
Citation
Yu Zhou and Jessica Dorismond
(2024), Optimal Placement of UAVs to
Provide Surveillance Coverage for a
Ground Vehicle in a Collaborative
Search-and-Rescue Operation. AI,
Computer Science and Robotics
Technology 3(1), 1–26.

DOI
https://doi.org/10.5772/acrt.29

Copyright
© The Author(s) 2024.

This is an Open Access article
distributed under the terms of the
Creative Commons Attribution
License (https://creativecommons.
org/licenses/by/4.0/), which permits
unrestricted reuse, distribution, and
reproduction in any medium,
provided the original work is properly
cited.

Received: 7 August 2023
Accepted: 21 November 2023
Published: 25 January 2024

R E S E A RCH PA P E R

Optimal Placement of UAVs to Provide
Surveillance Coverage for a Ground
Vehicle in a Collaborative
Search-and-Rescue Operation
Yu Zhou1,* and Jessica Dorismond2

1 State University of New York Polytechnic Institute, Utica, New York, USA
2 Air Force Research Laboratory, Rome, New York, USA
*Corresponding author. E-mail: zhouy2@sunypoly.edu

Abstract
A drone-truck combined search-and-rescue operation involves a ground vehicle and
a swarm of unmanned aerial vehicles (UAVs), where the UAVs provide surveillance
coverage to guide the ground vehicle to navigate through the environment and carry
out the search and rescue, and the ground vehicle functions as a service hub for
carrying and recharging the UAVs. An effective strategy for providing persistent
UAV surveillance coverage around the ground vehicle consists of initially forming
the UAV swarm coverage and then controlling the UAV formation to follow the
ground vehicle. This paper focuses on the formation of coverage and presents a
method for planning an optimal placement of the UAVs to form seamless
surveillance coverage around the ground vehicle. The optimization problem is
formulated to determine the number and positions of UAVs that minimize the
energy consumption in deploying and collecting those UAVs, subject to a set of
constraints in UAV positioning, communication, and coverage, specifically the
available number of UAVs, allowable range of UAV altitude, allowable energy
consumption for deploying and collecting each UAV, communication ranges of UAVs
and ground vehicle, safety distance between UAVs for collision and interference
avoidance, and seamless coverage. A bi-layer optimization procedure is developed,
with an outer layer searching through the allowable numbers of UAVs and an inner
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layer searching for the optimal positions for each specific number of UAVs.The
optimal number and positions of UAVs are chosen by comparing among the
solutions for different numbers of UAVs. A simulation study is carried out to validate
the proposed optimization formulation and solution approach, where the
simulation settings of UAVs, particularly the critical parameters including the UAV
energy constants, visibility angle, altitude, and communication range, use the
representative values presented in the cited literature. The simulation results show
that the proposed approach is effective in planning the optimal number and
positions of UAVs to provide seamless surveillance coverage for a ground vehicle.
The next step of research will set priorities on comprehending the complexity of the
solution space and enhancing the global optimality of the solution.

Keywords: UAV, UAV swarm, UAV surveillance coverage, UAV placement, UAV
deployment, constrained optimization

1. Introduction
This research is oriented to a scenario where a swarm of UAVs provides persistent
surveillance coverage for a ground vehicle (Figure 1) in a collaborative
search-and-rescue mission. The ground vehicle needs to detect and overcome
multiple environmental complications, e.g., road conditions, obstacles, moving
objects, and other contingent situations, and to detect and locate rescue targets
[1, 2]. If deployed alone, the ground vehicle has a limited sensing capability due to
the limited detection range of sensors and obstructions by surrounding objects [1, 2].
Sensing from the air and being able to cover a larger ground area by
collaboration [3–5], the UAVs can support the ground mission by conducting
continuous surveillance around the ground vehicle to inform road and weather
conditions, alert to contingent and dangerous conditions, and detect humans who
need help, etc. This can vastly extend the sensing capability of the ground vehicle
and largely improve the efficiency and safety of the mission [4, 5]. Meanwhile, the
ground vehicle can serve as a supporting unit for the UAVs, carrying them to the
regions of interest and functioning as a service hub for recharging and replacing the
UAVs.This can largely enhance the persistence of UAV operations [5].

One effective strategy to provide persistent UAV surveillance coverage for the
navigating ground vehicle is to initially form a UAV coverage around the ground
vehicle at the starting point and then control the UAV formation to follow the
moving ground vehicle. The work of this paper focuses on the formation of UAV
coverage for the ground vehicle and introduces an approach to determine an optimal
placement of UAVs for seamless surveillance coverage around the ground vehicle,
with a comprehensive consideration of the energy efficiency, sensing capability,
positioning constraint, communication range, and availability of UAVs.
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Figure 1. UAV swarm coverage for ground vehicle.

The collaboration between UAVs and ground vehicles has attracted substantial
research efforts recently, categorized as drone-truck combined operations
(DTCO) [6, 7]. The most researched DTCO application is the delivery of items using
a drone-truck delivery system, where the associated research problems are mainly
the traveling salesman problem with drones (TSPD) and vehicle routing problem
with drones (VRPD) [6, 7]. Research has also been carried out in the context of area
coverage. Mathew et al. studied the problem of path planning for unmanned ground
vehicles (UGVs) to recharge UAVs following pre-planned surveillance paths,
modeling it using a partitioned directed acyclic graph and solving it using the
approaches of integer linear programming and graph transformations [8, 9]. In a
DTCO scenario, where a UGV carried a UAV to a set of locations and the UAV took
off at each location to do a local area coverage, Tokekar et al.modeled the UAV path
planning problem using a metric graph and solved it as an orienteering problem [10].
Sujit et al. discussed a DTCO operation involving a team of autonomous underwater
vehicles (AUVs) and a UAV [11], where the AUVs carried out the exploration mission
and periodically surfaced to communicate with the UAV which flew over the AUVs
and served as a messenger between them and a base station.

More references on area coverage using UAVs are found in the context of
optimizing the placement of UAVs carrying cameras/sensors to monitor targets or
cover an area on the ground (Table 1). Pugliese et al. considered the number of UAVs
and total energy consumption as cost metrics, formulated the problem using an
integer linear model and a mixed integer non-linear optimization model, and solved
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Table 1. Summary of references on using UAVs to monitor targets on the ground.

