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Abstract
Study objective and design: A change vector analysis (CVA) was used to determine
land cover (LC) changes and identify tree species that are best for urban greening
based on carbon sequestration and air pollution. The study assessed LC change in
Kitwe, Zambia, from 1990 to 2015. This study identified the most planted urban tree
species along Kitwe’s main roads and highways and evaluated typical urban tree
species’ pH, RWC, total chlorophyll, ascorbic acid, and biomass.
Place and length of study: The urban trees in Kitwe, Zambia, make up the study
population. The city of Kitwe is a thriving centre for mining and commercial
activities and is situated in Zambia’s Copperbelt Province. The investigation took
place during 2018 and 2019.
Methodology: The NDVI and BSI indices were created using spectral indices
created from Landsat images of Kitwe taken in 1990 and 2015, respectively. The size
and direction of the LC were then determined using CVA, and a district database of
land cover changes was constructed using GIS. Urban trees from the built-up area
were utilised to create an inventory of common urban tree species based on the land
cover classification. The anticipated performance index (API), which measures the
suitability of tree species for improving air quality, and the air pollution tolerance
index (APTI), which measures the suitability of tree species for urban greening, are
two of the three assessment methods that were employed. In addition,
above-ground biomass (AGB) was employed to quantify the carbon sequestration
contribution of the current urban forest.
Results: The study discovered that between 1990 and 2015, mining activity and
urban growth in Kitwe both contributed to changes in the area’s LC. While the
central business district still exhibits a persistent presence as a result of the town’s
age, having sprung up before the 1990s with more expansions in the new areas, areas
being monitored showed low and medium change intensity, mostly in the northeast
of the district. In the current investigation, there was a significant difference in the
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relative abundance of species (p = 0.05). In the study site, Mangifera indica (RA =
12.3%) and Delonix regia (RA = 15.9%) were the two most prevalent species.
According to the study, eleven species were found, and each has accumulated carbon
in a unique way throughout time depending on its allometry and age. These
distinctions in physiological response (tolerance) to air pollution are noteworthy.
Bauhinia variegata, Toona ciliate, Gmelina arborea, Eucalyptus grandis, and Delonix
regia were all identified as suitable tree species.
Conclusion: Over the past 25 years, more than 50% of the land cover has changed,
with the majority of that change occurring in regions that are now classified as
built-up areas. The majority of Kitwe’s urban forests are found in the populated
areas and are made up of a variety of ornamental trees that are frequently cultivated
for their aesthetic value, attractiveness, and shade. According to the research, this
mixture also includes opportunistic urban trees (invasive species) and fruit-bearing
trees intermingled with native species. Overall, this study suggests the following
species: For urban trees suited for greening programmes aimed at improving air
quality and providing shade and beauty in green areas, residences, and sidewalks
that have a low air pollution environment, consider Bauhinia variegata, Toona ciliate,
Gmelina arborea, Eucalyptus grandis, and Delonix regia.

Keywords: land use, change vector analysis, remote sensing, urban forest
management, species list, urban planning, smart cities, air pollution

1. Introduction
By 2050, cities will be home to 66% of the world’s population due to the rapid
growth of the population [1]. The future of both people and the earth lies in cities.
Urban ecosystems are in danger due to population growth and rural-to-urban
migration [2]. According to numerous studies [3–7], many tree species are endemic,
invasive, or cohabit in urban settings. They make it possible for human cultures to
advance socially, economically, and culturally. Most cities are densely populated and
frequently have a negative impact on the environment. Increased demand for social
services and resources results in resource depletion and a greater carbon footprint.

Pollutants are produced between the urban complex and the natural
environment, according to the cyclic nature portrayal and material balance
theory [8, 9]. Environmental stress can have an impact on traffic, noise, and air
quality [10, 11]. By reducing water recharge and percolation zones, more concrete
leads to urban heat islands, heat waves, and a changing global climate [12]. Both
mobile and fixed sources of urban air pollution raise global air temperature and
carbon dioxide concentration [CO2] [13]. Environmental pressures are the root
cause of climate change. Due to extensive use of fossil fuels for manufacturing,
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transportation, heating, and other industrial activities, cities are the main source of
anthropogenic CO2 emissions [14, 15]. 90% of the 4.2 million people who died in
2016 from breathing polluted air were city dwellers, according to UN figures [1 ]. The
metropolitan population of the world, which makes up more than 50%, is highly
exposed. Evaluations of pollution and the connections between anthropogenic and
forest ecosystems focus on urban areas.

Land degradation reduces long-term ecological function [16]. Examples of
degradation include formation of unproducive monocultures by invasive species,
compaction, erosion, salinization, and desertification. The degradation of the soil
and vegetation has an impact on productivity [16, 17]. Concerns regarding the rising
need for food, animal feed, and fuel are raised on a worldwide scale as a result. We
have been able to pinpoint the locations and mechanisms of degraded lands all
across the world thanks to remote sensing data [16]. These methods should map
essential aspects that will help urban centres achieve a sustainable future and
monitor dynamics that allow historical trends and scenario prediction [18].

