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Abstract
This work focuses on the solution of the convection–diffusion equation, especially
for small diffusion coefficients, employing a time-simultaneous multigrid algorithm,
which is closely related to multigrid waveform relaxation. For discretization
purposes, linear finite elements are used while the Crank–Nicolson scheme acts as
the time integrator. By combining all time steps into a global linear system of
equations and rearranging the degrees of freedom, a space-only problem is formed
with vector-valued unknowns for each spatial node. The generalized minimal
residual method with block Jacobi preconditioning can be used to numerically solve
the (spatial) problem, allowing a higher degree of parallelization in space. A
time-simultaneous multigrid approach is applied, utilizing space-only coarsening
and the aforementioned solution techniques for smoothing purposes. Numerical
studies analyze the iterative solution technique for 1D test problems. For the heat
equation, the number of iterations stays bounded independently of the number of
time steps, the time increment, and the spatial resolution. However, convergence
issues arise in situations where the diffusion coefficient is small compared to the grid
size and the magnitude of the velocity field. Therefore, a higher-order variational
multiscale stabilization is used to improve the convergence behavior and solution
smoothness without compromising its accuracy in convection-dominated scenarios.
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1. Introduction
The interest in massively parallel computing has grown rapidly due to the
ever-increasing number of processors, or cores, in modern hardware architecture.
To fully exploit the potential of these computers and actually reduce the runtimes of
applications, it is essential to develop algorithms whose computational tasks can be
performed in parallel on the different processors. More than 50 years ago, the first
investigations on parallel-in-time methods for the numerical solution of
time-dependent partial differential equations were published. While initial value
problems are typically solved numerically using methods that operate sequentially
in time, the new algorithms solve the problem for all time steps simultaneously,
providing increased parallelization capabilities that are otherwise limited by spatial
resolution. A general introduction and an overview of parallel-in-time methods can
be found in [1, 2]. These methods can be broadly categorized into different
approaches. One approach is to parallelize in time by decomposing the time interval
into independent subintervals or time steps. Related methods include parareal [3],
multigrid reduction-in-time (MGRIT) [4], and the space–time parallel multigrid
algorithm published in [5], which is a multigrid method in time. Another approach
involves algorithms for global space–time systems that do not necessarily parallelize
in time but consider the aspect of data communication for performance benefits. An
example is the multigrid waveform relaxation (WRMG) method developed by
Lubich and Ostermann [6], which treats time steps simultaneously and parallelizes
in space. This solution strategy is characterized by the fact that it is applied to the
evolution equation before it is discretized in time. Recently, this approach was
implemented in a different way in [7] and referred to as a time-simultaneous
multigrid method. Starting from a sequential problem already discretized in space
and time, a global system of equations is set up in which all time steps are blocked so
that it can be interpreted as a space-only problem for vector-valued unknowns. A
geometric multigrid method with block Jacobi smoothing is applied to this linear
system of equations and is designed to be highly parallelizable. Since all time steps
are treated simultaneously, the problem size is increased for each spatial node, and
the iterative multigrid solver allows parallelization in space to fully exploit the
potential of multiple cores. As also reported in [7], the runtimes of this approach
were compared with those of the sequential time-stepping method for the 2D heat
equation. Strong scaling tests show that the runtime can be significantly reduced by
the time-simultaneous multigrid method, achieving a substantial speedup over the
sequential approach. Further analysis of the parallel performance of the WRMG
method can be found in [8, 9]. Additionally, there are some theoretical convergence
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results for the WRMG method. For example, Janssen and Vandewalle [10] proved
that the asymptotic rate of convergence of the solver is the same as in the
time-stepping approach if the problem is discretized in time using linear multistep
methods. In another theoretical investigation, bounds on the spectral norm were
derived using related circular matrices [11]. Furthermore, a Fourier analysis was
exploited to analyze the time-simultaneous two-grid algorithm using a damped
Jacobi (waveform relaxation) smoother. In the case of the one-dimensional heat
equation on a uniform grid, it was shown that the spectral norm of the iteration
matrix is uniformly bounded if the one-step theta scheme is used for time
integration [12].

The application of many parallel-in-time methods to convection-dominated
transport problems presents difficulties with respect to the parallel efficiency of the
solver. Studies on higher-order hyperbolic problems and corresponding limitations
were published in [13] for time-decomposed parallel time integrators and for
parareal, e.g., in [14]. Recent studies on the MGRIT algorithm applied to
constant-wave-speed linear advection problems with an alternative coarse-grid
operator show fast solver convergence for various method-of-lines discretizations
and a speedup compared to the sequential time-stepping method [15, 16]. Moreover,
optimized transmission conditions for the Schwarz waveform relaxation have been
studied for the scope of convection–diffusion problems in, e.g., [17, 18].

Considering these convection-dominated transport problems, it is additionally
well known from the discretization side that the Galerkin finite element (FE)
solution is polluted by spurious artifacts. To reduce these oscillations, various
stabilization techniques are proposed in the literature; e.g., see [19, Section 12.8].
These include strongly consistent methods (such as GLS, SUPG), the introduction of
artificial diffusion, or a decentralized discretization of the convection term based on
a Petrov–Galerkin approach.

The stabilization to be considered in this work is a (fully implicit) variational
multiscale (VMS) type method, which was originally proposed by [20] and is
adapted in [21] and [22]. Modification of the variational form of the underlying
problem by adding a diffusive term and removing low-frequency diffusion within
the VMS context can improve the accuracy of the numerical solution compared to
the one based on an artificial diffusion stabilization. In our context, however, the
stabilization technique is used not only for accuracy reasons but also for the
improvement of the time-simultaneous multigrid solver under consideration. The
main idea for its use is to perturb the system by higher-order diffusion for
preservation of high accuracy, but better convergence behavior.

In this paper, the mentioned time-simultaneous multigrid algorithm is first
investigated for the d-dimensional convection–diffusion equation in Section 2.
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In addition to the special case of the heat equation, our numerical studies focus on
convection-dominated problems in 1D. As the second part of this work, we
introduce a higher-order VMS-type stabilization technique and numerically study
this strategy in 1D in combination with the introduced time-simultaneous method
in Section 3. Finally, Section 4 summarizes the results and offers considerations for
future research.