References Optimization problem Algorithms

[12, 13] Minimization of the number of UAVs and total energy
consumption

C-SDLP, K-means, C-MDLP, and L-MDLP

[14] Minimization of the number of UAVs, Oriented Line
Segment Coverage Problem

Greedy approximation

[15] Optimization of the locations Greedy, reverse greedy, carousel greedy, linear
programming, particle swarm optimization, simulated

annealing, genetic, and ant colony optimization

[16] Minimization of energy consumption, maximization
of total coverage, maintenance of connectivity, and

minimization of overlaps

Multi-objective artificial bee colony, multi-objective particle
swarm optimization, non-dominated sorting genetic

algorithm II, strength Pareto evolutionary algorithm II, and
non-dominated sorting genetic algorithm III

[17] Maximization of the coverage rate, point-level clarity,
uniform clarity, and resource utilization

Improved constrained two-archive evolutionary algorithm

[18] Maximization of the coverage area Adaptive multiple pruning search method

[19] Tradeoff between the signal coverage and interference Two-phase evolution algorithm

[20] Maximization of the number of covered targets Particle swarm optimization

it using the heuristic algorithms including C-SDLP, K-means, C-MDLP, and
L-MDLP [12, 13]. With the objective to minimize the number of UAVs, Saeed et al.
formulated an oriented line segment coverage (OLSC) problem and solved it using
the greedy approximation approach [14]. Hammond et al. determined the optimal
locations for the smallest set of cameras monitoring all the points using the
set-covering algorithms including traditional greedy, reverse greedy, carousel greedy,
linear programming, particle swarm optimization (PSO), simulated annealing,
genetic, and ant colony optimization [15]. To optimally deploy a set of UAVs to
monitor agricultural fields, Issad et al. formulated a constrained multi-objective
optimization problem to minimize energy consumption, maximize total coverage,
maintain connectivity, and minimize overlaps, and solved it using the heuristic
algorithms including multi-objective artificial bee colony, multi-objective PSO,
non-dominated sorting genetic algorithm II, strength Pareto evolutionary
algorithm II, and non-dominated sorting genetic algorithm III [16]. Cao et al.
targeted the maximization of coverage rate, point-level clarity, uniform clarity, and
resource utilization rate of a UAV camera network, and planned the 3D placement of
those UAVs using an improved constrained two-archive evolutionary algorithm [17].
Wang and Gu used an adaptive multiple pruning search method based on a grid
model of the target area to solve for the 2D placement of a set of UAVs that
maximized the coverage of the given area [18]. To achieve a tradeoff between the
signal coverage and interference for using UAVs to inspect a pipeline network, Ma
et al. determined the number and 3D placement of UAVs using a two-phase
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evolution algorithm based on a 3D pipeline graph model [19]. Munawar et al. used
the PSO algorithm to plan the 2D placement of a given number of drones that
maximized the number of covered targets [20].

The optimal deployment of UAVs is also a major research problem associated with
the application of UAVs to provide communication network coverage for users and
stations on the ground (Table 2). Huang and Savkin determined the 2D placement of
a set of drones that maximized the coverage of users subject to the constraint of
communication range, based on the graphs of communication connectivity and
locations [21]. Huang et al. extended their work to the 3D placement of UAVs subject
to the constraints of safe positions and quality of service, using a greedy algorithm
on the discretized 3D space [22]. Reina et al. used a multi-layout
multi-subpopulation genetic algorithm to solve for the placement of a set of UAVs, in
order to provide optimal network coverage for a given number of ground nodes with
a consideration of maximum coverage, fault tolerance, and redundancy [23].
Sawalmeh et al. used the Circle PackingTheory to determine the optimal placement
for a swarm of UAVs that maximized the coverage area and coverage density [24].
Chou et al. targeted the maximization of total amount of data transmitted by UAVs
with a consideration of the trade-off among flight altitude, energy expense, and
travel time, and solved for the deployment of UAVs using Lagrangian dual relaxation
and a heuristic approach using interior-point and subgradient projection
methods [25]. To deploy a number of UAVs as aerial base stations (ABSs) to provide
network coverage for user equipment (UEs), Hydher et al. determined the optimal
positions of UAVs and assignment of UEs to each ABS that maximized the total
spectral efficiency of the network while maintaining a minimum quality of service
requirement, using K-means clustering and a stable marriage approach [26]. To use
UAVs to provide wireless coverage for Voice over WiFi service to a set of ground
users, Mayor et al. determined the optimal placement of UAVs that minimized the
ratio between the number of UAVs and energy efficiency, using the genetic algorithm
and PSO [27]. To use UAV small cells (UAV-SCs) to augment or temporarily restore
service to an ultra-dense cellular network, Zamani et al. formulated an optimization
problem to minimize the overall power consumption of the network by jointly
optimizing the number of UAV-SCs, their placement, associations, and the power
allocation, subject to user quality of service, transmit power, and front haul capacity
constraints, and solved it using a metaheuristic method based on PSO [28]. Zhang
and Duan used binary search and dynamic programming algorithms to determine
the optimal deployment for a number of UAVs that maximized the minimum
leftover energy storage among all the UAVs after their deployment, to provide
wireless coverage to ground users [29]. With the purpose of utilizing a limited
number of UAVs to improve the performance of aerial mesh networks, considering
target coverage, quality of service, and energy consumption, Gupta and Varma
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Table 2. Summary of references on using UAVs to provide communication coverage for users and stations on the
ground.

