBPE. The combination of these factors can lead to
increased cognitive load, potentially hindering the learning process.

Another plausible explanation is that most BBPEs were developed for novice
programmers [24, 25], and the interaction with these programs could lead to an
expertise reversal effect, a concept where block-based programs are not beneficial or
counterproductive to the learning outcomes of expert programmers [26, 27]. Gender
difference is also another reason for the inconsistent benefits of block-based
environments. Studies revealed that boys interact more in programming activities
than girls [28, 29], and therefore are more likely to interact in BPM activities.
However, recent studies found no gender difference in the use of programming
environments [30].

Numerous studies have examined students’ CT during BPM activities. For
example, Bers et al. [31] found that students understood the fundamentals of
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programming and CT concepts related to sequencing when exposed to BPM. Namli

and Aybek [32] examined the effect of BPM on 82 grade-five students’ CT. The

authors found that BPM activities had a significant effect on CT skills. A recent

study that compared students’ CT skills in two BBPEs [33] found that augmented

reality robotics (AR Bot) enhances algorithm design and algorithm efficiency more

than the Scratch environment. Ou Yang’s study suggests that although different

BPMs could enhance CT skills, novel ones such as robotics are more effective. A

more recent study by Sun et al. [34] compared Chinese students’ programming

behaviors, CT skills, and programming attitudes between BPM and TPM. Among

their findings, the authors showed that learners in BPM achieved a higher level of

CT skills. In the African region, Agbo et al. [35] reported that BPM activities

significantly increased the number of students who gained CT competency. These

findings confirm the widely reported evidence that BPM fosters CT.

However, a major gap in the literature is the paucity of research examining the

association between distinct interactions in BPM activities and CT. It is proposed by

the researchers that some interactions during BPM activities might foster CT more

than other interactions. Nevertheless, to the best of our knowledge, previous

literature has not thoroughly investigated how interaction patterns during BPM

activities can represent and foster CT as demonstrated in its core principles and

practices. In addition to this paucity of research evidence, limited attention is given

to how students differ in their CT skills regarding the cognitive load, spatial ability,

programming proficiency, and gender when interacting with these environments. A

study is needed in this area to enrich the body of literature in the areas of

programming and CT. Therefore, the study analyzed students’ interaction patterns

when exposed to BPM and examined how these patterns predict CT. Specifically, the

study addressed the following research questions (RQs):

1. What interaction patterns exist when students are exposed to BPM activities?

2. Is there a significant association between students’ interaction patterns and

their profiles (gender, cognitive load, spatial ability, and programming

proficiency) during BPM activities?

3. What is the level of students’ computational thinking skills during BPM

activities?

4. Is there a significant association between students’ computational thinking

and their profiles (gender, cognitive load, spatial ability, and programming

proficiency) during BPM activities?

5. Do the interaction patterns predict computational thinking?

4/39



2. Literature review

2.1. Definition of computational thinking

The concept of CT has been subject to various definitions and interpretations across
the academic literature. Initially proposed by Wing [14] as involving
problem-solving, system design, and understanding human behavior through
fundamental computer science concepts, subsequent attempts at clarification have
led to revised definitions. This definition was refined by Wing [36] to emphasize the
thought processes involved in formulating problems and solutions, highlighting the
importance of representation for effective execution by information-processing
agents. The definition was further clarified by Aho [37], indicating that CT
encompasses thought processes for formulating problem-solving steps, resulting in
solutions represented as finite sets of computational steps. Other definitions, such as
that by Yadav et al. [38], emphasize the abstraction of problems and the creation of
automatable solutions, while Roman-Gonzalez et al. [29] focus on algorithmic
problem-solving skills. This study accepts the consensus that CT is rooted in
disciplinary concepts of computer science and utilizes computing power. To
illustrate this, the following objectives proposed by Fagerlund et al. [39] were
incorporated:

• Understanding the Scope and Limitations of Computing: Participants engaged
in discussions and activities exploring the capabilities and constraints of
computing systems, such as the finite memory and processing power of
computers. Through these exercises, students gained insight into the boundaries
and possibilities of computational tools.

• Understanding the Fundamental Applications of Computers: Students applied
computational tools and models to solve real-world problems in diverse contexts.
For instance, they used programming languages like Scratch to create interactive
simulations that demonstrated scientific concepts or simulated real-world
phenomena.

2.2. The CT framework

Various frameworks have been developed to understand CT. These frameworks
include those proposed by Brennan and Resnick [40] (concepts, practices, and
perspectives), Repenning et al. [41] (abstraction, automation, and analysis), and
Shute et al. [42] (decomposition, abstraction, algorithm, debugging, iteration, and
generalization). Other frameworks include those proposed by Korkmaz et al. [43]
and Doleck et al. [44] (creativity, algorithmic thinking, cooperativity, critical
thinking, and problem-solving). Another alternate framework, developed by
Çakiroğlu and Çevik [45], recognized abstraction skills as a crucial component of
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computational thinking, encompassing subskills such as pattern recognition,
generalization, focusing, and elimination within the broader categories of interface,
problem-solving, and block structure. The authors proposed that pattern
recognition, generalization, focusing, and elimination subskills play active roles in
the entire abstraction process.

Although these frameworks have provided indicators for understanding CT, they
are criticized for being too limited to specific programming activities and thus
insufficient for imparting a comprehensive understanding of programming and CT
principles [39]. Recognizing these limitations, a more extensive framework
encompassing 14 core educational principles was proposed by Fagerlund et al. [39]
to provide a broader and more detailed measurement of various CT skills and
concepts. Specific indicators include abstraction, algorithm, automation,
collaboration, coordination and parallelism, creativity, data, efficiency, iteration,
logic, modeling and design, patterns and generalization, problem decomposition,
and testing and debugging. Nevertheless, there is still no universally accepted
framework for measuring CT.

2.3. Measuring CT

Across the literature, the development of several CT assessment portfolios to
evaluate students’ CT has been noted. A major drawback of these assessment
portfolios is recognized as their closed-access nature (e.g., Fairy Assessment:
Werner et al. [46]) and their limitation to pre-secondary education (e.g., Chen
et al. [47]). It has been argued in recent research that the scope of these diagnostic
tools is limited and not suitable for providing information on a broad spectrum of
proficiency levels [48]. On this account, different open-access tests targeting
upper-secondary and university students have been developed.

Among the assessment tests, the two most widely used portfolios are the
computational thinking scale (CTS) [43] and the computational thinking test
(CTt) [49]. The CTt focuses extensively on “computational concepts” such as
sequencing, loops, conditionals, and functions [29]. In contrast, the CTS focuses
overly on “computational perspectives,” including perspectives on creative thinking,
algorithmic thinking, critical thinking, cooperativity, and problem-solving. Because
of their comprehensiveness in measuring CT skills, the two tests continue to receive
wider applications across different disciplines, involving students of different age
groups. Table 1 presents a summary of the design, grounded framework, and target
audience of the CT tests.