2. Time-simultaneous multigrid method
The algorithm to be presented in this chapter is a geometric multigrid method in
space and aims to be a highly parallelizable solution strategy to numerically solve
the unsteady convection–diffusion equation. For this purpose, all time steps are
considered simultaneously for each spatial grid point, allowing parallelization in
space in a straightforward manner. We first introduce the spatial discretization of
the d-dimensional problem under consideration and then formulate the linear
system of equations to be solved by the time-simultaneous method. Afterwards, the
time-simultaneous multigrid algorithm, which is closely related to the
WRMG [6, 10], is introduced. In numerical studies, the performance of the solver is
analyzed in one spatial dimension to quickly obtain representative results.

2.1. Discretization

We consider the d-dimensional convection–diffusion problem: Find
u : Ω× (0,T) → R such that

∂tu(x, t) – ε∆u(x, t) + v(x, t) · ∇u(x, t) = f(x, t) (x, t) ∈ Ω× (0,T)
u(x, t) = 0 (x, t) ∈ ∂Ω× (0,T)
u(x, 0) = u0(x) x ∈ Ω,

(1)

where T > 0 denotes the final time and Ω ⊂ Rd, d ∈ {1, 2, 3}, is the spatial domain on
whose boundary ∂Ω homogeneous Dirichlet boundary values are imposed for
simplicity. The velocity field and the right-hand side are given by
v : Ω× (0,T) → Rd and  f : Ω× (0,T) → R, while ε ≥ 0 is a constant diffusion
coefficient.

Let (⋅, ⋅) denote the L2(Ω)-inner product. The solution u: (0, T) → V of the
variational formulation for (1) satisfies the initial condition u (0, x) = u0( x) ∈ V =
H1(Ω) and

(∂tu,φ) + ε(∇u,∇φ) + (v · ∇u,φ) = (f,φ) ∀φ ∈ V. (2)
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Problem (2) is discretized using the subspace Vh ⊂ V of linear FEs defined on the
triangulation Th. Then uh: (0, T) → Vh satisfies

(∂tuh,φh) + ε(∇uh,∇φh) + (v · ∇uh,φh) = (f,φh) ∀φh ∈ Vh, (3)

leading to the semi-discrete formulation in matrix form

Mh∂tuh(t) + εLhuh(t) + Khuh(t) = fh(t), (4)

where Mh,Lh,Kh ∈ RN×N are the mass, diffusion, and convection matrices,
respectively. The discretized right-hand side is given by  fh ∈ RN for N ∈ N spatial
degrees of freedom. All occurring integrals are approximated using the trapezoidal
rule. This leads to a diagonal mass matrix Mh, and problem (4) is equivalent to the
well-known second-order finite difference (FD) discretization of (1) in the case of
an equidistant triangulation in one dimension and a constant velocity field.

Discretization in time using the Crank–Nicolson (CN) scheme results in the
discrete sequential form

AIumh + AEum–1
h = fm, m = 1, . . . ,K

for AI := Mh + 1
2∆t(εLh + Kh), AE := –Mh + 1

2∆t(εLh + Kh), fm := 1
2∆t

(
fmh + fm–1

h
)

,
(5)

where u0
h ∈ RN is a suitable approximation of u0,𝛥t is the time step size, and K ∈ N

denotes the number of time steps. The solution technique described in the following
can be applied similarly to non-equidistant grids and to other time-stepping
methods like the implicit Euler method or Runge–Kutta methods.

So far, common discretization techniques have been presented. We now use
algebraic transformations to obtain a global system matrix with a specific structure
and construct the time-simultaneous multigrid method. Considering equation (5),
using um as a shorthand notation for umh , and combining all K time steps in a global
linear system of equations result in


AI
AE AI

. . . . . .
A E AI


︸ ︷︷ ︸

∈RNK×NK


u1

u2

...
uK


︸ ︷︷ ︸
∈RNK

=


f 1 – AEu0

f2

...
fK


︸ ︷︷ ︸

∈RNK

. (6)

Here, all degrees of freedom are sorted in a time-major ordering. The degrees of
freedom are then rearranged so that all unknowns associated with one spatial node
can be blocked into a macro degree of freedom as follows:
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(u1
1, u1

2, . . . u1
N, u2

1 , u2
2, . . . , u2

N, . . . , uK1 , uK2 , . . . , uKN)⊤ time-major ordering↓
u := (u1

1, u2
1 . . . , uK1︸ ︷︷ ︸
=:u⊤1

, u1
2, u2

2, . . . , uK2︸ ︷︷ ︸
=:u⊤2

, . . . , u1
N, u2

N, . . . , uKN︸ ︷︷ ︸
=:u⊤N

)⊤ space-major ordering
(7)

This results in the space-major ordering, where all K time steps are blocked so that
the global vector of unknowns u can be interpreted as a block vector with
vector-valued unknowns un for each spatial node n = 1, …, N. By doing the same for
the system matrix as well as for the right-hand side, the new global system matrix S
has the following block structure:

(8)

The system matrix S : = AI ⊗ IK + AE ⊗ IK−1 can be written as a Kronecker
product, where IK, IK–1 ∈ RK×K are the identity matrix and a shifted matrix with
only ones on the lower subdiagonal. The tridiagonal structure of S stems from the
sparsity pattern of matrices AI and AE for the one-dimensional problem
considered here for simplicity, while each block entry is a lower bidiagonal matrix
due to the use of the Crank–Nicolson scheme for time integration. Therefore, it can
be interpreted as a global space–time system with space-major ordering. Obviously,
this new system matrix still has the same dimension NK × NK as the system matrix
before. In what follows, we present a time-simultaneous solution algorithm for
Su = f , which highly exploits the special structure of the system matrix.

2.2. Solution strategy

In this section, we apply a geometric multigrid method in space to the constructed
system (8), which is designed to be highly parallelizable on modern hardware
architectures. The iterative solver allows parallelization in space while all time steps
are treated simultaneously for each spatial grid point.

In general, a multigrid solver is based on a hierarchy of mesh levels, which are
used to reduce different modes of the error. More precisely, the idea of a two-grid
algorithm is to start with a fine grid, where a smoother performs a number of
smoothing steps to dampen highly oscillating error components. The remaining
smooth part of the error is then approximated on a coarser grid and used to update
the solution on the fine mesh. Performing this procedure iteratively results in a very
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efficient solution strategy if the coarse-grid problem is recursively approximated
using the same technique [23, Section 5.1].

The time-simultaneous multigrid algorithm to be presented makes use of the
same multigrid components, i.e., smoothing and coarse-grid correction, but is now
applied to the space-only system (8) with vector-valued unknowns. For a more
detailed description, the following sketch of the algorithm gives a brief overview of
the ith iteration of the two-grid case, which can be extended to the multigrid case.