References Optimization problem Algorithms

[21, 22] Maximization of the coverage of users Graphs of communication connectivity and locations,
greedy algorithm

[23] Maximization of coverage, fault tolerance, and
redundancy

Multi-layout multi-subpopulation genetic algorithm

[24] Maximization of the coverage area and density Circle PackingTheory

[25] Maximization of the total amount of data transmitted
with a trade-off among flight altitude, energy expense,

and travel time

Lagrangian dual relaxation and a heuristic approach using
interior-point and subgradient projection

[26] Maximization of the total spectral efficiency of the
network while maintaining a minimum quality of

service requirement

K-means clustering and a stable marriage approach

[27] Minimization of the ratio between the number of
UAVs and energy efficiency

Genetic algorithm and particle swarm optimization

[28] Optimization of the number of UAV-SCs, their
placement, associations, and the power allocation,

subject to user quality of service, transmit power, and
front haul capacity constraints

Particle swarm optimization

[29] Maximization of the minimum leftover energy storage Binary search and dynamic programming

[30] Multi-objective optimization considering target
coverage, quality of service, and energy consumption

Multi-objective particle swarm optimization,
non-dominated sorting genetic algorithm II, strength

pareto evolutionary algorithm 2, and pareto envelope-based
selection algorithm II

[31] Maximization of the number of users served by UAV
base stations subject to the constraints of path-loss
compensation factor, minimummean and edge

throughput, ABS height, and transmit power budget

Modified K-means

[32] Maximization of the system throughput Mean-shift and successive convex approximation algorithms

[33] Maximization of the network throughput subject to
the constraints of locations, UAV-device associations,

scheduling, communication, and time

Dinkelbach-based algorithm

[34] Maximization of the number of served users subject to
user data-rate requirements and base station

capacity limit

Genetic algorithm

[35] Maximization of the user coverage Particle swarm optimization and virtual repulsive force

[36] Maximization of the fair coverage versus energy
consumption subject to the backhaul constraints

Proximal stochastic gradient descent based alternating
algorithm

[37] Minimization of the number of drones subject to the
constraints of coverage and service quality

Particle swarm optimization

[38] Maximization of the total network throughput Virtual force field and particle swarm optimization
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formulated a multi-objective optimization problem and solved it using the
metaheuristic-based algorithms including multi-objective PSO, non-dominated
sorting genetic algorithm II, strength pareto evolutionary algorithm 2, and pareto
envelope-based selection algorithm II [30]. Shakoor et al. determined the 2D
placement of a given number of UAVs at a computed optimal altitude that
maximized the number of users served by UAV base stations subject to the
constraints of path-loss compensation factor, minimummean and edge throughput,
ABS height, and transmit power budget, using a modified K-means algorithm [31].
Valiulahi and Masouros planned the horizontal positions of a set of UAVs using a
mean-shift algorithm and the altitudes using a successive convex approximation
algorithm, with the objective of maximizing the system throughput of each
user [32]. Ye et al. determined the 3D placement of a set of UAVs that maximized the
network throughput subject to the constraints of locations, UAV-device associations,
scheduling, communication, and time, using a Dinkelbach-based algorithm [33].
Zhong et al. targeted to maximize the number of served users subject to user
data-rate requirements and base station capacity limit, and determined the number
and horizontal positions of UAVs using the genetic algorithm [34]. Chen et al.
planned the 2D placement of a set of UAVs that maximized the user coverage, using
an algorithm based on PSO and virtual repulsive force [35]. Liu et al. planned the
horizontal positions of a given number of UAVs using a proximal stochastic gradient
descent based alternating algorithm, with the objective to maximize the fair
coverage versus energy consumption subject to the backhaul constraints [36]. Mayor
et al. determined the 3D placement of drones that minimized the number of drones
subject to the constraints of coverage and service quality, using the PSO
algorithm [37]. Wang et al. determined the horizontal positions of a given number
of UAVs using a virtual force field based algorithm and the altitudes using the PSO
algorithm, with the objective to maximize the total network throughput [38].

The work of this paper targets a novel application of DTCO search-and-rescue
mission and emphasizes continuous and seamless area coverage around a ground
vehicle. This imposes new challenges in formulating and solving the research
problem of finding an optimal deployment, including both the number and
positions, of UAVs to provide surveillance coverage. The cited references on coverage
using UAVs are effective in providing solutions to their specific optimization
problems associated with their specific applications respectively. However, a vast
majority of them deal with covering discrete targets or discretized spaces [12–15,
17–23, 25–28, 30–38], where the ways of formulation and solution provide inspiration
but cannot be adopted directly by the work of this paper which deals with
continuous and seamless area coverage. Meanwhile, those references which deal
with continuous area coverage focus on finding optimal placement of a given
number of UAVs [16, 24, 29], while the work of this paper is to find both the optimal
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number and positions of UAVs to form the coverage. Finding the optimal positions

of a given number of UAVs is a fixed-length optimization problem, where the

number of input variables is constant during the search process. Most existing

optimization algorithms deal with fixed-length problems. Finding both the optimal

number and positions of UAVs is a variable-length optimization problem, where the

number of input variables is variable during the search process. Such a problem is

more challenging to solve. Some studies, which deal with the minimization of the

number of UAVs, formulate their optimization problems into fixed-length problems

based on the definition of a binary association function between the UAVs and

targets [12, 13, 28]. Though this approach works effectively with discrete targets, it is

not directly applicable to the continuous area coverage problem of this study.

This study addresses the challenge and develops an effective approach for

determining the optimal number and positions of UAVs in order to provide

continuous and seamless UAV surveillance coverage around a ground vehicle. The

main contributions of this study are summarized as follows:

• The research problem of planning the deployment of UAVs, associated with the

novel application of DTCO search-and-rescue mission, is modeled as a new

constrained variable-length optimization problem.This optimization problem

determines the optimal number and 3D positions of UAVs that minimize energy

consumption in deploying and collecting those UAVs, subject to a comprehensive

set of constraints on the operations of UAVs, at both individual and swarm levels,

specifically including the available number of UAVs, permissible range of UAV

altitude, allowable energy consumption for deploying and collecting each UAV,

communication ranges of UAVs and ground vehicle, safety distance between

UAVs for collision and interference avoidance, and seamless coverage.

• A bi-layer optimization solution process is proposed to solve the formulated

constrained variable-length optimization problem, with an outer layer searching

through the allowable numbers of UAVs and an inner layer searching for the opti-

mal positions for each specific number of UAVs.The optimal number and positions

of UAVs are chosen by comparing among those solutions for different numbers of

UAVs.This bi-layer strategy provides an effective algorithmic framework, which

can work with any suitable fixed-length optimization algorithm on the inner layer,

for solving the targeted variable-length optimization problem.This study specif-

ically chooses the genetic algorithm (GA) as the inner layer algorithm to work

with the bi-layer process. This combination provides an effective optimization

algorithm for this constrained variable-length optimization problem.
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• The proposed optimization formulation and solution approach is validated
through a simulation study. The simulation settings, including the UAV energy
constants, visibility angle, altitude, and communication range, adopt the
representative realistic values from the cited literature, as shown in a later section
of this paper.