As previously discussed, CT is measured from a wide range of dimensions.
Although it would be difficult to unify these dimensions into a single assessment
protocol, several authors strongly recommend the combination of many CT tests to
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Table 1. Computational thinking tests.

CT test Type Grounded framework/constructs Target audience N

CTS Self-assessment test International Society for Technology in
Education framework (ISTE, 2015; creativity,
algorithmic thinking, cooperativity, critical
thinking, problem-solving)

Undergraduate 29

CTt Performance test Brennan and Resnick ([40]; sequences, loops,
conditionals, functions, and variables)

Middle school
(K-7 and K-8)

28

N, number of items in the test or scale.

measure students’ CT skills more extensively [39, 50]. The idea of such unification
also includes the reflection of deeper learning that “contributes to a comprehensive
picture of students’ learning in CT education” [50, p. 2]. To the best of our
knowledge, we found a few published empirical studies [50–53] that measure
students’ CT across different dimensions. This is another gap left in the literature as
many studies (e.g., [11, 54–56, 57]) measured CT skills using one dimension, and
these studies tend to ignore many CT core principles. In this study, the
recommendations of unifying CT dimensions were adhered to. Therefore, the CTS
and CTt were used in this study.

2.4. BPM and CT

There is common agreement that programming enhances computational thinking
[58]. However, programming difficulties tend to derail the acquisition of CT skills,
coupled with the fact that CT concepts are difficult to learn due to their abstract
nature [59]. To reduce programming difficulties and facilitate the acquisition of CT
skills, several block-based programs were developed, including the prominent ones:
Alice and Scratch. Conceived as alternate programming tools during the past 10
years, BPM is generally defined as languages and tools that permit novice
programmers to develop software products with little knowledge of the syntax and
procedures of conventional programming language [60].

The technological advantage of these programs lies in their drag-and-drop
features, which eliminate the hassles of recalling the syntax of conventional
programming languages like Java. Since their emergence, they have been applied in
many programming education studies to foster CT skills [9, 32, 33]. These studies
have demonstrated the positive impact of using block-based programs to enhance
students’ CT skills, including executive functions that help them to solve and
analyze problems.

For example, it was found by Bers et al. [31] that the fundamentals of
programming and CT concepts related to sequencing were understood by students
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when exposed to BPM. The effect of BPM on 82 grade-five students’ CT was
examined by Namli and Aybek [32]. It was found by the authors that CT skills were
significantly affected by BPM activities. In a recent study comparing students’ CT
skills in two BBPEs [33], it was found that AR Bot enhances algorithm design and
algorithm efficiency more than the Scratch environment. Ou Yang’s study suggests
that although different BPMs could enhance CT skills, more effective results are
achieved by novel ones such as robotics.

2.5. Interaction patterns during BPM activities

Across the literature, students’ interaction in BPM activities is largely conceived as
engagement. The two terms are often used interchangeably. We argue that
engagement is a broader term used to represent vision (cognitive), action
(behavioral), and emotions (affective). Interaction on the other hand represents
specific activities that overly reflect the cognitive and behavioral components of
engagement. In a typical classroom activity, authors proposed that such engagement
represents three main interactions: interaction with course content, teacher, and
peers [61, 62]. The first pattern is termed “learner–content interaction,” which
occurs when students are watching an animated programming video or performing
a programming task. The second pattern is “learner–teacher interaction,” which
occurs when learners are asking or responding to teacher questions. The third
pattern is “learner–learner interaction,” which occurs when learners engage in some
kind of collaborative task such as think–pair–share. Because students often exhibit
different attention-related behaviors in a typical classroom [63], we propose a fourth
interaction pattern known as “learner–distractor interaction,” which occurs when
learners are interacting with unauthorized devices such as mobile phones or
engaging in off-point discussion.

Studies have explored different interactions in the context of BPM activities. A
recent study by Hopcan et al. [64] investigates the interaction sequences of 14
pre-service teachers. The study found significant behavioral sequences that include
the development of algorithms, proposing the next steps to be taken, and waiting for
approval. Collaborative activities were more predominant in male students. Another
study by Olsson and Granberg [65] observed the importance of student–teacher
interaction in a Scratch environment to solve mathematical problems. The study
found that “well-prepared general and task-specific questions help students to
overcome difficulties of learning mathematics while programming” (p. 1). Overall,
studies examining interaction patterns during BPM activities are numerous, and
they generally yield positive results. However, we found none that predicted
computational thinking skills using these patterns. This is a departure point of the
present research from prior studies.
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2.6. Factors influencing classroom interaction in BPM activities

Despite the learning benefits of BPM, research examining their pedagogical
effectiveness has shown that they are not always effective (for a review, see [22]).
Thus, interactions with these programming tools are determined by external
variables that include cognitive load level, spatial ability, programming proficiency,
and gender.

2.6.1. Cognitive load

Few studies have shown that some BBPEs can sometimes overwhelm students’
working memory, leading to cognitive overload. Although these tools aim to
enhance engagement and reduce programming difficulty, the excessive use of blocks
for debugging codes within the environment may distract learners and impede their
ability to focus on the environment. Additionally, some studies have highlighted
challenges associated with transitioning from block-based programming to
text-based coding [51, 66]. While block-based environments provide a visual and
intuitive entry point to programming, students may encounter difficulties when
transitioning to traditional coding languages due to differences in syntax and
structure.

2.6.2. Spatial ability

Spatial ability is generally conceived as a type of cognitive function that is essential
in processing visual information [67]. The predictive effect of spatial ability on
interaction with BPM is explained by two hypotheses: the ability-as-compensator
hypothesis [68, 69] and the enhancer hypothesis [68, 70]. The
ability-as-compensator hypothesis assumes that BBPE can benefit students with low
spatial abilities by reducing the mental effort required to work with programming
blocks and illustrations. On the other hand, students with high spatial abilities do
not benefit from these tools because they already have the cognitive functions
required to generate sufficient mental representation regardless of the presentation
formats [67].

The enhancer hypothesis suggests the opposite and claims that high spatial ability
learners benefit more from dynamic visualization compared to low spatial ability
learners. Recent research has confirmed the validity of the enhancer hypothesis by
indicating that block-based visualization was more beneficial to learners with high
spatial abilities [67]. One previous study also found that the integration of 3D
program visualization enhances visual interaction only in students with high spatial
ability [70].