Time-simultaneous two-grid algorithm   (ith iteration)

Let x(i) ∈ RNK be a given initial guess.

1. Pre-Smoothing: x(i, 1) = smoother(x(i), D, 𝜈1)

– 𝜈1 iterations
– preconditioner D

2. Coarse-Grid Correction:

– compute residual d = f − S x(i,1)

– restrict residual f̄ = Rd
– solve coarse-grid problem S̄x̄(i) = f̄
– prolongation and solution update x(i,2) = x(i,1) + Px̄(i)

3. Post-Smoothing: x(i+1) = smoother(x(i, 2), D, 𝜈2)

– 𝜈2 iterations
– preconditioner D

On the fine grid with N spatial unknowns in each time step, a smoother is applied
to a given initial guess to smooth high-frequency error components in the first place.
Then the coarse-grid correction is performed. It consists of computing the residual
on the fine grid, which is transferred to the coarse grid using the restriction operator
R. With N̄ spatial nodes on this coarse level, the system matrix S̄ ∈ RN̄K×N̄K is
discretized in the same way as S was constructed before. The coarse-grid solution
x̄(i) ∈ RN̄K is then computed exactly. By prolonging this solution to the fine grid
using the prolongation operator P, the pre-smoothed solution can be corrected.
Finally, some post-smoothing can be performed on the fine mesh to again dampen
highly oscillating error components. The preconditioner D involved in the
definition of the smoother should be designed to be efficiently applicable and will be
discussed in what follows.

Smoothing   We consider the iterative (damped) block Jacobi method

x 7→ x + ωD–1(f – Sx) (9)
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applied to the linear system of equations (8) using a damping parameter 𝜔 ∈ (0,1],
where the block Jacobi preconditioner is the block diagonal of the system matrix S:

(10)

The diagonal entries of this matrix correspond to the diagonal entries of
AI = Mh + 1

2∆t(εLh + Kh) due to the construction of S using a Kronecker product.
They do not vanish due to the diagonal entries of Mh, Lh, and Kh. Therefore, the
lower triangular preconditioner D is invertible. The individual blocks of D provide
a high degree of parallelization because they can be considered independently of
each other and only couple the (temporal) degrees of freedom associated with a
single spatial node. Its lower bidiagonal structure makes it easy to solve the resulting
linear systems of equations by other appropriate direct or iterative approaches.

For smoothing purposes, we employ the generalized minimal residual (GMRES)
method without restart as introduced in [24], where the linear system of equations
is preconditioned by the block Jacobi matrix D. A total number of 𝜈1 and 𝜈2 ≥ 0
iterations are performed to damp high-frequency error components in the pre- and
post-smoothing steps of the multigrid algorithm, respectively.

Transfer between space–time grids   Intergrid transfer operators are necessary to
exploit the coarse-grid correction in the multigrid method. The idea is to use
common coarsening techniques in space while the temporal mesh stays fixed
throughout the whole algorithm. The two-grid case is considered again, where h and
H = 2h are the mesh sizes of the fine level and the coarse level, respectively.
To restrict the residual from the fine grid Th to the coarse grid TH, the restriction
operator

R := RH
h ⊗ IK =


1
2 1 1

2
1
2 1 1

2
. . . . . . . . .

1
2 1 1

2

⊗ IK (11)

has to be applied, which is defined as the Kronecker product of the canonical
restriction operator RH

h ∈ RN̄×N of the FE space and the identity matrix IK ∈ RK×K.
Similarly, the prolongation operator P = R⊤ projects an FE solution from the coarse
grid to the fine grid by means of an interpolation for piecewise linear functions
[23, Section 5.1].
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In general, the two-grid algorithm described above can be easily transferred to a
multigrid method by recursively applying the two-grid idea to approximately solve
the coarse-grid problem. In this case, only the discrete problem on the coarsest mesh
has to be solved exactly. In the following numerical multigrid examples, we mostly
focus on the well-known V- and F-cycle as described in [23, Section 5.1, Section 5.4].

Overall, the presented time-simultaneous multigrid algorithm can be interpreted
as a variant of WRMG as introduced in [6] when using the Jacobi smoother and the
same time-stepping method. This interpretation has already been discussed in [25].
In this context, we therefore refer to the existing literature on convergence analysis
of the WRMG method in [11, 12, 26, 27].

2.3. Numerical studies

We now numerically investigate the solution behavior of the time-simultaneous
multigrid algorithm for the convection–diffusion equation (1) in 1D as a
representative of similar results in higher dimensions. For this purpose, various
combinations of the velocity field and the diffusion coefficient are considered,
including the special case of the heat equation for v = 0 and convection-dominated
transport problems for v = 1 and small ε. Unless otherwise specified, we consider the
manufactured solution

u(x, t) = exp(–η( 1
2 – x + 1

4 sin(π
2 t))2) sin(πx), (x, t) ∈ (0, 1) × (0,T), (12)

where the parameter 𝜂 = 100 characterizes the steepness of u and is chosen to keep
the spatial and temporal error in balance. The peak of the function oscillates
periodically in time and follows the shape of a sine curve, as shown for certain time
instances in Figure 1.

Figure 1. Smooth solution (12) on Ω = (0,  1) for certain time steps.

This exact solution satisfies homogeneous Dirichlet boundary conditions while
the initial data is given by
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u(x, 0) = exp(–η( 1
2 – x)2) sin(πx), (13)

coinciding with u (x, t) for t = 0,  2,  4, …. As mentioned in Section 2.1, we discretize
the problem in space using an equidistant mesh and linear FEs with
quadrature-based mass lumping, while the Crank–Nicolson scheme with a fixed
time step size 𝛥t is employed for time integration. This results in second-order
accuracy in space and time. In addition, a first-order upwind discretization is
considered to further illustrate the impact of the findings. This discretization
technique is a special Petrov–Galerkin method and can be interpreted in the FE
context as the Galerkin method supplemented by first-order artificial diffusion
[28, Section 8.2.2].

In the following studies, parameters like the mesh size h, the number of global
time steps K as well as the time increment 𝛥t are varied, implying the final time T =
𝛥t ⋅ K. In the context of the multigrid algorithm, the mesh size h = 2−l describes the
resolution on the fine level l. In addition to the multigrid case, where the coarse level
is always chosen to be level 1, we also investigate the two-grid case, using the coarse
level l − 1. The smoother is given by the GMRES method without restart, which uses
block Jacobi preconditioning and performs 𝜈1 = 𝜈2 = 4 pre- and post-smoothing
steps. We report the number of iterations required to reduce the norm of the initial
residual || f ||2 for a zero initial guess by a factor of 10−8, while the maximum number
of iterations is set to 100.