The remaining parts of this paper are organized as follows. Section 2 presents the
formulation of the associated optimization problem. Section 3 discusses the solution
procedure of the optimization problem. Section 4 deals with the simulation results.
Section 5 concludes the study and discusses the future work.

2. Formulation of optimization problem
In order to form an efficient and reliable UAV swarm surveillance coverage around a
ground vehicle, an optimization problem is formulated with the objective of finding
an optimal deployment of UAVs from the perspective of energy efficiency, subject to
the relevant constraints in UAV positioning, communication, and coverage.

The research problem is defined with the following assumptions:

• The involved UAVs are homogenous, with the same capabilities of kinematics,
sensing, communication, and energy.

• The involved UAVs are modeled as point UAVs with omni-directional flight
capability, which applies to a wide range of helicopter-like single-rotor and
multi-rotor UAVs.

• The ground vehicle has sufficient energy capacity to support the ground mission
and provide recharging or replacement to UAVs.

• Each UAV is fully charged when it leaves the ground vehicle.
• The region of interest does not interfere with no-fly zones.
• A desirable ground coverage is specified as a circular area centered at the ground
vehicle.

In this research, an effective deployment of UAVs means a number of UAVs being
placed for seamless surveillance coverage over a ground area with a desirable radius
around the ground vehicle. Here, the desirable radius of coverage is denoted by
Rdesirable, the number of UAVs used is denoted by N, and the position of the ith UAV
is represented using the polar coordinates pi =  (ri, αi, zi), where ri denotes the
radial coordinate, αi denotes the angular coordinate, and zi denotes the altitude of
the UAV.The positions of UAVs are defined in the reference frame centered at the
ground vehicle, where the ground vehicle is located at the origin with the polar
coordinates (0, 0, 0).
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Each UAV has a finite energy capacity. With less energy spent in deploying
and collecting a UAV, more energy is available for the UAV to carry out its
service activities including flight, hovering, sensing, and wireless communication.
From the perspective of energy efficiency, a deployment of UAVs which requires the
minimal amount of energy for the UAVs to fly to their monitoring positions for
surveillance and fly back to the ground vehicle for recharging or replacement is
considered an optimal deployment. Thus, the optimization problem takes the
following objective function

(N∗, {∀i ∈ [1,N∗],p∗i }) = argmin
(N,{∀i∈[1,N],pi})

N∑
i=1

Eoverhead,i(pi), (1)

whereN∗ denotes the optimal number of UAVs used, p∗i denotes the optimal position
of the ith UAV, and Eoverhead, i denotes the overhead energy consumption for the
deployment and returning of the ith UAV. To estimate Eoverhead, i for the purpose of
planning the placement of UAVs, it is assumed that a UAV will fly to its monitoring
position from the ground vehicle by first climbing to the altitude zi vertically and
then translating to the position (ri, αi) horizontally, and return to the ground
vehicle by first translating to the position (0, 0) horizontally and then descending to
the ground vehicle at the altitude 0. Thus, Eoverhead, i can be represented as

Eoverhead,i = Easc,i + 2Etrans,i + Edes,i, (2)

where Easc, i denotes the energy consumed by the ith UAV during the ascending
process, Edes, i denotes the energy for descending, and Etrans, i denotes the energy for
translation. In particular, Etrans, i is doubled in Equation (2) to account for a UAV
flying to its monitoring position and returning to the ground vehicle. It is also
assumed that the UAV will travel horizontally and vertically at constant speeds,
though the horizontal speed and vertical speed can be different. Accordingly, it is
considered that Etrans, i, Easc, i, and Edes, i are linear functions of the UAV traveling
distances in the associated directions at constant speeds [26, 29, 39, 40], and
ascending consumes more energy than descending [40]. Thus, they can be
formulated as

Etrans,i = ηtransri, Easc,i = ηasczi, Edes,i = ηdeszi, (3)

where ηtrans, ηasc, and ηdes denote the UAV energy consumption per distance for
translation, ascending, and descending respectively. In accordance with
Equations (2) and (3), Eoverhead, i is thus considered a function of the monitoring
position of the ith UAV relative to the ground vehicle, i.e. Eoverhead, i(pi), as
indicated in Equation (1). While the objective function is defined as minimizing the
total overhead energy consumption of the UAVs used to form the surveillance

10/26 Distribution A. Approved for Public Release; Distribution Unlimited Case Number: AFRL-2024-0339. Dated 22 Jan 2024



coverage around the ground vehicle, it also implies using fewer UAVs if possible
because less total overhead energy consumption is expected with fewer UAVs.

Moreover, the optimization problem is subject to several constraints which can be
categorized into the bounds for the input variables and constraints defined upon the
input variables. The bound constraints for the input variables include:

• The allowable range for the number of UAVs in use,N ∈ [Nmin,Nmax]: This
constraint sets the bounds of search for the number of UAVs used for surveillance
coverage. The upper boundNmax is defined by the number of available UAVs.The
lower boundNmin is defined by rounding the ratio between the area of the
desirable coverage around the ground vehicle and the maximal area of coverage
by one UAV.

• The allowable range for the position of a UAV, pi: The altitude of a UAV should be
kept within the range, i.e. zi ∈ [hmin, hmax], where the lower bound hmin and
upper bound hmax are specified mainly with a consideration of the balance
between the size and resolution of UAV surveillance coverage. The horizontal
position of a UAV should be inside the desirable radius of coverage, i.e. ri ∈ [0,
Rdesirable] while αi ∈ [0, 360°]. This constraint with the polar coordinates is more
convenient to the optimization problem, compared with the corresponding
nonlinear constraint that would result from the Cartesian coordinates. These
bound constraints in ri, αi, and zi set the basic search range for the positions
of UAVs.