Spatial data enables the use of vegetation cover indices to measure land
degradation in semi-arid environments, which is difficult due to vegetation growth
and changes [5, 19]. Remote sensing relies on channel sensitivity to radiation within
narrow wavelength bands because detectors record EMR in numerous bands. By
using visible bands 1, 2, and 3, one may locate roads. Bands 4, 5, and 7 of the
reflective infrared spectrum can distinguish between land and water. Thermal
imaging employs band 6. Using multispectral bands, Jones and Vaughan [20]
provide local and regional mapping of vegetation types and conditions. According to
Young et al. [21], the NIR and SWIR bands are useful for mapping plant and soil
moisture, water quality, wetlands, rivers, and coastal environments. Wang et al. [22]
used thermal infrared bands to map and comprehend wildfire ecology. Anderson
et al. [23] used them to manage water resources and track evapotranspiration.

Tracking the effects of human activity on the environment can be done through
land degradation and cover changes. Applying the outcomes and results involves
researching this influence in order to reduce or control the change. Using the red and
infrared spectral bands of remote sensing, vegetation indices can be made to
distinguish between places with more vegetation than bare soil. It is difficult to
evaluate land degradation using vegetation cover indices in semi-arid environments
due to vegetation growth and alterations [5]. Remote sensing relies on channel
sensitivity to radiation within a specific wavelength range because detectors record
EMR at various wavelengths. Yuan et al. [19] provide proof of concept, while [24]
suggest that more complex techniques have been developed, with insights on
detection and a demonstration of how they can be used to classify LC changes for
statistical learning as well as temporal information modelling and forecasting. There
have been breakthroughs in deep learning using data from remote sensing [25]. This
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study focuses on image arithmetic-based algorithms that directly compare pixel
values from multi-temporal images to create image difference maps, which are then
used to categorise pixels into altered or unaltered classes [26]. Methods for detecting
changes in time have been broadly classified. In this paper, the basic change vector
analysis presented by Yuan et al. [19] and Xu et al. [27] is employed.

A system’s adaptive capacity is defined as its potential to respond to recent or
impending climatic change [28, 29]. Urban forests are more capable of adapting to
pressures from climate change. The phrase describes procedures that modify a
system’s reaction to environmental stresses like pollution. According to Butardo and
Tenefrancia [30], the institutional, economic, and ecological health of urban areas,
as well as their reliance on infrastructure, governance, and natural resources, all
affect their capacity for adaptation. Additionally, it asserts that societies with high
levels of adaptation are more resilient and able to bounce back from trying
situations. As a result, trees can improve urban air quality while reducing air
pollution and delivering ecosystem services. Engle [31] claims that the idea is usually
overlooked and that one might assess a system’s adaptive capacities by fusing
knowledge from vulnerability and resilience frameworks. One must first understand
how fragile and robust different tree species are in order to fully grasp the urban
forest’s ability to adapt to air pollution in cities. The use of biochemical parameters
in trees can achieve this.

According to Escobedo et al. [32, 33], Sahu & Kumar Sahu [34], and Mwaanga
et al. [35] ambient air pollutants in cities alter the physiological and biochemical
characteristics of urban trees. By 2030, local governments are required by SDG 11 to
make cities and human settlements more diverse, secure, resilient, and sustainable.
Urban forests have been extensively utilised in these towns’ urban greening schemes.
As a result, these green programmes and campaigns need to have strict selection
criteria in order to include more robust urban trees and be more successful. Urban
trees that are handy and useful are scarce nonetheless. There are a limited number of
screening methods and technical data, such as species lists, decision support tools,
databases, and rules for city greening initiatives, in many countries, including
Zambia. Mining communities must limit the air pollution caused by mineral
prospecting. In order to identify viable tree species for urban greening based on air
pollution tolerance, adaptation, and carbon sequestration, urban planners need to
use physiological and biochemical data.

Ambient air pollution, among other things, has an impact on the physiological
and biochemical characteristics of urban trees [32–35]. Therefore, a strong selection
criterion that encourages resilient urban trees at these levels should be given priority
in green programmes and campaigns. Numerous African cities have urban greening
initiatives in place to increase the amount of urban forest cover, but little is known
about how to choose resilient urban trees. Zambia is no exception. The air in mining
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towns is regularly contaminated by mineral exploration. In Zambia, urbanisation
has led to problems with both human and economic expansion and environmental
degradation with city dwellers ranking better streets, roads, public transport and
mobility, crime prevention and security of tenure, and reliable energy at home and
work, which were ranked seventh, eighth and ninth biggest problem, respectively
[36]. Simukanga [37] claimed that air pollution in the Copperbelt Province was
caused by transportation and mining. Thus, in order to find tree species that can
adapt to different environmental conditions and tolerate air pollution, studies that
use physiological and biochemical markers are critical to effective urban
management.