2.3.1. Heat equation

First, we take a brief look at some time-simultaneous multigrid results for the
special case of the one-dimensional heat equation, which is equivalent to the partial
differential equation (1) with the fixed velocity field v = 0. As known from the
theory for the time-simultaneous two-grid algorithm with a damped block Jacobi
smoother, the spectral norm of the iteration matrix is uniformly bounded above by a
value smaller than 1, which is independent of the mesh size, the time step size, and
the number of time steps [12]. In Figure 2, we investigate the V-cycle with the
preconditioned GMRES smoother, where the number of iterations is plotted for
different values of K. For a fixed ratio between the spatial and temporal resolutions,
the number of iterations is indeed bounded above for the different numbers of time
steps and does not depend on the fine mesh size. The upper bound is even
independent of the time step size 𝛥t for sufficiently large K. In this special case, the
number of iterations is bounded above by a value of 5.

Therefore, we can treat many time steps simultaneously without increasing the
number of iterations. The resulting linear system of equations can then be solved
efficiently in parallel due to the fact that the application of the preconditioner
provides a decomposition into N independent local systems, which are each large
enough to be solved on a single processor.
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Figure 2. Number of iterations for multigrid method using V-cycle in the case of the
smooth solution, v = 0, and ε = 10−2.

2.3.2. Convection-dominated transport problems

In what follows, we focus on the convection–diffusion equation by setting the
velocity field to v = 1 and, thus, use the Galerkin discretization for the convective
part as well. Due to the one-dimensional space and the use of mass lumping, the
discretized convective term corresponds to the second-order central difference
operator for the first derivative in the context of FDs. Furthermore, we also consider
a lower-order discretization at this point. The following tests are additionally
investigated for the convection term discretized by the first-order upwinding
technique as mentioned in [28, Section 8.2.2].

Figure 3 summarizes the multigrid results for a fixed fine level and time step size
while different values of the diffusion coefficient are investigated. For the upwind
approach and ε = 10−2, it can be observed that the number of iterations stays
bounded above even for a large time interval under consideration. Since we study
the convection-dominated case in particular, smaller values of ε are also examined.
In this case, we still find similar upper bounds for the number of iterations. Overall,
these observations show a similar behavior to the studies of the heat equation; see
Section 2.3.1. However, the number of iterations immediately reaches its maximum
of 100 if we decrease the value of ε and treat more time steps simultaneously for the
Galerkin discretization of the convective term as presented in Figure 3b.

More precisely, the time-simultaneous multigrid algorithm converges fast if the
diffusion coefficient is chosen sufficiently large. This also holds true for
convection-dominated problems using ε = 10−3, 10−6 and a maximum number of
blocked time steps of 16. However, in this convection-dominated regime, the
number of iterations required to solve the global linear system of equations increases
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Figure 3. Number of iterations for multigrid method using V-cycle in the case of the
smooth solution, v = 1, and fixed h = ∆t = 1

128 .

significantly when more time steps K are treated simultaneously. The same results
can be observed for simultaneous two-grid approaches.

Next, we highlight the quality of the solution by focusing on the Heaviside step
function as the exact solution with periodic boundary conditions, velocity field v = 1,
and diffusion coefficient ε = 0. Figure 4 compares the exact solution at final time T
= 1 with the numerical solutions obtained using either the upwind scheme or the
Galerkin discretization for the convective term. Although strong oscillations can be
observed in the solution of the second-order approach, the upwind scheme provides
a highly diffusive approximation.

The instabilities and oscillations occurring in the case of unstabilized Galerkin
FEs are well known and can obviously be avoided using the upwind scheme.
However, this approach is very diffusive and only leads to first-order accuracy
O(h) [28, 29, Section 8.3]. To preserve the higher order of the Galerkin discretization
and especially improve the convergence of the solver even for a large number of time
steps, we next introduce some stabilization based on the VMS method. Although
accelerating the convergence of the solver is the main focus of this modification, we
also observe from Figure 4 that oscillations in the numerical solution are damped for
a specific stabilization parameter α as a positive side effect in this work.

3. Variational multiscale stabilization
When using the Galerkin approximation of the convection–diffusion equation (1),
the numerical solution might be inaccurate and polluted by unphysical oscillations if
the diffusion coefficient ε is small compared to the mesh size h and the magnitude of
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Figure 4. Heaviside step function at final time T = 1 in the case of h = ∆t = 1
128 and

corresponding numerical solutions compared to stabilized discretization with
stabilization parameter α.

the velocity field v [28, Section 8.3]. This problem was also observed in the
numerical examples above and calls for some stabilization that attempts to reduce
instabilities and artifacts in the numerical solution. In this paper, we focus on the
VMS method, first introduced for this purpose in [20], and in particular presented
as a projection-based extension in [22] and [21]. The stabilization technique is
presented below based on the d-dimensional problem under consideration. This is
followed by an interpretation in the context of FDs and numerical examples to
discuss the influence of the method on the accuracy of the solution and the
performance of the multigrid solver in 1D.

3.1. Definition

We again consider the d-dimensional convection–diffusion equation as presented in
(1), where the velocity field v(x, t) = v ∈ Rd and the diffusion coefficient ε > 0 are
given. The VMS method under investigation introduces an additional diffusive term
and removes low-frequency diffusion by means of the divergence of a recovered
gradient approximation to the variational form introduced in (3). Let (Vh)d denote
a d-dimensional vector-valued FE subspace of (L2(Ω))d and αadd ≥ 0 be the
constant stabilization parameter to be defined later. Then the solution (uh, gh) is
sought so that

(∂tuh,φh) + ε(∇uh,∇φh) + (v · ∇uh,φh)

+ αadd(∇uh,∇φh) – αadd(gh,∇φh) = (f,φh) ∀φh ∈ Vh,

(gh – ∇uh,ψh) = 0 ∀ψh ∈ (Vh)d

(14)
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is satisfied, where gh: (0, T) → (Vh)d corresponds to the projected gradient of uh
and ensures that the introduced stabilization term vanishes in the continuous
problem. In contrast to the projection-based VMS stabilization technique as
published in [22] and [21], the gradient is approximated using the same FE space
defined on the triangulation Th. This procedure is also considered in [30, Section 5].