The constraints defined upon the input variables include:

• The constraint on the allowable overhead energy consumption for each UAV,
Eoverhead, i ≤ Eomax: Besides the energy consumed for deploying and returning,
each UAV should reserve enough energy for service activities. This constraint
enforces that in the resulting deployment, each UAV should have enough energy
for service, by limiting its overhead energy consumption. The upper bound of the
allowable overhead energy consumption Eomax for a UAV is usually set as a
percentage of the total energy capacity Ecap of a UAV, i.e. Eomax = p% ∗ Ecap. By
representing Eoverhead, i as a function of the monitoring position of a UAV in
accordance with Equations (2) and (3), this constraint can be written as

∀i ∈ [1,N], 2ηtransri + (ηasc + ηdes)zi ≤ p%Ecap. (4)

Benefitting from the adoption of the polar coordinates, the overhead energy
consumption of a UAV becomes a linear function of its altitude zi and radial
coordinate ri.

• The constraint on the communication ranges among the UAVs and ground vehicle:
Communication connectivity is needed for data transfer and coordination among

11/26 Distribution A. Approved for Public Release; Distribution Unlimited Case Number: AFRL-2024-0339. Dated 22 Jan 2024



the UAVs and between the UAVs and ground vehicle. The wireless communication

range of a UAV or ground vehicle is always limited. To efficiently use UAVs for

surveillance coverage, a networking strategy is adopted, where each UAV forms

communication links with only a few closest neighbors which include other UAVs

and/or the ground vehicle. In this way, the UAVs do not need to stay within the

communication range of the ground vehicle and thus can spread out to form

larger coverage, while the communications between the ground vehicle and

farther UAVs are accomplished through networking. Accordingly, those UAVs in

the neighborhood of the ground vehicle should connect to the ground vehicle, i.e.

∀UAVi ∈ AGV, r2i + z
2
i ≤ R2UAV–GV, (5)

where AGV denotes the neighborhood of the ground vehicle, RUAV−GV denotes

the smaller between the communication range of the ground vehicle and that of a

UAV; moreover, each UAV should connect to the other UAVs inside its own

neighborhood, i.e.

∀i, ∀UAVj ∈ Ai,
(ri cosαi – rj cosαj)2 + (ri sinαi – rj sinαj)2 + (zi – zj)2 ≤ R2UAV,

(6)

where Ai denotes the neighborhood of the ith UAV, and RUAV denotes the

communication range of a UAV. Equation (6) indicates that this constraint is

nonlinear.

• The constraint on the distance between UAVs for collision and interference

avoidance: In order to avoid collisions, aerodynamic interference, and

communication interference among UAVs, a constraint on the horizontal distance

between any two neighboring UAVs is considered as

∀i, ∀UAVj ∈ Ai, (ri cosαi – rj cosαj)2 + (ri sinαi – rj sinαj)2 ≥ d2min, (7)

where dmin denotes the minimum permissible horizontal distance between UAVs.

Equation (7) indicates that this constraint is nonlinear.

An additional constraint that the optimization problem is subject to is the

seamlessness of the resulting surveillance coverage. The ground coverage of a UAV is

considered to be related to its altitude [13, 14, 16, 24] as

Ri = zi tan
(
θ

2

)
, (8)
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where Ri denotes the radius of the ground coverage of the ith UAV, and θ is the cone

angle known as the visibility angle which defines the field of view of a UAV.While

the desirable ground coverage Cdesirable is a circular area centered at the ground

vehicle with a radius of Rdesirable, the resulting coverage Ci of the ith UAV is a

circular area on the ground centered at the horizontal position of the UAV with a

radius of Ri. By considering Cdesirable and Ci as sets of positions on the ground, this

constraint can be written as

Cdesirable(Rdesirable) ⊆
N∪
i=1

Ci(ri,αi, zi, θ). (9)

To summarize, the optimization problem of finding an optimal deployment of

UAVs subject to the relevant constraints is defined as

(N∗, {∀i ∈ [1,N∗], (r∗i ,α
∗
i , z

∗
i )})

= argmin
(N,{∀i∈[1,N],(ri,αi,zi)})

N∑
i=1

(2ηtransri + (ηasc + ηdes)zi), (10)

subject to

N ∈ Z+ and N ∈ [Nmin,Nmax],
∀i ∈ [1,N], ri ∈ R+ and ri ∈ [0,Rdesirable],
∀i ∈ [1,N], αi ∈ R+ and αi ∈ [0, 360◦],
∀i ∈ [1,N], zi ∈ R+ and zi ∈ [hmin, hmax],
∀i ∈ [1,N], 2ηtransri + (ηasc + ηdes])zi ≤ p%Ecap,
∀UAVi ∈ AGV, r2i + z

2
i ≤ R2UAV–GV,

∀i, ∀UAVj ∈ Ai,
(ri cosαi – rj cosαj)2 + (ri sinαi – rj sinαj)2 + (zi – zj)2 ≤ R2UAV,
∀i, ∀UAVj ∈ Ai, (ri cosαi – rj cosαj)2 + (ri sinαi – rj sinαj)2 ≥ d2min,

Cdesirable(Rdesirable) ⊆
N∪
i=1

Ci(ri,αi, zi, θ).

(11)

3. Solution of optimization problem

Algorithm 1 proposes a procedure structure to solve the optimization problem

formulated in the previous section, for a seamless UAV swarm surveillance coverage

around a ground vehicle with the consideration of energy efficiency and the relevant

constraints in UAV positioning, communication, and coverage.
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The goal of the optimization procedure is to find the optimal number and
positions of UAVs seamlessly covering the desirable area around the ground vehicle.
Thus, both the number of UAVs and positions of UAVs are input variables to the
objective function, as shown in Equation (10). However, because the number of
position variables for UAVs is determined by the number of UAVs, the total number
of input variables is not pre-defined for the optimization procedure. This situation
makes it challenging to use the number of UAVs and associated position variables as
a whole set of input variables in a single optimization algorithm, due to the fact that
most optimization algorithms only work with a fixed number of input variables. To
deal with this situation, the proposed optimization procedure adopts a bi-layer
hierarchical structure, consisting of an outer and inner layer. On the outer layer, the
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procedure iterates through an allowable range of numbers of UAVs, i.e.N ∈ [Nmin,
Nmax]; on the inner layer, for each specific number of UAVs,N, with the
corresponding specific number of position variables, {∀i ∈ [1,N], (ri,αi, zi)}, the
procedure seeks the optimal positions for those UAVs. On completing the bi-layer
process, the ultimate optimal number,N∗, and positions of UAVs,
{∀i ∈ [1,N∗], (r∗i ,α

∗
i , z

∗
i )}, are picked through comparison of solutions for different

numbers of UAVs. Of the constraints included in Equation (11), the search range for
the number of UAVs is applied to the outer layer of the optimization procedure in
search of the optimal number of UAVs, while the others are applied to the inner layer
in search of the optimal positions of a specific number of UAVs.