2.6.3. Programming proficiency

An overwhelming number of research studies have indicated that BBPEs were
specifically developed for novice programmers [71, 72]. Therefore, exposing expert
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programmers to these tools might lead to an “expertise reversal effect,” a concept
where block-based environments become counterproductive to the learning
outcomes of expert programmers [27]. However, as put forward by a recent
study [26], the expertise reversal effect also occurs with a high level of expertise. In
this situation, highly interactive BBPEs, including those that were designed to
enhance deep exploration of concepts, may overload the memory of novice learners
and benefit the expert learners.

2.6.4. Gender

Research on gender differences concerning the interaction with BPM activities has
attracted controversies. There is no widely accepted evidence suggesting that
interaction with BBPEs is in favor of a particular gender category. For example,
several studies have reported that males interacted more (e.g., [28, 29]) and several
others have reported females (e.g., [73]). There are also quite a few others that
reported no difference [74, 75]. At this point, gender differences in the interaction
with BPM activities remain a subject of continuing debate.

2.7. Factors influencing CT skills

Ideally, any factor that influences students’ interaction within BBPEs should also
influence the acquisition of CT skills. This is based on the assumption that students’
skills in BBPEs are significantly correlated with their CT skills [5, 6, 74]. Despite this
assumption, prior studies often examined differences in gender and programming
experience [11, 72, 74] with contradicting results. Only a few studies investigated the
differences or relationships between computational thinking and cognitive load or
spatial ability (e.g., [51, 66]).

3. Methodology
A longitudinal approach was employed in the present study, where the same
participants were observed over eight weeks to examine their patterns of interaction
during BPM activities.Studies examining classroom interaction patterns often
employed video data as their primary source of information. However, the main
challenge of such observation is the rigorous task involved in coding a large amount
of observation due to repeated viewings [76]. An alternate approach, which requires
classifying classroom interactions and interpreting their educational relevance, was
employed. Prior studies have shown the possibilities of generating sufficient streams
of patterns using this observational approach. It is expected that our analysis will
produce interaction patterns that support theories and practice and contribute to
the ongoing refinement of classroom engagement. Figure 1 illustrates the overall
data collection process.
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Figure 1. Data collection process.

3.1. Participant recruitment

Thirty-five, second-year-level computer science and computer education students
(mean age: 19.8; male = 23, female = 12) from a research university in Nigeria were
recruited. Across the literature, there is no numeric standard for sample size
adequacy in studies involving video analysis. However, several authors recruited a
minimum of 30 participants due to the strenuous task involved in repeated viewing
and coding of video data [76, 77]. Recruitment of the participants was carried out
using stratified random sampling. Stratification was done to ensure that the two
departments (computer science and computer science education) have a
representative sample, while randomization was done to ensure that each student
from the two strata stands an equal chance of being selected [78].

The research benefit of this sampling technique is that individual characteristics
are equally distributed by chance compared to other sampling strategies where such
control is limited. Creswell [78] contends that random assignment prevents selection
bias that may arise from the personal characteristics of the participants. Although
the participants reported not being formally exposed to core programming concepts
(evidence from preliminary self-report), initial analysis of their programming
proficiency indicated that quite a few are expert and intermediate programmers
while a large proportion were novice programmers. It should be noted in this
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research that the term “expertise” is conceived as a narrow, task-specific proficiency
rather than genuine high-level professional expertise. The differences in expertise
might be a result of knowledge gained from a first-year course, “Introduction
to Problem-solving,” where all computer science and computer education
students were exposed to theoretical computing and algorithmic thinking skills.

3.2. Research context

The study occurred in a formal classroom setting where the participants first
interacted with a 20-min animated video that teaches computational concepts (see
Figure  2) and later participated in a practical session that exposed them to Alice
programming across eight weeks.As discussed in the literature section, learning
computational thinking is crucial to solving programming and general problems.
However, an important but less discussed issue is the concepts of CT to be taught in
schools and the instructional environment to be used without significantly changing
the existing curricula of computing education. Some authors have proposed
important CT concepts to be taught. However, one useful proposal in the context of
programming is that proposed by Roman-Gonzalez [49] based on Brennan and
Resnick’s [40] framework, including sequencing, conditionals, looping, and
functions.

Figure 2. Alice 3D animated video demonstrating practical examples of loops.

Recognizing the importance of interactive multimedia instruction, a 3D animated
video package that teaches CT concepts was developed using Alice (version 3).
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Although Alice is not commonly used in studies measuring CT, its selection was
deliberate due to its unique advantages (for a review, see [22]). According to Yusuf
et al. [77], Alice offers a visually intuitive and user-friendly interface, making it
accessible to novice programmers. Additionally, its block-based approach simplifies
complex programming concepts, facilitating engagement and understanding among
participants [19]. The Alice package was validated based on an expert review of two
senior lecturers who specialized in animation development. The CT concepts
proposed by Roman-Gonzalez [49] were included in the animated video along with
introductory concepts. Overall, six CT concepts were included in the animated
video: variables, data types, sequencing, conditionals, looping, and functions. These
concepts were taught across the eight weeks with each session being supplemented
by a 30-min practical session in the laboratory. Figures S1–S4 in the Appendix
illustrate examples of practical tasks performed by the students during the practical
sessions.

Across the eight weeks of the intervention, animated instructions took place in an
open classroom while practical sessions took place in a computer laboratory setting
where each participant interacted with the Alice software from their individual
workstation. Information from the animated CT concepts and the practical tasks
were delivered via an electronic board across the eight weeks. All programming
activities were video-recorded to analyze the classroom interaction patterns. To
obtain clear footage, three video cameras were positioned in front of the class—one
at the center and two on the sides—facing the students. The cameras were mounted
on tripod stands, which were adjusted to a height of 1.43 m above the ground. To
ensure high-quality recordings, all cameras were set to a 0.39x wide angle, 3x digital
zoom, and 4 K resolution.

The importance of obtaining explicit consent from participants during overt
observation is acknowledged in this research. Therefore, before the intervention, an
information sheet was sent to the participants, which included details about the
video recordings. Additionally, this information was reiterated to the participants
every day of the intervention. Participants were informed that their participation
was voluntary and that they could withdraw at any time and request the deletion of
their video data. Overall, the study was approved by an institutional review board.