After discretization in space, the problem in matrix form reads as

Mh∂tuh(t) + εLhuh(t) + Khuh(t) + αaddLhuh(t) – αaddB⊤
h gh(t) = fh(t),

Nhgh(t) – Bhuh(t) = 0,
(15)

where Bh ∈ RN×N is the discrete counterpart of the gradient and Nh is the mass
matrix corresponding to the vector-valued FE space (Vh)d. We eliminate the second
equation by substituting gh(t) into the first equation. This results in the system to be
solved:

Mh∂tuh(t) + εLhuh(t) + Khuh(t) + αaddWhuh(t) = fh(t), (16)

where the stabilization matrix Wh := Lh – B⊤
h N

–1
h Bh can be explicitly determined for

a diagonal mass matrix Nh. As before, the Crank–Nicolson scheme is used as the
time integrator. Then the discrete counterpart of (16) is given by

AIumh + AEum–1
h + ∆t

2 αaddWhumh + ∆t
2 αaddWhum–1

h = fm, m = 1, . . . ,K (17)

as a straightforward extension of (5). Generally, the sparsity pattern of the
stabilization matrix Wh is more dense than the one of AI and AE due to the fact
that the multiplication of FE matrices is involved in the definition of Wh. Thus,
stabilizing the system comes at the expense of a more complex iterative solution
strategy. We will come back to this observation when discussing the matrix
structures in more detail. Finally, in this work, we treat the stabilization fully
implicitly to reduce the computational effort. This results in the final formulation of
the stabilized FE discretization to (1):

AIumh + AEum–1
h + ∆tαaddWhumh = fm, m = 1, . . . ,K. (18)

In the next section, we will argue that this fully implicit treatment is reasonable and
actually does not reduce the accuracy of the numerical solution. We will then
discuss the level-dependent choice of the stabilization parameter αadd in the context
of the multigrid approach and study the stabilization numerically.
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3.2. Interpretation using finite differences in 1D

To explore the fully implicit treatment of Wh in more detail, we first consider the
time discretization of the stabilization.

Time discretization   In Section 2.1, we introduced the Crank–Nicolson scheme for
time integration of the original semi-discrete formulation. Since the stabilization
term is treated fully implicitly, we now investigate its effect on the order of accuracy
starting from the discrete form (18), where Wh is added to the unknown of the mth
time step with time step size 𝛥t. For this purpose, we algebraically transform the
problem at hand into the following form:

AIumh + AEum–1
h + ∆tαaddWhumh = fm

⇔ ÂIumh + ÂEum–1
h = fm, (19)

where the matrices ÂI and ÂE are given by

ÂI := (Mh + αadd
∆t
2 Wh) + ∆t

2 (εLh + Kh + αaddWh),

ÂE := –(Mh + αadd
∆t
2 Wh) + ∆t

2 (εLh + Kh + αaddWh).
(20)

This is nothing else but the Crank–Nicolson discretization of

(Mh + αadd
∆t
2 Wh)∂tuh(t) + (εLh + Kh + αaddWh)uh(t) = fh(t)

⇔ Mh∂tuh(t) + (εLh + Kh)uh(t) + αaddWh(∆t
2 ∂tuh(t) + uh(t)) = fh(t), (21)

and therefore guarantees that the order of convergence of the numerical
approximation is not reduced if the semi-discrete solution to (21) converges to the
exact solution of (1) with second order in space. This derivation motivates the more
general variational formulation of the VMS stabilization in the d-dimensional case:

(∂tuh,φh) + ε(∇uh,∇φh) + (v · ∇uh,φh)

+αadd[(∇[uh + ∆t
2 ∂tuh],∇φh) – (gh,∇φh)] = (f,φh) ∀φh ∈ Vh,

(gh – ∇[uh + ∆t
2 ∂tuh],ψh) = 0 ∀ψh ∈ (Vh)d.

(22)

Discretization in time using the Crank–Nicolson scheme results in a fully implicit
stabilization term and, hence, reduces the numerical complexity compared to
problem (17). Next, we focus on the spatial accuracy of (21) and, for this, consider
an FD interpretation of the stabilization matrix under investigation.

Space discretization   Using one-dimensional linear FEs, a uniform grid, and
quadrature-based mass lumping, both mass matrices Mh and Nh correspond to a
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scaled identity matrix. More precisely, the matrices under consideration for the

inner degrees of freedom are given by

Nh = Mh =


h

. . .
h

 , Bh = 1
2



0 1
–1 0 1

. . . . . . . . .
–1 0 1

–1 0


, (23)

so that the second part of the stabilization matrix is given by

L̃h := B⊤
h N

–1
h Bh = – 1

4h



–3 0 1
0 –2 0 1
1 0 –2 0 1

. . . . . . . . . . . . . . .
1 0 –2 0 1

1 0 –2 0
1 0 –3


. (24)

Using the definition of the tridiagonal matrix Lh as the negative of the discrete

Laplacian and already known from the diffusive part, we conclude that the

stabilization matrix Wh reads as

Wh := Lh – L̃h = – 1
h



–2 1
1 –2 1

. . . . . . . . .
. . . . . . . . .

1 –2 1
1 –2



+ 1
4h



–3 0 1
0 –2 0 1
1 0 –2 0 1

. . . . . . . . . . . . . . .
1 0 –2 0 1

1 0 –2 0
1 0 –3


. (25)

To interpret this matrix in the context of FDs, we multiply equation (21) by

M–1
h = h–1I. This results in the FD matrices L∗

h := M–1
h Lh and L̃∗

h := M–1
h L̃h, which are
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equivalent to discrete diffusion operators applied to two different mesh sizes h and
2h. In summary, the FD stabilization matrix is pentadiagonal and represented by

W∗
h := M–1

h Wh = L∗
h – L̃∗

h = 1
(2h)2



5 –4 1
–4 6 –4 1
1 –4 6 –4 1

. . . . . . . . . . . . . . .
1 –4 6 –4 1

1 –4 6 –4
1 –4 5


∈ RN×N.

(26)

Adding this stabilization to the original problem leads to a larger bandwidth of the
system matrix and therefore increases the cost of the iterative solution strategy. The
fully implicit treatment of the stabilization, as introduced at the beginning of this
section, minimizes this additional effort.

