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Abstract
It is becoming clear that bulk gene expression measurements represent an average
over very different cells. Elucidating the expression and abundance of each of the
encompassed cells is key to disease understanding and precision medicine
approaches. A first step in any such deconvolution is the inference of cell type
abundances in the given mixture. Numerous approaches to cell-type deconvolution
have been proposed, yet very few take advantage of the emerging discipline of deep
learning and most approaches are limited to input data regarding the expression
profiles of the cell types in question. Here we present DECODE, a deep learning
method for the task that is data-driven and does not depend on input expression
profiles. DECODE builds on a deep unfolded non-negative matrix factorization
technique. It is shown to outperform previous approaches on a range of synthetic
and real data sets, producing abundance estimates that are closer to and better
correlated with the real values.

Keywords: deconvolution, bulk gene expression, non-negative matrix factorization,
deep learning

1. Introduction
Biological tissues are composed of a variety of distinct cell types. Identifying the
composition of cells in tissues can help generate hypotheses regarding
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cell-type-specific biological mechanisms with important biomedical applications.
For example, patients with a large number of infiltrating T cells are more likely to
respond positively to immunotherapy [1]. Thus, there is a need for deconvolving a
tissue of interest to its constituent cells.

Flow cytometry is the main standard for experimental deconvolution of a sample.
More recently, single-cell RNA sequencing (scRNA-seq) methods have become
available. However, these methods have their limitations: Flow cytometry requires
prompt and careful processing of samples as well as tissue disaggregation, which
may result in the loss of fragile cell types and the distortion of gene expression
profiles. ScRNA-seq methods are expensive for large sample studies. Additionally, in
these technologies, cell types such as neurons, myocytes, and adipocytes are difficult
to be captured due to cell size and morphology.

Thus, several computational methods were suggested for predicting cell fractions
from bulk expression data. Most methods rely on a signature matrix of cell-specific
expression profiles to predict the cell type abundance. Recent comparative analyses
of deconvolution methods [2–10] have highlighted state-of-the-art methods for this
task including non-negative least squares (NNLS) [11], CIBERSORT [12],
CIBERSORTx [10] which are based on support vector regression and GEDIT [13],
which runs linear regression, and SCADEN [9] which employs a deep learning
approach. However, most of these methods heavily rely on the input signature
matrices, which are global matrices that do not contain information which is
specific to the input tissue. Furthermore, most of these methods employ classical
regression approaches and do not make use of the rich expressive power of deep
models that are expected to have a considerable advantage as more training data
become available.

We propose DECODE (DEep Cell-type DEconvolution), a novel deep-learning
algorithm to predict the cell type abundance matrix from bulk gene expression data
and signature matrix. The algorithm is based on a deep unfolding algorithm for
non-negative matrix factorization (NMF) and combines both supervised learning
on synthetic data and unsupervised learning to achieve its task. We benchmark
DECODE using both simulated and real datasets and show that it outperforms
previous approaches. DECODE introduces several key novelties that explain its good
performance: (i) signature matrices are not explicitly represented by the model but
only used to initialize the model and to generate training data, thus allowing
data-driven behavior; moreover, (ii) NMF techniques for simultaneous prediction of
cell fractions and signatures cannot be directly used for this problem since they do
not guarantee that cell fraction vectors will sum to one, while DECODE can be
adjusted to this constraint as it is based on a flexible neural network architecture;
(iii) the generation of synthetic data (and subsequent training on) overcomes the
small amount of available training data; and (iv) the combination of supervised and
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unsupervised training helps the model tune to these two different goals which are
both important on real data as the training is unsupervised but the evaluation is
according to true (hidden) cell fractions. DECODE is made available at
https://github.com/eranhermush/DECODE.