3.3. BPM tasks

Four programming tasks, related to the four CT concepts, namely, sequencing,
conditionals, looping, and functions, were used for developing students’ CT skills in
the Alice environment (see sample in S1–S4 in the Appendix). For each CT concept,
the participants were presented with visual information that illustrates the behavior
of a character in Alice and then instructed to write down the corresponding
pseudocodes. Then they were instructed to implement the code in Alice to mimic the
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exact behavior of the character. For example, on sequencing, an Alice video
containing a “human Biped” was presented to the participants. The Biped’s behavior
includes rolling its head from left to right in sequence, with a delay of 0.25 s, and
returning the head to its original position. Although participants performed their
programming tasks on individual workstations, they could seek help from the
instructor (researchers), colleagues, and the lesson notes given to them. On
completion of each task, the participants shared their screens on the electronic
board, where they received immediate feedback and recognition for a job well done.

3.4. Materials

Six data collection instruments were used in this study, including video recording
devices that capture overall students’ programming activities, a CTt [49] that
collects students’ CT skills based on concepts, and a CTS [43] that collects students’
CT skills based on perspectives. Others include cognitive load test, spatial ability
test, and programming proficiency test (PPT).

3.4.1. Computational thinking test

The CTt is a 28-item performance test developed from the framework of Brennan
and Resnick [40]. The test overly measures CT concepts and ignores CT practices
and perspectives. Computational concepts addressed in the CTt include basic
directions and sequences, loops, conditionals, and functions. Post-validation of the
test [29] revealed a reliability coefficient of 0.793 for the entire sample: 0.721 for 5th
and 6th grades, 0.762 for 7th and 8th grades, and 0.824 for 9th and 10th grades.
Although the instrument was validated on middle-school students, it has been
successfully applied to college and university students (e.g., [51, 79]), with
substantial validity and reliability. Test samples are presented in Figures 3 and 4. 

3.4.2. Computational thinking scale

The CTS is a 29-item self-assessment test developed from the framework of the
International Society for Technology in Education (ISTE, 2015). The instrument
extensively measures CT skills from students’ perspectives. Constructs assessed
include creative thinking (e.g., I believe that I can solve most of the problems I face if I
have a sufficient amount of time and if I show effort), algorithmic thinking (e.g., I can
immediately establish the equity that will give the solution of a problem), critical
thinking (e.g., I am good at preparing regular plans regarding the solution of complex
problems), cooperativity (e.g., I like solving problems related to group projects together
with my friends in cooperative learning), and problem-solving (e.g., I have problems in
demonstrating the solution to a problem in my mind). All items were rated on a 5-point
scale (1 = never, 5 = always). The scale achieved a 0.822 reliability coefficient for the
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Figure 3. Task: repeat until [49].

Figure 4. Task: directions and sequences [49].

overall items: 0.843 for creativity, 0.869 for algorithmic thinking, 0.784 for critical
thinking, 0.865 for cooperativity, and 0.727 for problem-solving. Table 2 highlights
the measured computational concepts and perspectives.

3.4.3. Cognitive load test

Although critics have pointed out difficulties involved in quantifying cognitive
overload and have suggested impossibilities for its measurement, researchers have
employed several subjective ratings in measuring cognitive load [80–82]. These
ratings have provided novel approaches and have been employed in several studies.
For this reason, participants’ cognitive load was measured by a combination of two
subjective ratings. The first item requires the participants to indicate their level of
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Table 2. CT concepts and perspectives.

CT concepts CTperspectives

Sequence X O
Loops X O
Conditionals X O
Functions X O
Creative thinking O X
Algorithmic thinking O X
Critical thinking O X
Cooperativity O X
Problem-solving O X

X = measured, O = not measured.

perceived difficulty (“How easy or difficult was it for you to work on this task”;
1 = very easy, 9 = very difficult; Kalyuga et al. [80]), while the second item requires
them to indicate their invested mental effort (“How much mental effort did you
invest to work on this task”; 1 = very low, 9 = very high; Paas [81]).

3.4.4. Spatial ability test

The participants’ spatial ability was measured using the paper folding test (PFT)
developed by Ekstrom et al. [83]. The PFT comprises 20 items, with each item
consisting of 2 to 4 images illustrating the process of folding a piece of paper. On
completion, the folding process illustrates where a hole was punched through a
visible circle. Each folded paper is accompanied by five images of unfolded papers
with several punched holes. From this visual information, participants were
requested to point to an image that correctly displayed the unfolded paper with the
correct punched holes. Each correct answer attracts 1 point, yielding a maximum of
20 possible points.

3.4.5. Programming proficiency test

The participants’ programming proficiency was measured using a PPT based on Java
programming. The test is a departmental test used for formative assessment in the
2019/2020 academic session. This test was used because it had been internally
validated by two experts and subsequently used as a proficiency test for students.
The test consists of 10 questions. The first five questions require syntax recognition;
the next four questions are on output identification; the last question requires
participants to write a simple program that displays even numbers from 2 to 100.

3.5. Reliability analysis

A pilot trial was conducted to administer the computational thinking, cognitive load,
and spatial ability tests to 100 undergraduate computer science students (not among
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the study participants). Their participation in the pilot study was voluntary. Data
collected from the pilot study was subjected to reliability analysis to establish the
suitability of the adopted instruments for the study. Kuder–Richardson 20 (KR-20)
was conducted on the data collected from the CTt and PFT. In contrast,
Kuder-Richardson 21 (KR-21) was conducted on the data collected from the CTS
and cognitive load test. KR-20 is a measure of reliability for tests with binary
responses (i.e., tests with right or wrong responses) having varying levels of
difficulty. KR-21 on the other hand is a reliability measure for identifying the
internal consistency of tests with partial credit responses, such as the Likert scale.
The reliability analysis revealed a reliability coefficient of 0.846 for the CTt, 0.855 for
the CTS, 0.762 for the cognitive load test, and 0.824 for the spatial ability test.
Details of the reliability analysis are presented in Table 3.

3.6. Data and procedure

The participants reported no prior experience with Alice. For this reason, a 1-h
seminar was conducted to expose them to the software before the intervention. The
rationale behind this was to make the students familiar with the Alice environment
and how characters can be added to and manipulated in the virtual world. The
participants’ activities were recorded after informed consent had been obtained. For
every intervention, the video footage of the animated instruction and the
corresponding practical session were combined, yielding eight video files. Each
video file lasts approximately 50 min. During the analysis of video recordings, a
manual coding approach was performed by two experts. This involved carefully
observing the video footage to identify cues indicative of different interaction
patterns, including gaze directions and participants’ classroom activities. To
evaluate the faces of pupils, the experts closely examined the video recordings to

Table 3. Reliability analysis.

No. of items Reliability

Concept 28 0.846
        Sequence 4 0.823
        Loops 8 0.847
        Conditionals 12 0.822
        Functions 4 0.893
Perspective 29 0.855
        Creative thinking 8 0.895
        Algorithmic thinking 6 0.838
        Critical thinking 5 0.875
        Cooperativity 4 0.793
        Problem-solving 6 0.874
Cognitive load 2 0.762
Spatial ability 20 0.824
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identify instances where participants displayed behaviors such as gaze direction,
engagement in classroom activities, and disruptive incidents, which served as
indicators of distinct interaction patterns. This process involved annotating specific
moments in the video where interactions occurred and paying close attention to the
activities and participants’ language.