A brief look at the Taylor expansion of the two central difference quotients,

L∗
huh ∼ 1

h2 (h2uxx + Ch4uxxxx + O(h6))
L̃∗
huh ∼ 1

4h2 (4h2uxx + 24Ch4uxxxx + O(h6))⇒ W∗
h := (L∗

h – L̃∗
h)uh ∼ C̃h2uxxxx + O(h4),

(27)

where C̃ := –3C, illustrates that the stabilization matrix W∗
h corresponds to a scaled

FD discretization of uxxxx while the factor h2 guarantees second order of accuracy in
space.

The d-dimensional stabilization problem was already given at the beginning of
this section in (22) where the time discretization was considered. This problem
corresponds in one dimension to the continuous case of the modified
convection–diffusion equation

∂tu – εuxx + vux + αaddC̃h2[u + ∆t
2 ∂tu]xxxx = f. (28)

Therefore, the stabilization is a perturbation of the continuous problem of order h2,
and the solution of (19) converges to the exact solution of (1) with second order.
Although (28) is continuous in space, the fixed factor h2 corresponds to the grid used
to discretize the problem in hand. This is the main difference to the d-dimensional
form, which is not derived from an FD point of view, and is a crucial aspect in the
next section, where the choice of the stabilization parameter is discussed.
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3.3. Choice of stabilization parameter

At this point, we motivate our level-dependent choice of the stabilization parameter
αadd for the time-simultaneous multigrid approach applied to the global space–time
system with space-major ordering resulting from the stabilized FE discretization
(18). For this purpose, we consider the situation of the multigrid algorithm, where
the mesh sizes of a fine level and some coarser level are given by h and H,
respectively. The time step size 𝛥t stays constant for all levels since coarsening is
applied only in space. According to the FD interpretation mentioned above, the
stabilized one-dimensional problem corresponding to the coarse level then reads as

∂tu – εuxx + vux + αaddC̃H2[u + ∆t
2 ∂tu]xxxx = f (29)

and, hence, differs from the problem of the fine level given in (28), where the scaling
of the stabilization term still depends on the mesh size h of the fine level. However,
the aim is to solve the same continuous problem on each level within the multigrid
algorithm, i.e., the fine-grid problem (28). By the choice of αadd = α

(
h
H

)2
in (29),

this requirement is satisfied due to the fact that

∂tu – εuxx + vux + α

(
h
H

)2
C̃H2[u + ∆t

2 ∂tu]xxxx = f

⇔ ∂tu – εuxx + vux + αC̃h2[u + ∆t
2 ∂tu]xxxx = f.

(30)

In the special case of the fine level with mesh size h, this parameter simplifies to
αadd = α so that the continuous problems resulting from the coarse level (29) and
the fine level (28) coincide. Using some parameters α ≥ 0, γ ≥ 0, we introduce a
more general definition of the level-dependent stabilization parameter

αadd := α

(
h
H

)γ

, (31)

which is exploited to scale the stabilization term on the coarser level with mesh size
H. While a reasonable value for α will be evaluated in the numerical studies, one
possible choice of γ was already motivated above. According to (30), the same
continuous problem is solved on each level for γ = 2. In this case, the value of αadd
decreases for a larger mesh size H so that less stabilization is added on coarser levels.
Corresponding effects can also be observed in the following numerical studies of the
time-simultaneous multigrid method. Another obvious choice resulting from the
d-dimensional stabilized problem (22) without the FD interpretation is given by
γ = 0, which results in a level-independent value of αadd. The intermediate state
γ = 1 of both derivations does not guarantee to solve the same continuous problem
but keeps the stabilization parameter larger on the coarser levels than with γ = 2.
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In the following section, we study the stabilization technique and the choice of
different stabilization parameters numerically.

3.4. Numerical studies

This section focuses on the qualitative and quantitative effects on the solution
behavior of the stabilization technique introduced above. For this purpose, the
influence on the accuracy of the solution as well as the performance of the
time-simultaneous multigrid solver applied to the stabilized system is investigated.
As before, we again use linear FEs for discretization in space in 1D while the time
integrator is given by the Crank–Nicolson scheme.

3.4.1. Accuracy of the solution

Our study on the quality of the solution computed by the stabilized method consists
of two parts, which differ mainly in the smoothness of the considered exact solution.
The choice of the parameter γ can be neglected at this point because we are only
interested in the fine-grid solution, which is not affected by γ due to the definition
of αadd.

Heaviside step function   By considering the Heaviside step function and the
coefficients v = 1 and ε = 0, we focus on the quality of the numerical solution as
already discussed in Section 2.3.2. Since the higher-order stabilization is studied in
combination with the Galerkin discretization, the corresponding solution of the
unstabilized case, polluted by artificial oscillations, is the point of reference. In
Figure 4, we observed these oscillations for the Galerkin and hence unstabilized
discretization of the convective term while the first-order upwind scheme provided
a highly diffusive result. Furthermore, this figure shows the numerical
approximation of the stabilized configuration at the final time T = 1. In this case, the
artifacts of the unstabilized solution are smoothed by the stabilization using α = 0.1,
which seems to be an appropriate choice as we will see below.

Order of convergence   We now come back to the smooth solution (12) introduced
in the numerical studies of the time-simultaneous algorithm in Section 2.3 and focus
on the order of convergence, which was an important aspect for the choice of the
stabilization technique. In the following investigations, the convection-dominated
region with ε = 10−3 and velocity field v = 1 is considered. In Table 1, we summarize
the error for the final time T = 2 in the discrete L2-norm for different values of the
stabilization parameter α. The error is reduced by a factor of 4 when the mesh size
and the time step size are both halved, no matter how the stabilization parameter is
chosen. Since we consider linear FEs in space and the Crank–Nicolson scheme in
time, this confirms the theoretical expectations with and without stabilizing the
problem. Additionally, the error for the upwind discretization of the convective
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Table 1. Discrete L2-error at final time T = 2 in the case of the smooth solution, v = 1, and ε = 10−3.

term can be found in the same table. We observe a factor of 2 for the reduction of
the error as expected by the theoretical investigations in Section 2.3.2.

So far, we did not argue how to choose the stabilization parameter. This can be
now done by considering Table 1 more precisely. First of all, we note that the
accuracy of the solution deteriorates as α increases. For example, for α = 10−1, the
numerical solution is approximately as accurate as in the case of α = 0 for twice
larger time increments and mesh sizes, i.e., we lose one level of mesh refinement,
which we assume to be acceptable. Another comparison shows that the numerical
solution for this amount of stabilization is even more accurate than in the upwind
case. Therefore, as the first observation, choosing α not too large is reasonable from
the point of view of accuracy. We will come back to this when discussing the
convergence behavior of the multigrid solver below due to the fact that an accurate
solution is an important aspect of the stabilization method.