This experimental study tracks Kitwe’s urban forest change using CVA as
proposed by Xu et al. [27], and it determines which tree species are best for urban
greening based on their adaptive capacity, carbon sequestration, and air pollution.
The study studied LC change in Kitwe, Zambia, from 1990 to 2015. This study also
identified the most planted urban tree species along Kitwe’s main roads and
highways and evaluated typical urban tree species’ pH, RWC, total chlorophyll,
ascorbic acid, and biomass. Three assessment methods were used to identify the best
assessment criteria and the best tree kind and composition for a region’s quality of
life, namely APTI and API, which measure a tree’s psychological and environmental
adaptability [10, 34]. Few studies have examined how two or more tree species
reduce urban forest air pollution or linked these indices to carbon sequestration [2];
as such, this is the third assessment tool. Sequential biomass changes can quantify
urban tree productivity and carbon fluxes from tree biomass.

2. Methodology

2.1. Study area

The study population comprises the urban centre of Kitwe, Zambia. Kitwe district is
located between latitudes 12° and 13° east and longitudes 27° and 29° south (Figure 1)
in the Copperbelt Province of Zambia. The mean altitude is over 1295 m above sea
level, with an annual mean temperature of 22.3 °C and a mean yearly precipitation of
1226 mm. The district has three main seasons: the cold-dry season (April–July),
which has a mean temperature of 15 °C. The hot dry season (August–October) has a
mean temperature between 18.5 °C and 37 °C.

The city of Kitwe is located inside the biome known as tropical and subtropical
grasslands, savannas, and shrublands. Specifically, it is within the Central
Zambezian Miombo woodland ecoregion, which covers about half of the country.
The Miombo woodland, characterised by the prevalence of Brachystegia,
Julbernardia, and Isoberlinia tree species, which belong to the legume family. This
places the City as aprt of a vast vegetation formation found in central, eastern, and
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Figure 1. Location of Kitwe.

southern Africa. This ecosystem is known for its seasonal dryness and deciduous
nature. The city’s charecteristic forested area is characterised by the presence of
dambos, which are grassy wetlands that serve as the source and borders of rivers.

The study location is the ‘Hub of the Copperbelt’ and is more urbanised due to
the city’s growing importance as an urban centre. It is also a mining town with trade
activities. Though the district covers an area of 777 km2, the urban part of the
district is made up of 24 formal settlements and 19 informal settlements with few or
no basic municipal services [38]. According to UN studies (2009), poor waste
management, poor water supply and sanitation, especially in low-income areas,
poor road networks and drainage systems, the growth and expansion of informal
settlements and their attendant problems, inadequate public health services,
congestion in the Central Business District, particularly in the city market, air
pollution from mining operations, and a declining economy were the main
environmental development issues in Kitwe. These urban concerns have
deteriorated urban living and environmental circumstances, lowering city dwellers’
quality of life making the city a good study area.

Kitwe is currently the most populated district in Copperbelt Province and the
second most populated district in Zambia, with the present population standing at
522,092 with an estimated 3.3% growth rate per annum [39]. The city has seen major
expansions over the past 25 years, with a 72.76% increase in population (from
337,000 to 522,092 people), and this has called for the local authority to instigate
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regularising and upgrading the informal settlements located in designated
residential areas sometime in 2014 [1 ].

In terms of administration, Kitwe City Council is the supreme decision-making
body at the district level. The District Council is responsible for all aspects of city
planning and development, and as such, it oversees the formulation of local policies
and approves district development plans. The council management structure
consists of democratically elected councillors that represent their electorate in the
twenty-five (25) wards. As such, this makes Kitwe City Council the primary
custodian of urban management in the city. 

2.2. Research design 
The overall research design followed an exploratory study approach using both
qualitative and quantitative methods of data collection and analysis in an integrated
manner to meet the intended objectives. An epistemological and deductive approach
to building the methods and procedures was used. The design was determined to
understand the fundamental issues related to CVA (Figure 2) and the selection
process of suitable trees (Figure 3). The initial community analysis was conducted
during the rainy season to capture the peak growth of trees in 2018. 

Figure 2. Conceptual framework for conducting vector change analysis. 

2.2.1. Remote sensing and GIS methods

The study used Landsat images of Kitwe for two distinct years (1990 and 2015).1 To1Downloaded from the U.S. Geological
Survey (USGS) website using
EarthExplorer
(http://earthexplorer.usgs.gov/)

undertake preliminary treatment of the images (see Figure 2) and processing, the
study used EDRAS IMAGINE 2014 while the mapping was done using ArcGIS 10.4.

The Landsat images obtained had the characteristics outlined in Table 1 and were
examined for the appropriate bands required for the project.

2.2.1.1. Image preparation and processing The study evaluated datasets consisting
of two images from two time points; 1990 and 2015. These two chosen datasets
covered a larger period of coverage (i.e., 25 years) to enable the study to follow the
significant urban expansion of the city of Kitwe. The Landsat 5 and Landsat 7
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Figure 3. Conceptual framework for identification of urban greening suitable plants.

Enhanced Thematic Mapper Plus (ETM+) sensors with six bands and a spatial
resolution of 30 m acquired these two multi-spectral datasets. The dataset consists of
two images acquired for the city of Kitwe, Zambia, in November 2017 (T1 and T2)
with a WGS-84 projection, and the two images are both 400 × 400 pixels. The study
focused on showing changes mainly related to city expansion, as shown in Figure 4.