Self-referential evaluation techniques were not employed in this study. This
evaluation typically involves participants reflecting on their own behaviors or
interactions. Although this approach can provide valuable insights, it was not a
focus of the analysis. Instead, the emphasis was on objectively capturing and
categorizing observable interaction patterns among participants without direct
involvement or input from the participants themselves. Overall, using the manual
coding approach, the authors ensured thorough and detailed analysis of the video
data, allowing for comprehensive identification and categorization of interaction
patterns among participants.

The data coding involves a systematic procedure. First, the video data was coded
using a researcher-coded approach [77]. The coding commenced by identifying
distinct patterns during BPM activities [84, 85]. Four interaction patterns were
coded: learner–teacher, learner–content, learner–learner, and learner–distractor
interactions. Within the learner–teacher interaction domain, participants can
request the teacher’s attention, initiate a talk with the teacher, or ask for more
explanation of difficult programming concepts. Within the learner–content
interaction, the participants can watch the animation/perform programming tasks
in Alice, or read a programmed lecture note given to them. Within the domain of
learner–learner interaction, the participants have many options: they can seek help
from a colleague, engage in pair or collaborative activities such as meaningful
discussion and pair programming, or think and share their ideas with others.
Within the domain of learner–distractor interaction, the participants can engage in
non-classroom activities such as checking their phones, looking outside the
classroom, or engaging in off-point discussion with others (here not categorized as
learner–learner interaction). More explanation of the interaction indicators is
provided in Table 4. As researchers, control over the participants regarding their
preferred interaction was not exercised. Instead, flexible choices were given to the
participants to transition or remain within their interaction state.

The classification of interaction patterns is exhaustive because there are no other
interaction indicators present in the literature. Each of the observed patterns was
categorized in a mutually exclusive way. For example, a participant cannot interact
with the content and at the same with his or her peers. Goldberg et al. [63] strongly
recommend this coding pattern to avoid overlap. To optimize the use of a large
dataset, 20 min of video time from the video footage in each intervention was
extracted, and the interaction patterns were observed using 5-second intervals.
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Table 4. Coding scheme of interaction patterns in a BPM classroom.

Interaction patterns Numeric code Indicator

Learner–teacher 1 Student calls for teacher’s attention, asks questions, or initiates
talks with the teacher.

Learner–content 2 Student watches the animation, takes notes, and works with
Alice software to perform programming tasks.

Learner–learner 3 Voluntarily seeks help from a colleague or engages in pair or
collaborative activity such as meaningful discussion, peer
programming, or think–pair–share.

Learner–distractor 4 Engages in activities not related to the first three categories,
e.g., interacting with phones or looking outside the classroom.

Note: Adapted from Kumar et al. [61].

Although interval coding may lack accuracy, it synchronizes separate streams of
learning patterns [76]. Previously, Andrade et al. [76] used a 10-second interval, but
the authors believe that 5-second intervals are sufficient to capture information
about students’ interactions. The data matrix contains 67,200 observations from the
four interaction patterns across the eight interventions.

As reported earlier, the coding of the video data was done by two independent
coders. The experts were requested to follow the coding template strictly. The coders
could also report the limitations of the coding template in the course of coding the
interaction patterns. The degree of agreement between the coders was calculated
using Cohen’s kappa [86] coefficient (𝜅) in IBM SPSS version 23. Cohen’s kappa
measures the degree of agreement between raters. Values of 0.4–0.6 indicate fair
reliability, 0.6–0.75 indicate good reliability, and values above 0.75 indicate excellent
reliability. In this study, the degree of agreement between the two coders is 𝜅 = 0.87,
suggesting the suitability of the behavioral features.

Before the interventions, the PPT was administered to the participants and their
scores were recorded in an Excel worksheet. The first nine questions have a
maximum score of 9 points while the 10th question has a maximum score of 6
points, leading to a total of a maximum of 15 points. After the interventions, the
computational thinking, cognitive load, and spatial ability tests were administered
via Google Forms. To establish independent responses, the participants were placed
in a formal classroom setting while intensive supervision was conducted.

3.7. Data analysis

Various analytical tools were employed to address the RQs. First, a network analysis
in Gephi software was employed to investigate the interaction patterns that exist
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during the interventions (RQ1). Network analysis measures social structures and
relationships across different entities [87]. In a typical network graph, two
important entities exist. The first entity includes the points (called nodes), and the
second entity includes the lines that connect the points (called edges). In this study,
nodes correspond to specific patterns of interaction observed among participants
during the interventions. These nodes serve as the building blocks of the network,
highlighting the various forms of engagement within the classroom setting. Edges,
on the other hand, represent the connections or relationships between nodes in the
network. They are depicted as lines that link pairs of nodes, indicating the presence
of interactions or associations between them. Edges also signify the occurrence of
transitions or shifts between different interaction patterns. For example, an edge
between a learner–teacher interaction node and a learner–content interaction node
indicates a transition from engaging with the teacher to interacting with
instructional materials.

The network graph involves a multipartite network model that depicts the
co-occurrence patterns among students during the learning process. The presence of
41 nodes was noted: teacher, animated instruction (Anim), Alice software (Alice),
note, phone, away, and the 35 participants. Each participant served as a unique node
that interacted with the teacher, animation, Alice software, notes, phone, outside
classroom environment, and other students.

To address RQ2, the interaction patterns across different factors were estimated
using the network model. The significance of these interactions was examined using
the chi-square test of independence. Descriptive statistics, including mean and
standard deviation (SD), was employed to measure the participants’ scores from the
computational thinking tests (RQ3). Differences in the CT scores were examined
using independent samples t-test for gender and analysis of variance for other
factors (RQ4). Before this, preliminary assumption tests were conducted to check
for homogeneity of variance and the presence of outliers, with no violations noticed.
Lastly, the participants’ interaction data was used to predict their CT skills (RQ5).
To address this, the ordinal logistic regression (OLR) and binary logistic regression
(BLR) were employed. The use of OLR and BLR depends on the measurement scale
of the response variable. The OLR is used when the response variable is measured in
an ordinal scale (e.g., the CTS). In contrast, the BLR is used when the response
variable is measured in a binary scale (e.g., the CTt). However, both tests give an
odds ratio (OR) of prediction.