On the inner layer of the optimization procedure, the optimal positions of a
specific number of UAVs are searched for to minimize the total overhead energy
consumption of those UAVs subject to the constraints in Equation (11). Local
optimization algorithms including nonlinear programming [41] and pattern
search [42] were tested initially. Starting the search from an initial guess of the
values of the input variables, these local optimization algorithms turned out to have
relatively low time complexity but very often failed to find feasible solutions which
satisfy all the constraints. This situation is attributed to the high dimensionality of
the solution space and the high complexity of the constraints. In particular,
the implementations of those constraints on the communication range (defined by
Equations (5) and (6)), collision and interference avoidance distance (defined by
Equation (7)), and seamless coverage (defined by Equation (9)) are highly complex.
Constraints (5), (6), and (7) depend on the recognition of neighboring UAVs, while
Constraint (9) cannot be directly represented as a function of the input variables.
This situation increases the complexity of the optimization problem. To deal with
this issue, a global optimization algorithm—genetic algorithm (GA) [43] was also
tested. Compared to local optimization algorithms, GA starts the search from a
population of randomly generated candidate solutions and had much better
performance in obtaining feasible solutions which satisfy all the constraints, though
with higher time complexity. Thus, in this study, GA is adopted as the optimization
algorithm on the inner layer of the proposed optimization procedure.

Moreover, the positions of UAVs resulting from the inner-layer optimization
algorithm such as GA may indicate the existence of redundancy in the number of
UAVs.This redundancy is reflected by the fact that some UAVs are placed at the
lower-bound altitude (i.e. zi = hmin) and their ground coverages are completely
contained by the other UAVs’ ground coverages. This is because the input number of
UAVs,N, is higher than the number of UAVs that the optimization algorithm finds
necessary. The proposed optimization procedure uses a post-process after the
optimization algorithm on the inner layer to check the individual ground coverage
associated with each resulting UAV position and eliminate redundant UAVs.
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The remaining number of non-redundant UAVs and their optimal positions make a
valid solution. Accordingly, the total overhead energy consumption for this valid
solution is re-estimated for those non-redundant UAVs only. After the optimization
procedure collects the valid solutions throughout the allowable range of the input
number of UAVs (i.e.∀N ∈ [Nmin,Nmax]), they are compared according to the total
overhead energy consumption, and the one with the minimal total overhead energy
consumption is chosen as the optimal solution.

During the optimization procedure, the implementation of the seamless coverage
constraint (Equation (9)) requires to check in each iteration if the union of the
ground coverage of UAVs provides a seamless coverage of the desirable area around
the ground vehicle. It would be highly challenging to implement, if the desirable
coverage and individual UAV coverages are treated as continuous areas, due to the
lack of methods to represent the union of continuous areas, which could be a highly
irregular shape and/or disconnected, as well as checking the overlap of continuous
areas with irregular shapes. To deal with this issue, the proposed optimization
procedure discretizes the desirable and individual coverage areas, and checks the
seamlessness of the resulting coverage during each iteration by checking if any grid
element inside the desirable coverage is not covered by any UAV.This turns out to be
an effective and conceptually simple approach. Similarly, during the post-process of
the inner layer, the redundancy of a UAV is determined by checking if all the grid
elements inside the individual UAV coverage are covered by other UAVs.

4. Simulation results and discussions
The proposed optimization procedure for planning the optimal deployment of UAVs
to provide seamless surveillance coverage around a ground vehicle is programmed
and tested using MATLAB.

The settings of the simulation include:

• UAV energy terms: In accordance with [29, 39], the UAV energy consumption
constant for horizontal translation is set to be ηtrans = 21. 6 kWh/m, the energy
consumption constant for ascending ηasc = 5ηtrans, and the UAV energy capacity
Ecap = 0.777 kWh; in accordance with [40], the energy consumption constant for
descending is set to be ηdes =  ηasc∕4; moreover, the maximum permissible
overhead energy consumption for each UAV is set to be Eomax = 20%Ecap.

• UAV field of view: In accordance with [16, 30], the visibility angle of UAVs is set to
be θ = 60°.

• UAV altitude: In accordance with [25, 27], the lower and upper bounds of UAV
altitude are set to be hmin = 10 m and hmax = 50 m respectively.

• Communication range of UAVs and ground vehicle: In accordance withWi-Fi
(IEEE 802.11), the communication ranges of the ground vehicle and UAVs are set
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to be RUAV = RGV = 50 m. In this simulation, each vehicle is required to maintain
communication connection with at least 2 nearest neighbors.

• Safety distance between UAVs: To avoid collisions, signaling interference, and
wind effects, the minimum permissible horizontal distance between UAVs is set
to be dmin = 10 m.

• Target ground coverage:The desirable coverage around the ground vehicle is set to
be a circular area centered at the ground vehicle with a radius of Rdesirable = 30 m.

• Search range for the number of UAVs: The number of available UAVs is set to be
Nmax = 15; the lower boundNmin is determined by rounding up the ratio between
the desirable coverage area and the maximum coverage area by one UAV, i.e.

Nmin = Roundup

 Rdesirable
hmax tan

(
θ
2

)
2 , (12)

and thusNmin = 2 with the above-set values of Rdesirable, hmax, and θ.