Figure 4. Land use and land cover changes in Kitwe between 1990 and 2015.
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Table 1. Characteristics of Landsat TM and Landsat ETM+ sensors.

Sensor type Thematicmapper (TM) Enhanced thematicmapper
plus (ETM+)

Pushbroom (bothOLI and
TIRS)

Platform Landsat 4 (launched
16 July 1982)

Landsat 5 obtained (launched
1 March 1984)
Landsat 7 (launched
15 April 1999)

Landsat 8

Orbit 16 days/705 km 16 days/705 km 16 days/705 km

Swath width 185 km 185 km

Bands B1 (0.45–0.52 µm) Blue
B2 (0.52–0.60 µm) Green
B3 (0.63–0.69 µm) Red
B4 (0.76–0.90 µm) NIR
B5 (1.55–1.75 µm) SWIR
B6 (10.4–12.5 µm) TIR
B7 (2.08–2.35 µm) SWIR-2

B1 (0.45–0.52 µm) Blue
B2 (0.52–0.60 µm) Green
B3 (0.63–0.69 µm) Red
B4 (0.76–0.90 µm) NIR
B5 (1.55–1.75 µm) SWIR
B6 (10.4–12.5 µm) TIR
B7 (2.08–2.35 µm) SWIR-2
B8 (0.50–0.90 µm)
Panchromatic

B1 (0.435–0.451 µm) Deep blue
B2 (0.452–0.512 µm) Blue
B3 (0.533–0.590 µm) Green
B4 (0.636–0.673 µm) Red
B5 (0.851–0.879 µm) NIR
B6 (1.566–1.651 µm) SWIR-1
B10 (10.60–11.19 µm) TIR-1
B11 (11.50–12.51 µm) TIR-2
B7 (2.107–2.294 µm) SWIR-2
B8 (0.503–0.676 µm)
Panchromatic
B9 (1.363–1.384 µm) Cirrus

Ground pixel
size

30 m (bands 1–5,7)
120 m (band 6)

30 m (bands 1–5,7)
60 m (band 6)
15 m/18 m (band 8)

30 m (bands 1–7,9)
100 m (band 10–11)
15 m (band 8)

Preliminary image processing and data generation followed the building of two
mosaics for the years 1990 and 2015. The spectral radiance (Lλ) was calculated using
Equation (1), which converted the digital numbers (DNs) to radiance.

Lλ = LMINλ
+
( LMAXλ

– LMINλ

QCALMAX – QCALMIN

)
(QCAL – QCALMIN) (1)

where: 

Lλ is the spectral radiance
QCAL is the calibrated and quantized scaled radiance in units of digital numbers
LMINλ

is the spectral radiance at QCAL = 0
LMAXλ

is the spectral radiance at QCAL = QCALMAX

The spectral radiances were then converted to reflectivity for each band based on
the metadata of the images using the following Equation (2);
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ρλ =
(

π ∗ Lλ ∗ ∂2

ESUNλ – COSθ

)
(2)

where: 

Lλ is the spectral radiance
∂2 is the inverse square relative Earth-Sun distance
ρλ is the reflectance for each band
θ is the solar Zenith angle in degrees
ESUNλ is the mean exoatmospheric solar irradiance

2.2.1.2. Develop indicators of vegetation and soil effects The study used NDVI as a
simple graphical and numerical indicator that can be used to analyse remote sensing
measurements and assess whether the target being observed contains live green
vegetation or not. NDVI was computed using Equation (3). Satellite-derived NDVI
measurements collected the measure of reflection in the infrared (0.73–1.10 µm) and
red (0.58–0.68 µm) bands [16]. Any deviation from the normal NDVI may indicate
land degradation.

NDVI = NIR – R
NIR + R (3)

where

NIR is the near-infrared wavelength
R is the red wavelength

Using the BSI (Equation (4)), the study was able to assess bare soil and what role
it played within Kitwe’s urban ecosystem. The index was an indicator of urban
expansion and exposed soil conditions. The index was used to differentiate between
agricultural and non-agricultural land. BSI negative values or those near 0 represent
zones with vegetation.

BSI = (SWIR + R) – (NIR + B)
(SWIR + R) + (NIR + B) ∗ 100 + 100 (4)

where

NIR is the near-infrared wavelength
R is the red wavelength
B is the blue wavelength

Bare soil is soil or sand not covered by grass, sod, other live ground covers, wood
chips, gravel, artificial turf, or similar coverings.

2.2.1.3. Land cover changes To detect land cover changes between 1990 and 2015,
the change detection method was used. CVA was applied using the NDVI and BSI
indices for two time points (T1 and T2). Therefore, given multi-date pairs of spectral
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measurements, the study computes spectral change vectors and compares their
magnitudes to a specified threshold criterion. The decision that a change had
occurred was made whenever that threshold was exceeded [27, 40]. CVA uses two
spectral channels to map both the magnitude of change and the direction of change
between the two (spectral) input images for each date, as shown in Figures 8 and 9.