4. Results
Preliminary results (Table 5) show that, on average, the participants had a low
cognitive load (M = 2.89 ± 0.76) and moderate spatial ability (M = 10.74 ± 4.22).
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Furthermore, the majority of the participants are novice programmers (M = 4.28
± 0.89). The results suggest that BPM activities did not impose extraneous cognitive
load on the participants. It also suggests that the participants had a moderate spatial
ability to deal with any extraneous cognitive load although they lacked the expertise
to work with BPM.

Table 5. Participants’ cognitive load, spatial ability, and programming proficiency
level.

Cognitive load Spatial ability Proficiency level

Min. 1.00 3.00 4.00
Max. 7.00 18.00 13.00
Mean 2.89 10.74 4.28

Std. dev. 0.76 4.22 0.89
Skewness 1.14 1.10 1.17

4.1. Interaction patterns during BPM activities (RQ1)

The network graph (Figure 5) indicates the presence of 249 parallel edges showing
the interaction between the participant nodes (numbered from P1 to P35) and
non-participant nodes (denoted as Anim, Alice, Note, Teacher, Phone,
Away).Analysis of the interaction patterns indicates that 36.95% of the interactions
were with peers (learner–learner interaction), 34.54% were with contents
(learner–content interaction), 16.87% were with distractors (learner–distractor
interaction), and 11.65% were with the teacher (learner–teacher interaction). It
should be noted from the graph that thick lines indicate frequently occurring
interaction between the participant and non-participant nodes.

4.2. Association between interaction patterns and student factors
(RQ2)

To explore the association between participants’ interaction patterns during BPM
activities and their gender, cognitive load, spatial ability, and programming
proficiency, chi-square test of independence was conducted (see Table 6). This
analysis allowed the authors to examine the relationships between these variables
and identify any significant associations.

4.2.1. Association with gender

The results revealed that male students exhibited higher levels of interaction with
the teacher (73%), content (65.9%), and peers (76%) compared to their female
counterparts. Conversely, female students showed fewer interactions with
distractors (42.3%). Although the association between gender and interaction
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Table 6. Association between interaction patterns and factors.

Interaction patterns (n = number of cases)

Variables Learner–teacher Learner–content Learner–learner Learner–distractor Total

Gender
        Female 248 3414 536 1658 5856

27% 34.1% 24% 42.3% 34.3%
        Male 672 6593 1696 2263 11,224

73% 65.9% 76% 57.7% 65.7%
        Total 920 10,007 2232 3921 17,080

100% 100% 100% 100% 100%
𝜒2 = 237.94, df = 3, Cramer’s V = 0.118∗, p-value = 0.000

Cognitive load
        High 120 1240 144 1933 3437

13% 12.4% 6.5% 49.3 20.1%
        Moderate 200 1660 504 1052 3416

21.7% 16.6% 22.6% 26.8% 20%
        Low 600 7107 1584 936 10,227

65.2% 71% 71% 23.9% 59.9%
        Total 920 10,007 2232 3921 17,080

100% 100% 100% 100% 100%
𝜒2 = 745.80, df = 6, Cramer’s V = 0.148∗, p-value = 0.000

Spatial ability
        High 384 3807 1096 672 5959

41.7% 38% 49.1% 17.1 34.9%
        Moderate 376 3696 848 1321 6241

40.9 36.9% 38% 33.7% 36.5%
        Low 160 2504 288 1928 4880

17.4 25% 12.9% 49.2% 28.6%
        Total 920 10,007 2232 3921 17,080

100% 100% 100% 100% 100%
𝜒2 = 392, df = 6, Cramer’s V = 0.202∗, p-value = 0.000

Proficiency
        Expert 88 1660 72 1613 3433

9.6% 16.6% 3.2% 41.1% 20.1%
        Intermediate 64 1168 0 1200 2432

7% 11.7% 0% 30.6% 14.2
        Novice 768 7179 2160 1108 11,215

83.5% 71.7% 96.8% 28.3% 65.7%
        Total 920 10,007 2232 3921 17,080

100% 100% 100% 100% 100%
𝜒2 = 243.51, df = 6, Cramer’s V = 0.367∗∗, p-value = 0.000

∗Cramer’s V ≤ 0.2 = weak association, ∗∗Cramer’s V ≤ 0.6 > 0.2 = moderate association.
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Figure 5. Interaction patterns.

patterns was significant (𝜒2 = 237.94, p = 0.00), the strength of the association was
weak as indicated by Cramer’s V (0.118).

4.2.2. Association with cognitive load

Significant associations were observed between participants’ cognitive load levels
and their interaction patterns (𝜒2 = 745.80, p-value = 0.00). Participants with low
cognitive load tended to interact more with the teacher (65.2%), content (71%), and
peers (71%) compared to those with moderate or high cognitive load levels.
Conversely, participants with high cognitive load levels exhibited higher interaction
with distractors (49.3%). The overall association between cognitive load and
interaction patterns was weak as indicated by Cramer’s V = 0.148.

4.2.3. Association with spatial ability

Significant associations were observed between participants’ level of spatial ability
and their interaction patterns (𝜒2 = 392, p-value = 0.000). Participants with high
spatial ability tended to interact more with the teacher (41.7%), content (38%), and
peers (49.1%), suggesting a greater engagement with instructional materials and
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collaborative learning activities. In contrast, participants with low spatial ability
exhibited higher interaction with distractors (49.2%), indicating potential
challenges in maintaining focus during BPM activities. The observed associations
between spatial ability and interaction patterns highlight the role of cognitive
factors in shaping students’ engagement and participation in educational tasks.

4.2.4. Association with programming proficiency

The results also revealed significant associations between participants’
programming proficiency levels and their interaction patterns (𝜒2 = 243.51, p-value
= 0.00). Novice programmers demonstrated higher levels of interaction with the
teacher (83.5%), content (71.7%), and peers (96.8%), suggesting active engagement
and learning during BPM activities. In contrast, expert programmers exhibited
higher interaction with distractors (41.1%), indicating a potential tendency to
explore peripheral elements rather than focusing on core instructional content. The
moderate strength of the association, as indicated by Cramer’s V = 0.36, suggests
that programming proficiency plays a meaningful role in shaping students’
interaction patterns during BPM activities.

4.3. Level of computational thinking skills during BPM activities
(RQ3)

Analysis of the participants’ CT scores (Table 7) shows that they obtained a mean
score of 17.39 (SD = 5.60) on CT concepts and 3.48 (SD = 0.99) on CT perspectives.
Out of the possible 4 points in sequences and directions, the participants obtained
an average of 1.94 points (SD = 1.39). From a possible 8 points in loops, the
participants obtained an average of 4.9 points (SD = 2.15). In addition, from a
possible 12 points in conditionals, the participants obtained a mean score of 7.95%.
A mean score of 2.59 (SD = 0.79) was also obtained in functions from a possible 4
points. From CT perspectives, the participants reported a mean perception of 3.48
(SD = 0.99): 3.33 in creative thinking, 3.88 in algorithmic thinking, 3.70 in critical
thinking, 2.86 in cooperativity, and 3.49 in problem-solving. These scores suggest
that the participants had moderate computational thinking skills.