2. Methods
In gene expression deconvolution, the input is a matrix of bulk gene expression
across multiple samples and a signature matrix consisting of expression profiles of
specific cell types. The goal is to infer a matrix of cell fractions indicating for each
sample its cell-type decomposition. We approach this problem using a deep learning
algorithm for NMF that aims to factor the input gene expression matrix into the
product of the signature matrix and the cell fraction matrix. Due to scarcity of
training data, we train the algorithm parameters using a combination of
synthetically generated data and real data. A high level pseudo-code of our
algorithm appears in Figure 1 and described in the following subsections.

Figure 1. A sketch of the DECODE pipeline. From left to right: DECODE receives a
bulk expression matrix and a signature of expression profiles. It first applies
supervised training on synthetically generated data using realistic cell fractions for I
iterations. The resulting model is trained in an unsupervised fashion for another I
iterations on the synthetic data. Finally, the model is further trained on the real data
in an unsupervised fashion to produce its predictions.

2.1. Algorithmic background

We assume a bulk expression matrix V of n genes bym samples, where n rows
represent the average of cell-type specific gene expression profiles in a sample,
weighted by their abundances in that sample. Suppose there are k cell types and S is a
signature matrix, where k columns are the gene expression profiles of those cell types.
Our goal is to infer a matrix F, wherem columns are probability vectors denoting the
fraction of each cell type in the corresponding sample such that V ∼ S ⋅ F.

Our algorithm, DECODE is based on deep unfolding approach for NMF,
DNMF [14]. DNMF is a deep learning algorithm for the decomposition of a
non-negative matrix Vn×m into a product of two non-negative matrices Sn×k and
Fk×m such that ∥V − SF∥2 is minimal. In more detail, DNMF contains several (l)
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layers that are updated based on the multiplicative update rule of Lee and Seung [15].
This rule iteratively updates S and F as follows:

Fi+1 ← Fi ⊙
STi V
STi SiFi

; Si+1 ← Si ⊙
VFTi
SiFiFTi

(1)

where⊙, [.][.] represent entry wise multiplication and division. However, in DNMF
this rule is relaxed to allow learning better solutions. Specifically, the algorithm
contains a layer for each iteration and aims to optimize F without explicitly
representing S. Focusing on some column f of F and the corresponding column v
of V , the output f i of layer i is (up to regularization):

fi+1 ← fi ⊙
Ai+1v
Bi+1 fi

(2)

where Ai+1 and Bi+1 are learnable matrices that correspond, in the original update
rule, to the matrices ST and ST S, respectively (ignoring the dependency between
the two latter matrices). Starting from an initial matrix F0, the algorithm rolls it
through t layers of the network, imitating the Lee and Seung iterative algorithm,
until an output Ft matrix is produced.

DNMF has two model variants: supervised and unsupervised. The supervised
variant assumes a known fraction matrix Freal which is either experimentally
measured or generated in simulations. It is trained with an L2 loss w.r.t. this matrix:
∥Fl − Freal∥2. When no real matrix is available, DNMF uses an unsupervised variant
where the loss is the reconstruction error ∥V − SFl∥2. Here we harness these two
variants and develop a combined supervised-unsupervised DNMFmodel that maps
from bulk expression (V ) to cell fractions (F).

2.2. Model details and training process

We introduce several novelties into the DNMF architecture and training process.
First, to account for the fact that each column f of F should represent a probability
vector, we normalize f i after each iteration to sum to one. Second, in order to make
use of the given signature matrix S, we initialize a DNMFmodelM (S) where we set
the weights of the first layer by A1 = ST and B1 = ST S to reflect one iteration of Lee
and Seung’s update rule. In addition, we initialize F0 with the result of applying
NNLS to V and S. All other parameters are initialized to one as suggested in [14].

Last, we use a combined supervised and unsupervised training process, where
the former is based on synthetic data while the latter is based on both synthetic and
real data. We first train the model using synthetic data in a supervised fashion for
one epoch with I = 60,000 iterations (or batches). LetMk be the resulting model
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after the k-th iteration (we omit the signature matrix S from the notation for
clarity). Next, we takeMI and train it for another I iterations in an unsupervised
fashion on synthetic data to yield model MU. Next, we trainMU for additional
Ir = 100 epochs on real data and report the final model. This process is executed for
each of a given list of signature matrices and the model with lowest unsupervised
error (on the real data) overall is output.