2.2.1.4. Change magnitude To develop change magnitude (i.e., to indicate the
intensity of change as derived based on the Euclidian distance), Equation (5) was
used, and it gave map outputs shown in Figure 9. The developed output image was
classified into four categories: low (0–15), medium (15–30), high (30–45), and very
high (45–60), which represent the sum of changes occurring between the dates. The
study tracked changes using equation (5).

Mv =
√

(NDVI11 – NDVI21)2 + (BSI12 – BSI22)2. (5)

2.2.1.5. Direction of change In order to determine the direction of the change
between 1990 and 2015, Equation (6) was used, which detects a pixel that
corresponds with a pixel corresponding to T1 and T2; that is, each vector is a
function of positive and negative changes occurring in the spectral bands following
the equation.

tan θ = (BSI11 – BSI21)/(NDVI11 – NDVI21). (6)

The values between 90° and 180° represent increased vegetation cover and those
between 270° and 360° represent bare soil (degradation).

2.2.1.6. Analysis of processed images To quantify the change, the study used an
unsupervised classification approach using the Spatial Analyst tool in ArcGIS 10.4
after having calculated the NDVI and BSI indices. The indices were classified by a
threshold value of 0.25 and then divided into four classes. Then the study calculated
the percentages of each class individually to get the number of pixels per class and
converted it to area.

2.2.2. Urban tree species assessment

Once the magnitude and direction of the land cover changes in the district were
determined, the study focused on determining which vegetation tree species were
commonly found within the town. This was done by determining the number of tree
species present within the urban part of Kitwe. The initial community analysis was
carried out during the rainy season to capture the peak growth of trees. This was
carried out between October 2017 and December 2018.
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2.2.2.1. Tree species sampling From the total urban tree population, stratified
sampling was employed to develop a species list showing the top 24 common species
(Figure 10) using the relative abundance method [41]. This list classified the urban
trees into tree species groups (strata) to understand their distribution and
dominance around the urban centre of Kitwe. Classification of over 1,758 trees
located within the built-up areas and within a 15 m road radius. Further
classification of the trees was made as commercial, ornamental, fruit trees, and
non-ornamental (indigenous) from the ten roads that connect the 42 settlements.
From the top 24 species identified, the study was confined to only evaluating the top
9 tree species usable for streets and avenues, with an additional 2 commercial species
commonly grown in the plantations on the Copperbelt Province.

2.2.2.2. Sample frame Fresh leaf samples were collected from 4 mature individual
urban trees identified in Table 2 in accordance with procedures by Sahu & Kumar
Sahu [34]. A tree was selected randomly in a cluster to ensure geophysical
uniformity between samples. These clusters were demarcated into three urban areas
(Nkana East, Parklands, and Riverside) with the highest availability of all target
species. This made it easier to have trees within the same age group and with similar
background environments.

To determine wood-specific density for carbon sequestration, wood samples were
collected following the procedures described by Chave [42]. At least two core
samples per sample tree were collected. From the two common methods for
determining wood density, the study used the water displacement method,
considering available resources.

2.2.2.3. Collection of leaves for biochemical characterisation The study used
indicative biochemical data to evaluate tree tolerance as well as show urban tree
species’ ability to adapt to varying environments. Biochemical data were collected
from each fresh leaf sample from the forty-four sample trees. Sampling was
observed over three sampling periods, accounting for 132 leaf samples obtained in
total. Fresh leaf samples collected were taken to the Copperbelt University School of
Natural Resources (SNR) laboratory for analysis. Biochemical data consisted of four
parameters: ascorbic acid, relative water content, chlorophyll, and pH. Various
laboratory apparatuses used included beakers, test tubes, clippers, and graduated
cylinders, among others.

2.2.2.4. Urban tree performance data The study adopted a checklist by Kashyap
et al. [43], Ogunkunle et al. [44] and Pandey and Tripathi [10] to collect qualitative
data for each tree species’ performance. Each species was evaluated by ticking the
appropriate response relating to three main factors; laminar structure, biological
and socioeconomic factors, and incorporating the tolerance of trees (see Table 3).
Each factor influenced the performance of each particular species within a given
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Table 2. Characteristics and binomial nomenclature of the 11 most common urban trees in Kitwe.