With the above simulation settings, the optimization procedure iterates through a
sequence ofN from 2 to 15. For eachN, the inner-layer GA algorithm searches for the
optimal positions ofN UAVs that minimize the total overhead energy consumption
and satisfy all the constraints in Equation (11); then the post-process checks and
eliminates the redundant UAVs whose ground coverage are contained by other UAVs.
Table 3 reports the resulting effective number of UAVs and associated total overhead
energy consumption for each iteration after the redundant UAVs are eliminated.

It is noticeable from Table 3 that, for several iterations, the situation of no feasible
solution is reported, which means that GA fails to find an optimal solution for the
positions of thoseN UAVs that satisfies all the constraints. The possible reasons
causing this situation include:

• WhenN is at the lower boundNmin, e.g.N = 2 in this simulation, though the total
area of the maximum individual ground coverages of those UAVs is
mathematically equal to or greater than the area of the desirable ground coverage,

Table 3. Results from the inner layer of the optimization procedure.

N 2 3 4 5 6 7 8
NNR NFS NFS 3 NFS NFS 5 4

ΣEOHNR (Wh) NFS NFS 19.60 NFS NFS 25.06 23.32

N 9 10 11 12 13 14 15
NNR 7 5 8 7 7 NFS 9

ΣEOHNR (Wh) 31.21 26.11 31.83 30.58 30.32 NFS 34.55

(NNR denotes the number of non-redundant UAVs, ΣEOHNR denotes the total overhead energy consumption forNNR
UAVs, and NFS stands for no feasible solution.)
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those UAVs may not be able to make their coverages seamless while satisfying the
other constraints such as the safety distance. This means that there is truly no
feasible solution available.

• More often, whenN is sufficiently large to provide seamless coverage under the
constraints applied, e.g.N ≥ 3 in this simulation, GA still reports no feasible
solution. It is known that, asN increases, the dimensionality of the solution space
increases (the number of UAV position variables increases by 3 whenN increases
by 1), and the optimization problem has a higher number of local minima.
Moreover, complex constraints such as communication range, safety distance,
and seamless coverage largely enhance the complexity of the constrained solution
space, and the complexity of those constraints also increases asN increases. In
such a situation, even a global optimization algorithm like GA converges from
time to time to a local minimum which may not satisfy all the constraints.

The situation of convergence to local minima is also observed from those iterations
with feasible solutions in Table 3. By comparing among the resulting valid solutions
with only non-redundant UAVs and associated total overhead energy consumptions,
it is clear that, in this simulation, it is sufficient to use 3 UAVs to provide
seamless coverage over the desirable area with a minimum total overhead energy
consumption. This solution is obtained whenN = 4, by eliminating a redundant
UAV. However, the other iterations with feasible solutions end up with more UAVs
even after the redundant UAVs are removed. Moreover, a general trend is that the
valid solution tends to have a higher number of non-redundant UAVs asN increases.
This situation reflects that, due to the high complexity of the optimization problem,
GA tends to converge to a local minimum, and, asN increases, the dimensionality
of the solution space increases and so does the number of local minima.

During each outer-loop iteration of the optimization procedure, GA searches for
the optimal positions of a specific numberN ofUAVs thatminimize the total overhead
energy consumption subject to the involved constraints. If GA findsNUAVs aremore
than sufficient, even when converging to a local minimum, its output indicates the
redundancy in the number of UAVs. Such a redundancy is reflected by two factors:

• The ground coverage of a redundant UAV is completely covered by the other
UAVs;

• A redundant UAV is placed at the lowest permissible altitude hmin in order to
minimize its overhead energy consumption.

Figures 2 and 3 present two examples of such redundancy forN = 7 and 10,
respectively. Correspondingly, the resulting positions of UAVs are reported in
Tables 4 and 5, respectively. It is clear from the figures and tables that those
redundant UAVs are placed at the lowest permissible altitude (zi = hmin = 10 m in
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Figure 2. Resulting positions and ground coverage of UAVs whenN = 7. (Left figure:
with redundancy, right figure: redundancy removed, red ∗: the horizontal position
of the ground vehicle, blue ∗: the horizontal position of a UAV, red circle: the
desirable ground coverage around the ground vehicle, blue circle: the ground
coverage provided by a UAV.)

Figure 3. Positions and ground coverage of UAVs whenN = 10. (Left figure: with
redundancy, right figure: redundancy removed, red ∗: the horizontal position of the
ground vehicle, blue ∗: the horizontal position of a UAV, red circle: the desirable
ground coverage around the ground vehicle, blue circle: the ground coverage
provided by a UAV.)

this simulation), and correspondingly, their ground coverages are minimal (with a
radius Ri = 5.77 m calculated from Equation (8)), which are contained by the ground
coverage of the other UAVs. Because redundant UAVs do not add more coverage, they
are removed from the planning result, to reduce the number of UAVs used and total
overhead energy consumption. This is reflected by the difference between the
iteratedN and resulting number of non-redundant UAVsNNR in each iteration as
reported in Table 3.
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Table 4. Resulting positions and total overhead energy of UAVs whenN = 7.

UAV 1 2 3 4 5 6 7

ri (m) 17.46 0.01 18.60 17.26 22.78 20.26 11.56
αi (°) 125.09 220.76 157.13 265.81 76.71 187.07 359.29
zi (m) 27.05 10.00 10.00 33.63 20.87 32.60 42.93

ΣEOHN (Wh) 28.57 ΣEOHNR (Wh) 25.06

(ΣEOHN denotes the total overhead energy consumption forN UAVs, and ΣEOHNR denotes the total overhead energy
consumption forNNR UAVs, whereNNR denotes the number of non-redundant UAVs.The redundant UAVs and their
positions are crossed out.)

Table 5. Resulting positions and total overhead energy of UAVsWhenN = 10.

UAV 1 2 3 4 5 6 7 8 9 10

ri (m) 17.42 3.76 21.65 18.53 13.12 23.28 16.68 20.46 13.81 7.58
αi (°) 208.77 8.45 106.66 267.31 78.63 184.82 356.31 133.95 173.66 128.31
zi (m) 10.01 10.00 10.00 33.00 39.09 34.96 39.30 17.59 10.00 10.00

ΣEOHN (Wh) 35.64 ΣEOHNR (Wh) 26.11

(ΣEOHN denotes the total overhead energy consumption forN UAVs, and ΣEOHNR denotes the total overhead energy
consumption forNNR UAVs, whereNNR denotes the number of non-redundant UAVs.The redundant UAVs and their
positions are crossed out.)