4.4. Difference in students’ computational thinking skills across
factors (RQ4)

An independent samples t-test and analysis of variance were conducted to examine
the differences in participants’ CT skills across factors. In Table 8, it can be observed
that there are significant differences in the CT skills across factors. An inspection of
the mean scores (Table 9) shows that female students obtained higher scores in CT
concepts related to sequences and directions (M = 2.25, SD = 1.47) compared to their
male counterparts. The male students, on the other hand, obtained higher scores in

24/39



Table 7. Participants’ computational thinking scores on concepts and perspectives.

Dimension N Mean Std. dev.

Concept 35 17.39 5.60
        Sequences 35 1.94 1.39
        Loops 35 4.90 2.15
        Conditionals 35 7.95 2.85
        Functions 35 2.59 0.79
Perspective 35 3.48 0.99
        Creative thinking 35 3.33 0.85
        Algorithmic thinking 35 3.88 1.16
        Critical thinking 35 3.70 1.47
        Cooperativity 35 2.86 0.94
        Problem-solving 35 3.49 1.02

N, number of participants assessed.

the remaining facets of CT concepts and perspectives. Concerning cognitive load,
participants with low cognitive load obtained higher scores on CT concepts and
perspectives with low effect sizes. On the other hand, participants with high spatial
ability obtained higher scores in CT concepts and perspectives, with effect sizes
ranging from high to low. Lastly, the results show a significant difference in CT
scores among different programming proficiency levels. Expert programmers
obtained high scores on CT concepts while novice programmers had higher
perceptions on CT skills, with effect sizes ranging from high to low. These suggest
that CT is a factor of gender, cognitive load, spatial ability, and programming
proficiency.

4.5. Association between interaction patterns and computational
thinking skills (RQ5)

To understand the factors predicting CT skills, OLR and BLR were conducted using
the interaction patterns as factors (Table 10). Except for the learner–distractor
interaction, all the interaction patterns significantly predict students’ CT skills with
significant ORs. However, learner–content and learner–learner interaction had high
chances of the prediction. For example, learner–learner interaction had a higher
chance to predict students’ CT skills related to sequence and directions (OR = 2.20,
95% CI [3.41–3.87], p-value < 0.005), loops (OR = 6.13, 95% CI [13.11–13.87], p-value
< 0.01), conditionals (OR = 5.10, 95% CI [9.15–9.78], p-value < 0.01), functions (OR =
2.16, 95% CI [1.12–3.98], p-value < 0.05), cooperativity (OR = 8.13, 95% CI
[31.23–40.96], p-value < 0.01), and problem-solving (OR = 10.22, 95% CI
[41.01–48.74], p-value < 0.01).

The results indicate that learner–content interaction had higher chances of
predicting CT skills related to creative thinking (OR = 2.73, 95% CI [2.79–2.99],
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p-value < 0.05), algorithmic thinking (OR = 0.35, 95% CI [41.89–54.58],
p-value < 0.01), and critical thinking (OR = 10.09, 95% CI [41.65–53.57]) than other
interaction patterns. Although learner–distractor interaction had lower chances of
predicting CT skills, such interaction posed a negative effect. Overall, it could be
concluded that learner–content and learner–learner interaction are two interaction
patterns during BPM activities that predict students’ CT skills.

5. Discussion
The present study investigated students’ interaction patterns during BPM activities
and predicted their CT skills using the interaction patterns. Participants include
35 second-year computer science and computer education students whose classroom
interactions were observed across eight interventions. The analysis revealed three
important findings. First, learner–learner and learner–content interactions were the
prevalent interaction patterns during BPM activities. Quite a few clusters of students
engage in learner–teacher and learner–distractor patterns. From the perspective of
the instructional quality model [88, 89], the prevalent incidence of learner–learner
and learner–content interactions demonstrates the quality of BBPEs. The findings
suggest the importance of these interaction patterns to students. At this point, the
authors were compelled to believe that BBPEs have the potential to support self and
collaborative programming activity. This position has been supported by considerable
empirical evidence [90, 91]. However, the presence of students who often interact
with distractors suggests that BPM does not always support meaningful learning. In
a recent review, Yusuf and Noor [22] found that BPM is an important programming
teaching tool, but it is not always effective in many experimental conditions.

The second finding revealed that interaction patterns during BPM activities differ
significantly across gender, cognitive load, spatial ability, and programming
proficiency. Students’ CT skills also differ across these factors. With regard to
gender, the study found that male students interacted more with the teacher,
content, and peers compared to their female counterparts. Male students also
obtained higher CT scores except for the facets of sequences and directions. Recent
and previous studies have revealed that male students engage more actively in
classroom activities that require critical and creative thinking as well as
problem-solving skills [92] while significant differences exist in favor of females for
verbal fluency [93]. Nevertheless, there is no widely accepted empirical evidence
indicating that interaction with BBPEs favors a particular gender category. Several
studies have supported these findings (e.g., [28, 29, 94–96]), yet several others have
reported no difference [74, 75, 97]. Concerning gender differences in CT skills,
results are also mixed across the literature. For example, Niousha et al. [72] found a
gender difference in CT skills in favor of boys while Sun et al. [11] found a
significant difference in favor of girls. Maintaining a neutral stand, Espino and
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Gonzalez [94] acknowledge the existence of gender differences in computing
activities but argued that everyone is capable of developing substantial CT skills
regardless of their gender category. Gender neutrality in CT skills was also reported
by Oluk and Korkmaz [74] and Sun et al. [98].

A plausible explanation for the gender difference is rooted in gender theory [99].
This theory conceptualizes gender as categories of social expectations, roles, and
behaviors. Although this view remains controversial in the literature, it does infer
that some social activities are gender-stereotyped. Proponents of this view argue
that disciplines such as mathematics and computing are perceived to be masculine
and, therefore, females are more likely to struggle in these disciplines. In their
previous study, Espino and Gonzalez [94] raised the issue of stereotypical gender
preferences in the context of BPM and argued that the reported gender differences
in computing and CT skills might be due to the compatibility of certain computing
activities to a specific gender category. They further explained that males generally
preferred programming constructs, which are reflected more in their CT scores.