SN Species name Scientific
species names

Commonname/
English name

Tree
type

No of trees
sampled
(n)

DBH (cm)

1 D. regia Delonix regia
(Hook.)

Flamboyant, Flame
Tree, gold mohar

Evergreen 4 47.20 ± 13.40

2 T. ciliata Toona ciliata
M.Roem

Toona ciliate, Red
cedar

Deciduous 12 43.64 ± 22.32

3 J. mimosifolia Jacaranda
mimosifolia
D. Don

Jacaranda, Brazilian
rose wood

Deciduous 12 29.18 ± 3.47

4 B. variegata Bauhinia
variegata
(L.) Benth.

Orchid tree, camel’s
foot, mountain
ebony

Deciduous 12 22.09 ± 5.11

5 S. siamea Senna siamea
(Lam.) H.S.
Irwin & Barneby

Yellow cassia,
Bombay blackwood,
cassod tree,
ironwood

Evergreen 9 31.18 ± 18.06

6 S. campanulata Spathodea
campanulata
P. Beauv.

African tulip tree,
fireball, flame of the
forest, Flame tree

Evergreen 11 47.72 ± 18.16

7 P. rubra Plumeria rubra L. Red frangipani,
pagoda tree,
red-jasmine

Evergreen 10 17.91 ± 8.07

8 G. arborea Gmelina arborea
Roxb.

Candahar, melina,
goomar teak, white
teak,

Evergreen 12 43.27 ± 8.06

9 S. actinophylla Schefflera
actinophylla
(Endl.) Harms

Umbrella tree,
Australian umbrella
tree, ivy tree,
octopus tree

Evergreen 4 15.53 ± 13.00

10 E. grandis Eucalyptus
grandis Hill ex
Maiden

Flooded gum or rose
gum

Evergreen 4 10.09 ± 1.01

11 P. oocarpa Pinus oocarpa
Schiede ex Schltdl

Ocote pine,
Nicaraguan pitch
pine, oocarpa pine

Evergreen 4 20.78 ± 1.56
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Table 3. Gradation checklist for urban tree species for API.

Grading character Pattern of assessment Grade allotment Grading character

Tolerance APTI 2.0–6.0
6.1–10.0
10.1–14.0
14.1–18.0
18.1–22.0

+
+ +
+ ++
+ + + +
+ + + ++

Biological and
Socio-economic

Plant habit Small
Medium
Large

−

+
+ +

Canopy structure Sparse/irregular/globular
Spreading crown/open/semi-dense
Spreading dense

−

+
+ +

Type of plant Deciduous
Evergreen

−

+

Laminar structure Size Small
Medium
Large

−

+
+ +

Texture Smooth
Coriaceous

−

+
Hardiness Delineate

Hardy
−

+
Economic value Less than 3

3 or 4 uses
Five or more uses

−

+
+ +

Note: A maximum grade for any tree species is 16. Gradation characteristics and grades allotted were adopted from
[10, 43].

environment, and each response corresponded to a given grading character (+ or −)
for each parameter. The grading characters’ scores are then added together to get the
total, which uses Equation (7) to get the final API rating.

2.2.3. Data analysis

The information collected was analysed through the identification of common
patterns, equations, comparisons of primary findings, and the statistical package
SPSS. Interpretation of results and attempts to rationalise or understand the
meaning of these figures and/or numbers were also considered as follows:

2.2.3.1. Remote sensing and GIS analysis ERDAS Imagine 2014 was utilised for
satellite image preparation, alteration, and treatment. All image processing and
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adjustments were completed here. For all mapping and visualisation software for
index calculation, categorization, and visualisation, ArcGIS 10.4 was utilised. Excel
was also used for data analysis and calculations.

2.2.3.2. Relative abundance Classification of the introduced and most common tree
species was implemented using relative abundance (RA) [41], which ranked the
most commonly found urban trees around Kitwe’s urban built area. RA is the
number of individuals of each tree species and was summed up for all the species
counted, divided by the total number of individuals in which the species occurred
(see Equation (7)).

RA = ((TNs)/(TP)) × 100 (7)

where

RA is the Relative Abundance
TNs is the total number of individual trees per species
TPs is the total tree population

2.2.3.3. Air pollution tolerance index (APTI) To determine the tree’s tolerance and
infer the tree’s adaptive capacity, biochemical data were collected from the
laboratory using a laboratory protocol developed and recorded in the lab book. A
summary of the data analysis techniques below.

2.2.3.4. Ascorbic acid content of the leaf Ascorbic acid content (mg/g) was
measured according to the methods described by Pandey & Tripathi [10]. In brief,
for each 1 g sample prepared into a test tube, 4 ml of oxalic acid-EDTA extracting
solution, 1 ml of orthophosphoric acid, and 1 ml of 5% tetraoxosulphate (vi) acid
were added to the mixture. The mixture was stirred for a minute, after which 2 ml of
ammonium molybdate and then 3 ml of water were added. The solution was then
allowed to stand for 15 min, after which the spectrophotometric method as
described by Bajaj and Kaur [45] was done using the absorbance at 760 nm. The
concentration of ascorbic acid in the samples was then extrapolated from a standard
ascorbic acid curve and recorded in the laboratory book.

2.2.3.5. Relative water content (RWC) According to the method prescribed by Liu
and Ding [46], RWC was collected using the drying method. Each fresh leaf sample
was weighed using an analytic scale, with the result recorded in the laboratory
logbook to get the fresh weight (FW), after which the sample was placed in an
airtight vial. The vial was then fully hydrated by filling it with water to full turgidity
for 2–3 h at room temperature. The sample was then removed, allowed to dry off
moisture using tissue paper, and immediately weighed to get the turgid weight
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(TW) result. After this, the sample was placed in a drying oven to dry leaf samples
at 70 °C for 24 h and weighed again to get the dry weight (DW). To calculate RWC,
we used Equation (8) below.