Figure 4. Resulting optimal positions and ground coverage of 3 UAVs. (Red ∗: the
horizontal position of the ground vehicle, blue ∗: the horizontal position of a UAV,
red circle: the desirable ground coverage around the ground vehicle, blue circle: the
ground coverage provided by a UAV.)

As indicated in Table 3, in this simulation, the resulting optimal coverage, which
has the minimal total overhead energy consumption and satisfies all the involved
constraints, is provided by 3 UAVs. Figure 4 shows the resulting ground coverage by
these UAVs, and Table 6 presents the resulting optimal positions of the UAVs.
Compared with the desirable coverage around the ground vehicle, these UAVs
provide seamless coverage, as shown in Figure 4. Moreover, it is verified that the
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Table 6. Resulting optimal positions of 3 UAVs and constraints checked.

Positions UAV1 UAV2 UAV3 Constraints checked
ri (m) 15.86 8.94 6.72 ∀i, ri ∈ [0, 30]
αi (°) 214.15 330.04 95.62 ∀i, αi ∈ [0, 360]
zi (m) 41.27 46.20 47.64 ∀i, zi ∈ [10, 50]
di (m) 44.21 47.06 48.11 ∀i, 2 or more di ≤ 50

BetweenUAVs 1–2 1–3 2–3 Constraints checked
d3i, j (m) 21.90 20.95 14.04 2 or more d3i, j ≤ 50
d2i, j (m) 21.34 19.96 13.97 ∀i, j, d2i, j ≥ 10

ΣEOHNR (Wh) 19.60 ΣEOHNR ≤ 0.2 × 777

(di denotes the distance between UAV i and the ground vehicle, d3i, j denotes the 3D
distance between UAV i and UAV j, d2i, j denotes the horizontal distance between
UAV i and UAV j, and ΣEOHNR denotes the total overhead energy consumption for
NNR UAVs.)

resulting positions of UAVs satisfy all the constraints, as shown in Table 6. This
simulation provides a validation of the proposed formulation and solution approach
for planning an optimal placement of UAVs to provide seamless surveillance
coverage around a ground vehicle.

5. Conclusion and future work
The problem of optimal placement of UAVs for seamless surveillance coverage
around a ground vehicle in a collaborative search-and-rescue operation is being
studied. A new constrained variable-length optimization problem is formulated to
determine the optimal number and positions of UAVs, with a comprehensive
consideration of DTCO, energy efficiency, seamless coverage, and positioning and
communication constraints. A novel bi-layer optimization process is introduced to
provide an algorithmic framework which works with fixed-length optimization
algorithms to solve variable-length optimization problems. The bi-layer process,
along with the genetic algorithm provides an effective optimization algorithm to
solve the targeted constrained variable-length optimization problem, by checking
the optimal placements for different numbers of UAVs and picking the best solution
with the best energy efficiency.The proposed optimization formulation and solution
approach is validated through a simulation study. In order to carry out the
simulation study with realistic settings of UAVs, critical parameters, such as UAV
energy constants, visibility angle, altitude, and communication range, use the
representative values presented in the well-received literature, as cited in Section 4.
The simulation results show that the proposed approach is effective in planning the
optimal number and positions of UAVs to provide seamless surveillance coverage for
a ground vehicle.
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As discussed in Section 1, a vast majority of the cited references on coverage using
UAVs deal with discrete targets or discretized spaces [12–15, 17–23, 25–28, 30–38], and
the references, which deal with continuous area coverage, focus on finding optimal
placement of a given number of UAVs [16, 24, 29]. This study deals with forming
continuous and seamless area coverage around a ground vehicle, and the proposed
approach finds the optimal number and positions of UAVs to provide continuous
area coverage subject to comprehensive constraints. Therefore, compared with the
existing works, this study contributes to the optimization formulation as well as
solution approach. Moreover, the proposed bi-layer algorithmic framework brings in
a novel strategy for using available fixed-length optimization algorithms to solve
challenging variable-length optimization problems.This idea can be generalized and
applied to a broader scope of optimization problems.

Further research will be carried out in the following aspects:

• Priority is to understand the complexity of the solution space and improve the
global optimality of the solution.

• Another interesting problem is the scalability of the solution algorithm to
significantly increased number of UAVs for large area coverage, depending on the
need of the targeted application. The general understanding is that the scalability
of the bi-layer optimization procedure is determined by the scalability of both the
outer layer and inner layer. While the outer layer iterates through the number of
UAVs and thus is linearly scalable, the inner layer scalability depends on the
adopted inner-layer optimization algorithm. Future study will test the scalability
with GA and other different inner-layer algorithms.

• The current research is carried out based on the assumption that the involved
UAVs are homogenous, with the same capabilities of kinematics, sensing,
communication, and energy, and are omni-directional helicopter-like single-rotor
or multi-rotor UAVs, in order to lay the foundation. Future study will address this
limitation and extend to more generic and heterogeneous situations involving
UAVs of different types and capabilities.

• Further research will look into the problem of controlling the UAV formation to
follow the ground vehicle. Control approaches robust against the time delay,
system disturbance, and modeling errors, e.g., like those in [44–46], will be
explored. Moreover, the problem of malfunctioning or out-of-power UAVs will be
addressed in the phase of real-time operations and control of UAVs. While
monitoring the state of each UAV, any malfunctioning or out-of-power UAV will
return to the ground vehicle which serves as the service hub for UAVs, and a
replacement UAV will fly from the ground vehicle to the corresponding position
to fill the gap.

The approach discussed in this paper is well applicable to search-and-rescue
operations in different environments including ground, urban, battlefield, as well as
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water. It can also be applied to other domains beyond search-and-rescue, such as
agriculture monitoring, smart agriculture, wildlife tracking, and environmental
exploration, where UAVs and ground vehicles collaborate to carry out DTCO
operations and UAVs are used to provide area/surveillance coverage.
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