However, as science educators who always understand and appreciate the need
for gender inclusivity, the authors maintain a neutral stand on these justifications
but believe that such differences might partly manifest from the lens of geographical
context. For example, in Nigeria, enrollment into computing courses is generally
skewed in favor of boys (85.87%), thereby creating a gender disparity [100]. While
the authors believe that BPM is for everyone, it is worth noting that girls lagged far
behind boys in computing courses in most African countries including Nigeria. For
this reason, expanding programming tools to meet the expectations of the girl child
remains the authors’ top priority.

For cognitive load, the study found that participants with low cognitive load
interacted more with the teacher, contents, and peers compared to their counterparts
with high and moderate cognitive load. These differences also hold for CT skills. The
effect of cognitive load when working with BBPEs has been widely reported. In a
recent review, Yusuf and Noor [22] reported the pedagogical effectiveness of BBPEs
in promoting CT skills but highlighted its cognitive load effects. The authors
reported that learners often struggle to interact with these tools due to the transient
attribute associated with their virtual realities. Other studies also reported this
problem when students are exposed to coding using BBPEs [51, 66].

Although cognitive load was found to affect CT skills and meaningful interaction
in the BPM classroom, this effect is counterbalanced by students’ spatial ability. The
study found evidence of the enhancer hypothesis [68], which assumes that high
spatial ability learners benefit more from dynamic visualization compared to low
spatial ability learners. Prior studies also reported evidence of the enhancer
hypothesis in the context of BPM [67, 70]. Literature examining the effect of
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cognitive load and spatial ability on CT skills and BPM activities is scant. Few
available studies found that CT is a factor of spatial ability and cognitive load [51,
66], thus supporting the findings.

The study also found some evidence of the expertise reversal effect because
novice programmers significantly benefited from the BPM activities as indicated by
their meaningful interaction than the intermediates and experts. Novice
programmers were also reported to have higher scores on CT perspectives while
expert programmers obtained high scores on CT concepts. The evidence of expertise
reversal effect in this study is an indication that most BBPEs are not inclusive; they
are largely beneficial to a typical expert category but become counterproductive to
others and vice versa. In support of this finding, Spanjers et al. [ 101] found that
these programming environments were more efficient for novice learners but not for
students with higher knowledge proficiency.

Explanations have been offered for the reason of the expertise reversal effect in
most block-based environments. Kalyuga [27] explains that when information
presented in these environments is familiar to the learners, they easily process its
transience and ignore the content because of their potential and anticipation for
higher mental objects. Prior research has also shown that measures to improve
students’ learning outcomes using block-based environments as additional
instructional guidance are often more beneficial to novices and counterproductive
for expert learners, who do not need additional instructional guidance [102]. The
experts have to reconcile their guidance in their schema with the additional
guidance, which might further induce extraneous load.

It is quite surprising that expert programmers performed better in CT concepts
than novice programmers despite having low meaningful interaction during the
BPM activities. This difference is also explained in the context of expertise reversal
effect. For instance, Aysolmaz and Reijers [26] explain that expertise reversal effect
also occurs with a high level of expertise. In this situation, highly interactive
programming environments, including those that were designed to enhance deep
exploration of CT concepts, may overload the memory of novice learners and benefit
the expert learners. This argument confirms the validity of the present finding,
which indicates that participants with different types of expertise benefited more
from the programming environment depending on the concerned CT dimension.

The third finding revealed that interaction patterns during BPM activities
significantly predict CT skills. Specifically, two interaction patterns were found to
significantly predict CT. Learner–learner interaction had a higher chance of
predicting students’ CT skills related to sequence and directions, loops, conditionals,
functions, cooperativity, and problem-solving skills. On the other hand,
learner–content interaction had higher chances of predicting CT skills related to
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creative thinking, algorithmic thinking, and critical thinking. Although
learner–distractor interaction had lower chances of predicting CT skills, such
interaction posed a negative effect. There is a consensus in the literature claiming
that students’ skills in BBPEs significantly correlate with their CT skills [5, 6, 74]. A
practical implication of this finding points to the need for active participation of
students in BPM activities. The finding also suggests the need for collaborative
activities along with the integration of interactive animation for effective learning of
programming and improvement of CT skills. To this end, although the acquisition of
CT skills may differ across factors, engaging students in collaborative programming
activities using interactive BPM would provide an enabling environment for
students to acquire more CT skills.

Overall, the above findings suggest the crucial role of Alice in this research.
Firstly, it provides a user-friendly interface that lowers the barriers for students new
to programming. Its drag-and-drop functionality and visual representation of code
enable learners to grasp fundamental programming concepts more easily, fostering
engagement and participation. Secondly, by immersing students in programming
tasks within the Alice environment, the authors were able to observe and analyze
their interaction patterns comprehensively. From how they navigate instructional
materials to how they collaborate with peers, Alice serves as the context for
capturing these behaviors. This allows the authors to gain insights into the dynamics
of student engagement and the impact of different interaction modalities on
learning outcomes. Moreover, Alice facilitates the integration of computational
thinking assessment into the study. Through the BPM activities, we assessed
students’ CT skills along with factors contributing to these skills.

6. Conclusion
This study has shown the possibilities of classifying students’ interaction patterns
using data obtained from time-dependent distribution. These interaction patterns
are of significant importance because they appear to predict meaningful learning.
By employing statistical models, the study found that students’ CT skills and their
interaction with BBPEs are factors of gender, cognitive load, spatial ability, and
programming proficiency. Despite these factors, interaction patterns during BPM
activities predict students’ CT skills. The research has provided opportunities for
educators to integrate BBPEs in learning programming and CT concepts. Although
such integration is likely to occur with the help of strong educational policies,
teachers are encouraged to cultivate the spirit of collaboration in students as
collaborative activities in this research were found to predict CT skills more than
other interaction patterns. To advance research on CT and BPM, it is imperative to
always consider learners’ demographic profiles as they play important roles in
meaningful learning. More importantly, students’ gender should be given more
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consideration due to its sensitivity to computing research particularly in
sub-Saharan Africa, where girl-child education in computing is overly neglected.

While acknowledging the validity of the study findings, various limitations could
affect such validity. First is the limited sample size. Although similar interaction
patterns are expected in other studies that employ larger samples, more valid
findings are predicted due to more diversity. However, larger samples could also
pose difficulty in coding larger amounts of video data. Second, the video data was
collected by a researcher-coded approach, which is prone to errors due to the
strenuous task of coding a large amount of information. Although the researchers
believe in the potential of technology to automatically identify interaction features
using computer vision and deep learning algorithms, such an approach is expensive
and could also lead to coding errors because some false faces might be captured as
true faces, especially when there are blurred images. Despite these limitations, the
study still retains substantial validity.
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