RWC = ((FW – DW))/((TW – DW)) × 10 (8)

where:

FW Fresh weight
DW Dry weight
TW Turgid weight.

2.2.3.6. Total chlorophyll The U.S. EPA and Liang et al. [47] described the methods
used to measure total chlorophyll as follows: each fresh leaf sample was cut into
smaller pieces and crushed into a homogenised sample. 0.5 g of the sample was
placed into a motor and further crushed and washed with an extraction solution of
80% acetone and ammonium hydroxide (9:1, respectively) into a test tube. The leaf
sample was then incubated at room temperature in a 1.5-mL tube with 1 mL of an
80% acetone solution for at least 24 h, then clarified by centrifugation for 5 min at
15,000 g. A spectrometer was used to measure the samples at distinct wavelengths
for the chlorophyll methods described in the article. After extraction, a
spectrophotometer measured the total chlorophyll content. In this study, the
absorbance of the supernatant was measured at wavelengths 645 and 663 nm (A645
and A663). Samples having absorbance results greater than 1 were diluted by half
with 80% acetone and re-evaluated. The chlorophyll concentration was estimated
following Arnon’s equations [48] (Equations (9)–(11)) as follows:

Chlorophyll a (µg/mL) = 12.7 (A663) – 2.69 (A645) (9)

Chlorophyll b (µg/mL) = 22.9 (A645) – 4.68 (A663) (10)

Total chlorophyll (µg/mL) = 20.2 (A645) + 8.02 (A663). (11)

2.2.3.7. pH To calculate the leaf extract pH value, a digital pH metre was used for
each leaf sample. This was done by placing about 0.5 g of leaf sample, which was
crushed and homogenised in 50 ml of de-ionised water, then centrifuged, and the
supernatant was collected for pH measurement.

2.2.3.8. Determination of air pollution tolerance index (APTI) From the results
collected from the ascorbic acid (A), RWC (R), total chlorophyll (T), and pH (P)
analyses, Equation (12) was used to assess the APTI. The mathematical expression
combines the four biochemical parameters into a single rate and is based on studies
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by Singh and Rao [49] and  Pandey and Tripathi [10].

APTI = [A(T + P) + R]/10, (12)

where

APTI is the Air Pollution Tolerance Index
A ascorbic acid content in mg g−1 of fresh weight.
T total chlorophyll in mg g−1 of fresh weight.
P pH of leaf extract and
R relative content of water in percentage.

To interpret APTI, Table 4 was used to provide categorization [2] of the index
values between sensitive and highly tolerant.

Table 4. Categorization of urban trees according to air pollutant toleration index
values (APTI).

APTI value Category

4.0–5.0 Sensitive
5.0–6.0 Intermediate
6.0–7.0 Tolerant

>7.0 Highly tolerant

Sources: Okunlola et al. [2].

2.2.3.9. Determination of anticipated performance index (API) Based on the
results from the API checklist (Table 3), each response corresponded to a given
grading character (+ or −) for each parameter. Then, using the total score per
species, a percentage score was evaluated using Equation (13).

Percentage score = (Gr)/(Grmax) × 100, (13)

where

Gr is grades obtained by tree species
Grmax is the maximum possible grade for any tree species

Each species’ percentage score was then used to interpret the results using the
classification criteria in Table 5 below, which factors in the percentage score to
assign the tree category.
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Table 5. Assessment criteria for grading anticipated performance index (API).

Grade Score (%) Assessment category

0 Up to 30 Not recommended
1 31–40 Extremely poor
2 41–50 Poor
3 51–60 Moderate
4 61–70 Good
5 71–80 Exceptionally good
6 81–90 Excellent
7 91–100 Best

2.2.4. Determining above-ground biomass (AGB)

2.2.4.1. Wood density (WD) The water displacement method was used to calculate
WD. The method made volume measurement easy and reliable, even for irregularly
shaped samples. Combining species-specific literature estimations and field
measurements using the water displacement approach yielded the average WD.
Immersing the 4.9-mm-diameter wood core samples from the sample trees in water
and computing the ratio of the increase in water volume to the dry wood weight
calculates water displacement.

Kettering et al. [50] define biomass as volume × density. Estimating the total
carbon sequestered for each of the eleven tree species in urban Kitwe required WD
estimates [51]. Location, temperature, and management affect urban WD. Thus,
site-specific WD values are needed before using allometric equations.

2.2.4.2. Allometric equations Because the species list developed identified species
with no defined local allometric equations to develop estimates, published
generalised equations were used instead. The species-specific growth data gathered
was then plugged into the biomass estimation allometric equation developed by
Chave et al. [52] for tropical trees as follows:

AGBest = 0.0673 × (ρD2H)0.976, (14)

where:

AGB Tree biomass (estimated in kg matter per tree)
H Height of the tree
D Diameter at breast height
ρ Wood density(g/cm3)

To calculate the CO2 according to the method described by Aguaron and
McPherson [53], a multiplication factor of 0.50 was applied to the estimated AGB in

Green Energy and Environmental Technology 18/43



kg matter per tree, and the result was further multiplied by 3.67 as shown below
(Equations (15) and (16)).