2.3. Supervised training on synthetic data

To deal with data scarcity, we first trained the algorithm on synthetic data.
Specifically, we collected known ranges of cell frequencies from [16] and used values
within these ranges as parameters for a Dirichlet distribution.We then drew random
fraction vectors from this distribution. The resulting fraction matrix was multiplied
by the given signature matrix to produce a synthetic bulk expression matrix. We
drew multiple matrices in this fashion and fed them sequentially to the training
process, viewing each such matrix as representing a batch. We further added a small
normally-distributed noise to each bulk expression matrix with zero mean and small
standard deviation: for the i-th batch the standard deviation is i∕10,000.

2.4. Unsupervised training on synthetic data

In the unsupervised training, we trained the DECODEmodel (MI) to minimize the
reconstruction error ∥V − SFmodel∥2 for I iterations. Before we trained the model, we
computed the NNLS supervised loss on the synthetic data and denote its loss by
ennls. For each unsupervised iteration of DECODE, if the supervised loss exceeds
ennls we stopped at this iteration (and not after I).

2.5. Hyperparameter tuning

DECODE has several hyperparameters that need tuning. Due to the small size and
number of data sets we opted for using an independent data for tuning the
hyperparameters. For number of layers we used 4 for speed considerations, as the
model’s accuracy is robust to the specific number used, and we used learning rate of
0.001 [14]. Since the problem we are trying to tackle is unsupervised in nature, we
followed [14] and did not use regularization. In order to set the number of training
iterations (I and Ir) we performed a grid search using an independent stromal
dataset from [2] (see next section for detailed description). Specifically, we tried
values from 40,000 to 80,000 for I and 50 to 200 for Ir, arriving at the best
combination of I = 60,000 and Ir = 100. When applied to the stromal dataset, it can
be seen that each of the algorithmic steps aids in improving DECODE’s performance
(Figure 2).
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Figure 2. Contribution of different algorithmic stages to the final result (stromal
data) compared to the full algorithm: (a) no supervised training on synthetic data;
(b) no unsupervised training on synthetic data; and (c) unsupervised training on
real data only.

2.6. Data and preprocessing

Good training data for the deconvolution problem is scarce. Our main data source is
a recent benchmark paper [2] which has three available datasets, all are results of
in-silico simulations. Two of the datasets, PBMC1 and PBMC2, represent 200
simulated mixtures of single-cell peripheral blood mononuclear cell (PBMC)
expression profiles (100 mixtures in each dataset). For each mixture, individual cells
were randomly chosen and their expression profiles summed. Both contain five
common PBMC cell types (B, CD4 T, CD8 K, NK and monocytes). A third
independent dataset, STROMAL, contains 100 simulated mixtures of stromal cell
types (B, CD4 T, CD8 T, macrophage, mast, endothelial and fibroblast cells). We use
the first two for testing and the third for hyperparameter tuning.

In addition, we retrieved a real, GSE65133, dataset from [12].This dataset contains
20 samples of real PBMC cell fractions that were measured by flow cytometry.

To complement the expression datasets, we used known signature matrices
from [2]. This study contains a comparative analysis of 9 deconvolution methods
with respect to 10 signature matrices. Among the top performing methods were
CIBERSORT, NNLS and GEDIT which we use for comparison. We averaged the
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accuracy values reported in Figure 1 of [2] for each of the signature matrices and
selected the four signatures with the highest accuracy value: Lm22, Skin Signatures,
HPCA-Blood, and BlueCode, which are focused in our study. In detail, LM22 [12]
contains 22 cell types and 547 genes; Human Primary Cell Atlas (HPCA-Blood) [17]
contains 7 cells and 19,715 genes; Blue-Code [18] contains 34 cells and 13,299 genes;
and Skin Signatures [19] contains 21 cells and 20,307 genes.