3.4.2. Performance of the solver

In previous studies on the time-simultaneous method, a slow iterative convergence
behavior was observed for the convection-dominated case when the diffusion
coefficient was at most ε = 10−3, the velocity field was set to 1, and 64 or more time
steps were treated simultaneously. Therefore, we now focus on the effect of the
stabilization method for this parameter setting and, especially, discuss the influence
of the stabilization parameter α. In addition to the convergence behavior of the
iterative solver, which is illustrated by the number of iterations necessary for the
time-simultaneous method to solve the problem in hand, the behavior of the error is
also considered for accuracy reasons. Furthermore, we are interested in finding
criteria how to choose the stabilization parameter α: while the number of required
iterations should not grow arbitrarily for different numbers of time steps K, the
error is intended to be as close as possible to that of the Galerkin approximation for
smooth solutions.

We first focus on the two-grid solution algorithm and then discuss the influence
of its multigrid extension on the choice of the stabilization parameter.

Two-grid algorithm   To illustrate how to read the subsequent figures, we explain
the context of Figure 5a in detail. The numbers of iterations for the two-grid
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Figure 5. Number of iterations and normalized error for two-grid method in the case
of the smooth solution, v = 1, ε = 10−3, and stabilization parameter γ = 2.

algorithm for three different numbers of simultaneously treated time steps K are
shown in blue lines while the stabilization parameter α varies between 10−3 and 101.
The results for the smallest value of α = 10−3 are in good agreement with the
unstabilized ones since the convergence behavior is very similar in both cases. This
means in this case that the solver does not converge within the maximum number of
iterations. However, the solver converges significantly faster when more
stabilization is incorporated into the system. For stabilization with α = 10−1, the
lines for the different values of K meet, i.e., the algorithm converges independently
of the number of time steps treated simultaneously and requires only a few
iterations (<24) to solve the problem in hand. At the same time, and for this α = 10−1,
the errors are about (“only”) four times larger than those without stabilization,
corresponding to a loss of accuracy of one mesh level. This can be observed in the
same figure, where the discrete L2-error normalized with respect to the error for α
= 10−3 is plotted in red. Again, the errors for α = 10−3 are very close to the ones
corresponding to α = 0, which do not exploit any stabilization at all. Overall, the
results presented in Figure 5a illustrate the desired effect of stabilization with α

= 10−1 on the two-grid solver. The associated loss of accuracy seems to be acceptable
if the algorithm recovers the original quality of the solution at a finer resolution
while requiring significantly less iterations.

Next, the results for a finer time step size are summarized in Figure 5b. In this
case, the convergence behavior improves slightly for smaller values of K and without
stabilization (on the left of the x-axis). However, the remaining convergence issues
can be further reduced by the stabilization so that the choice of α = 10−1 might still
be beneficial.

Finally, the case of a finer spatial mesh is presented in Figure 5c. We observe that
a finer level improves the convergence behavior even without stabilization.
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Although stabilization would not be necessary for this configuration, the figure
illustrates that stabilization does not worsen the convergence behavior.

In summary, the stabilization parameter α should not be chosen too large to
achieve accurate solutions while small values of α might not sufficiently improve the
performance of the iterative solver. In this trade-off situation, the choice of α1: = 10−1

as an upper bound for α seems to be a good compromise as illustrated in Figure 5.

The previous results were computed using quadrature-based mass lumping,
which allowed us to exploit an FD interpretation for the analysis of the stabilization.
Furthermore, the employed preconditioner D becomes exact as 𝛥t → 0, which is
not satisfied anymore when all integrals are computed exactly. In Figure 6, the
behavior of the stabilization is shown for the discretization with the consistent mass
matrix Mc

h in front of the time derivative, i.e., Mc
h∂tuh(t), while mass lumping is still

exploited for the computation of Nh in (16). The number of iterations is compared
for the lumped and consistent mass matrices Mh and Mc

h in Figure 6a, and
Figure 6b illustrates the corresponding discrete L2-errors. A vertical line marks the
value of α1 = 10−1, which was derived in previous investigations as an appropriate
balance between accuracy and convergence behavior in the case of the lumped mass
matrix. Especially, the number of iterations stays bounded above independently of
the number of time steps K. However, the replacement of the lumped mass matrix
by the consistent one further reduces the numerical effort to solve the system in
hand by a factor of 2. In this case, the number of iterations already stays bounded
independently of K for a smaller value of α. The new upper bound α2 is marked by
another vertical line in the figure and indicates that the number of iterations is still
lower than the ones using the lumped mass matrix for the stabilization parameter α1.
On the other hand, the errors are approximately the same for α1 and both choices of
the mass matrix. In the case of Mc

h, even smaller values of α are acceptable, resulting
in an improved accuracy of the numerical approximation. As a conclusion, by using
the consistent mass matrix, we can achieve a similar error for α1 but with less
numerical effort. On the other hand, there is the possibility of choosing α even
smaller for more accurate solutions while still achieving iteration numbers that are
independent of the number of time steps. Due to this observation, the following
investigations are performed using the consistent mass matrix and especially
focusing on α = 10−1.

Multigrid algorithm   Time-simultaneous multigrid results are shown in Figure 7
and illustrate the number of iterations and the normalized error behavior in the
same way as in the two-grid analysis above. However, the behavior of the discrete
L2-error is slightly different due to the use of the consistent mass matrix instead of
its lumped counterpart. The discrepancies have already been discussed in the
previous section, and remain valid here since we are still solving the same problem
(on the finest level) in both the two-grid and multigrid approaches. Therefore, we
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Figure 6. Number of iterations and discrete L2-error for two-grid method in the case
of the smooth solution, v = 1, ε = 10−3, stabilization parameter γ = 2, and h = ∆t = 1

32 .
Vertical lines mark α1 = 0.1 and α2 = 0.03.