We preprocess the data using GEDIT’s approach [13] which removes cell types
that are not present in either the input expression or signature matrix, runs quantile
normalization on both matrices—such that each column follows the same
distribution as every other, removes genes that are missing from either matrix, and
selects a subset of 50 genes with lowest entropy for each cell to focus on (for each
cell we want the genes that are expressed in a cell type-specific manner. Entropy is
minimized when expression is detected only in a single cell type).

2.7. Algorithm comparison

We used several performance measures to compare DECODE to four existing cell
deconvolution algorithms: CIBERSORTX, NNLS, GEDIT and SCADEN.We ran
GEDIT with its R source code. We ran CIBERSORTX from its official website
(https://cibersortx.stanford.edu/).We ran NNLS with its R function.We ran Scaden
with its Python source code and kept its default training datasets (as it does not train
with a signature matrix). To compare the performance of the five deconvolution
algorithms, we measured both RMSE (root mean squared error) and Pearson
correlation coefficient, comparing real and predicted cell fractions estimates.

3. Results
We designed a novel algorithm for cell-type deconvolution, DECODE, which is
based on DNMFmethod [14] and a novel learning pipeline in which supervised and
unsupervised versions of the method are first applied to synthetic data to enhance
the learning process. A high level description of the algorithm is shown in Figure 1.
A detailed description of the algorithm and its hyperparameter tuning is elucidated
in Methods.

To evaluate DECODE, we applied it to three independent test datasets and
compared its performance to those of four state-of-the-art approaches: NNLS [11],
CIBERSORTX (an updated version of CIBERSORT) [10], GEDIT [13] and
SCADEN [9]. As a first test case, we tested DECODE on two simulated datasets of
PBMC cells from [2]. The results are summarized in Figure 3 and show the
superiority of our approach compared to previous methods with respect to the two
most common evaluation metrics—RMSE and Pearson correlation.
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Figure 3. Performance evaluation on simulated data. (a) RMSE performance.
(b) Pearson correlation performance.

As a second test, we applied DECODE to a real dataset of PBMCs from [12], again
obtaining favorable results (Figures 4 and 5).

Figure 4. Performance evaluation on real data. (a) RMSE performance. (b) Pearson
correlation performance.

In summary, DECODE significantly improved the results of the former methods.
Table 1 shows that DECODE produces much lower RMSE errors than the previous
best methods.

4. Conclusions
We provided a deep learning framework for deconvolution of bulk gene expression
to its cell fractions. Its main innovations include the generation of labeled training
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Figure 5. Scatter plots of ground-truth (x axis) and predicted values (y axis) for
DECODE (a), SCADEN (b), CIBERSORTX (c), GEDIT (d) and NNLS (e) on real
data.

Table 1. Comparison of DECODE with previous best methods.

Dataset DECODE
RMSE

Previous best result DECODE
improvement (%)

PBMC1 0.0678 0.0737 (by SCADEN) 8
PBMC2 0.0712 0.0936 (by NNLS) 23

Real GSE65133 0.1137 0.1411 (by SCADEN) 20

data and the combination of supervised and unsupervised learning in the training
process, as well as the use of DNMFmethod which does not explicitly code the cell
signatures, allowing data-driven behavior. We demonstrated the utility of our
framework in deconvolution of simulated and real data.

While DECODE’s methodology does not depend on a signature matrix, such a
matrix is used in the initialization of the neural network. Future work includes the
inference of the signature matrix as part of the learning process so as not to depend
on receiving it as input. Another limitation of DECODE is the use of synthetic data
for training due to the scarcity of real data. With the accumulation of single cell
expression data, a potential way forward is to use these data to simulate
deconvolution scenarios and thus improve the training process.
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