focus mainly on the convergence behavior of the iterative solver in the following
investigations. In Figures 7a and 7c, the fine mesh size and the time step size 𝛥t
coincide again. We first focus on the multigrid results for γ = 2 presented in
Figure 7c, where finer resolutions are considered. From the two-grid findings, we
conclude that the choice of α = 10−1 results in a good balance between accuracy of
the solution and performance of the solver. Looking at the multigrid results
stabilized with this value of α, we note that the number of iterations for different
values of K can still be improved compared to the unstabilized case but increases
when more time steps are treated simultaneously. The reason for this might be that
the stabilization on a coarse grid seems not to be sufficient for uniform convergence
behavior. Thus, the stabilization parameter α has to be chosen much larger in these
cases leading to a loss of accuracy again. In Section 3.3, we already mentioned that
the parameter γ = 2 implies less stabilization on coarser levels, which occurs
especially in the multigrid case where level 1 corresponds to the coarsest mesh. To
keep the stabilization parameter αadd := α( h

H)γ larger on the coarser levels while
still using the same value on the fine level, γ = 1 is additionally considered and
shown in dark blue in the same figure. For this setup, there is indeed an
improvement due to the fact that the number of iterations is again bounded for
different values of K and the stabilization parameter α = 10−1. This behavior can also
be observed in Figures 7a and 7b, where a coarser mesh size and time step sizes are
investigated. In summary, the stabilized multigrid results are comparable to those of
the two-grid algorithm, but the numbers of iterations are slightly higher.
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Figure 7. Number of iterations and normalized error for multigrid method using
F-cycle in the case of the smooth solution, v = 1, ε = 10−3, and the consistent mass
matrix.

These observations can also be confirmed with the help of Table 2b, which
additionally contains results for the stabilization parameter α = 10−1 and, in
particular, γ = 0. In certain multigrid configurations, especially for significantly
larger values of K, the choice of γ = 0 provides convergence rates that are uniformly
bounded above while the solver does not converge within the maximum number of
iterations for γ = 1 and γ = 2. In contrast to that, the two-grid solver provides the
lowest numbers of iterations bounded above for γ = 2. The corresponding results can
be found in Table 2a.

Finally, we highlight two further scenarios. The first setup in Figure 8a deals with
difficulties that occur when the fine mesh size is much smaller than the time step
size 𝛥t. In this case, neither the choice of γ = 2 nor γ = 1 will give the desired
K-independent convergence behavior for α = 10−1. Choosing a slightly larger α
would satisfy this criterion for γ = 1. However, the number of iterations is still quite
large while the error is relatively small. Since the choice of a time step size larger
than the mesh resolution is not necessarily physically reasonable for
convection-dominated problems, the practical relevance of this consideration
remains questionable. Even in the multigrid approach, the case where the spatial
mesh size is much smaller than the time step size does not arise, since coarsening is
only performed in space, but could occur for other coarsening strategies (in time).
The second setup considered in Figure 8b fixes the final time T = 2 but increases the
number of time steps K for smaller time step sizes 𝛥t. In this case, the convergence
behavior for both values of γ can be improved in the same way for the different
numbers of time steps. For α = 10−1, we observe the desired effect of the
stabilization even in the case of the multigrid algorithm while the solver does not
converge within the maximum number of iterations in most unstabilized cases.
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Table 2. Number of iterations in the case of the smooth solution, v = 1, ε = 10−6, the consistent mass matrix, and
stabilization parameter α = 10−1. A dash “-” indicates that the solver did not converge within the maximum number of
100 iterations.

(a) Two-grid

γ = 0 γ = 1 γ = 2

K∕h =𝛥t 1/32 1/128 1/512 1/32 1/128 1/512 1/32 1/128 1/512

1 4 2 2 4 2 2 3 1 2
4 6 5 4 5 4 4 4 3 3

16 10 10 6 8 7 4 5 3 3
64 20 21 8 13 11 6 6 5 3

256 28 29 21 14 13 11 6 5 4
1024 28 28 24 14 12 12 6 5 5
4096 28 26 23 14 12 12 6 5 5

16384 28 25 21 14 11 11 6 5 4

(b) Multigrid (F-cycle)

γ = 0 γ = 1 γ = 2

K∕h = 𝛥t 1/32 1/128 1/512 1/32 1/128 1/512 1/32 1/128 1/512

1 1 2 2 3 1 1 2 1 2
4 6 5 6 5 4 4 4 3 3

16 10 10 14 8 7 9 5 3 3
64 20 20 19 13 11 8 9 5 4

256 28 34 33 15 15 12 19 12 8
1024 28 36 45 16 15 18 32 26 23
4096 29 35 48 29 21 19 – 51 42

16384 29 34 46 – – 28 – – 55

4. Conclusion and outlook
The time-simultaneous multigrid algorithm and its application to the
one-dimensional heat equation were presented in the first part of this work. This
investigation, as well as the performance of the solver for the convection–diffusion
equation when the diffusion parameter is sufficiently large, illustrated that the rate
of convergence is uniformly bounded above independently of the number of
simultaneously treated time steps. Since convergence issues arise for the iterative
solution strategy and convection-dominated problems, we introduced a VMS-type
stabilization technique of higher order, which intends to improve the convergence
behavior of the multigrid solver. The convergence behavior of the time-simultaneous
two-grid algorithm could be extremely improved when using the stabilized system.
In most cases, even the number of iterations of the multigrid algorithm is bounded

25/28



Figure 8. Number of iterations for multigrid method using F-cycle in the case of
further setups with the smooth solution, v = 1, ε = 10−3, and the consistent mass
matrix.

above while still leading to second order of accuracy in space and time. To obtain
those findings, the choice of the stabilization parameter is a crucial question. An FD
interpretation of the stabilization was used to derive a level-dependent parameter
for which the number of iterations in the two-grid studies was small and bounded
above. A similar behavior has been found in the numerical studies of the multigrid
case when more stabilization is added on the coarser grids, which is accompanied by
a neglect of the consistency of the coarse-grid problem. Finally, as a side effect, it
was observed that artifacts occurring in the solutions for the standard Galerkin
discretization of convection-dominated problems can be smoothed by stabilization.

Future investigations on the described stabilization technique and its application
to the presented multigrid algorithm include extensions to 2D and 3D problems as
well as studies on the computational efficiency of the time-simultaneous approach.
To exploit even more parallelism, this time-simultaneous multigrid algorithm could
be combined with other approaches, such as parareal, MGRIT, or another multigrid
version of parareal [31], which would extend the method by working parallel in time.
As a forthcoming stabilization technique, it is convenient to apply the stabilization
in time rather than in space since all time steps are treated simultaneously in a global
system in this method. Overall, it is reasonable to explore especially the multigrid
case for convection-dominated problems in more detail since less stabilization on
coarser levels does not always show the desired effect; for example, adaptive control
of the stabilization parameter or level-dependent numbers of smoothing steps might
offer potential for improvement.
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