Carbon = 50% of Biomass (15)

Carbon Dioxide = Carbon × 3.67. (16)

The above equations measure AGB per tree up to the time of the study. Therefore,
measurement of tree uptake of CO2 combined with core samples was done by using
incremental borers taken at dendrometer measurement positions [54] to get accurate
carbon sequestration of the trees through the years of the urban tree as well as WD.

2.2.5. Statistical assessment

The study used biochemical data to measure urban tree species’ adaptability and test
the hypothesis (H0).

2.2.5.1. Statistical software All analyses employed SPSS 20.0 (SPSS Inc., Chicago,
IL, USA) with a significance threshold of P 0.05. Data was cleaned to remove
significant outliers and inconsistencies. Basic descriptive tables and graphs were
checked for normality before undertaking an analysis of variance (ANOVA), which
is “robust” against normality breaches. The ANOVA examined sample differences. It
tested the hypothesis (H0) that all urban trees are air pollution-resistant, adaptable,
and provide enough biomass for urban greening.

2.2.5.2. Rankings and comparisons After merging all three assessment tools,
comparison conversations and rank analyses were conducted to select the best
species for the greening programme’s objectives. The study analysed species
feature-by-feature to determine their similarity. Scatter plots showed how best to
blend these species.

A two-tiered rating scale determines the best species for each yardstick and for all
three yards. The 11 species were rated from best (1) to worst (10).

3. Results and discussion

3.1. Land cover changes between 1990 and 2015

The results of the CVA technique demonstrate several types of changes in terms of
biomass growth and loss and LC changes over time. Kitwe is characterised by
complex landscape changes induced by several causes, and Phiri et al. [55]
discovered that the sources of these changes on the Copperbelt have been
attributable to either natural or anthropogenic interactions with each other.
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3.1.1. Land cover classification

According to the study findings, the area is primarily defined by four major
classifications (see Figures 4 and 5). Between 1990 and 2015, the built-up area’s LC
rose dramatically while bare soil and vegetation decreased. The change vector
images (Figure 5) produced from the two study periods permitted verification that
the deforested area in Kitwe was 28,140 ha between 1990 and 2015. The NDVI index
(see Figure 6) for this impacted area revealed a 3.45% rise in low vegetation for
grasslands and agricultural fields, from 22,918 ha (1990) to 23,709.87 ha (2015).
While the indigenous forest cover decreased by 24.93%, from 14,458.8 ha in 1990 to
10,853.01 ha in 2015, the NDVI index also decreased. This coincided closely with the
Copperbelt Province’s annual average deforestation rate of 0.84%, according to the
Forestry Department (2016).

Figure 5. Land cover change classification between 1990 and 2015.

Water resources decreased by 31%, from 13,619.53 ha in 1990 to 9,393 ha in 2015,
which could be linked to changes in rainfall patterns and increased water
abstraction [56]. This loss could also be a direct result of expanded, developed areas
and the destruction of crucial recharge sites in this district as a result of mining and
agriculture [57]. Figure 4 shows a decrease in bare soil, which could be a signal to
increase concrete, or Figure 7 shows a continuum ranging from high vegetation
conditions to exposed soil conditions in 1990 and 2015.
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Figure 6. Map of Kitwe showing the NDVI for 1990 and 2015.

Figure 7. Map of Kitwe showing the BSI for 1990 and 2015.

3.1.2. Direction and magnitude of change in Kitwe

Figure 8 depicts the magnitude of the changes, which were relatively low within
92.94% of the district (see Table 6), demonstrating that while changes were
occurring, the majority of them occurred within existing and much older
communities rather than in new ones. According to the study, 6.36% of the district
underwent medium-level alterations, particularly in the Northeast in regions such
as Kafue and Kamfinsa, as well as parts of the CBD. The growth in built-up area is
primarily owing to the city’s expansion, and it is likely to continue towards the
northeast as more land parcels are approved for construction.

The results suggest that 60% of Kitwe’s LC is degraded (see Table 7), with the
remaining 40% showing no change (see Figure 9) and covering the main CBD of
Kitwe as well as mine regions. Persistence may be a trend related to the lengthy
existence of urban areas and the urban activities that take place in these regions.

Other than normal urban activities, most mining-related land use increased
significantly in the 1970s and early 1980s during the copper industry’s boom
years [58] and continue to influence land use in Kitwe. High alterations have been
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Figure 8. Map showing the change in magnitude in Kitwe district.

Table 6. Land cover magnitude area.

Kitwemagnitude (1990–2015)
Classification Area (m2) Percentage (%)

Low (0–15) 741,913,200 92.94
Medium (15–30) 50,796,900 6.36

High (30–45) 5,543,100 0.69
Very high (45–60) 44,100 0.01

798,297,300 100.00

Table 7. Land degradation percentage cover.

Kitwe land degradation (1990–2015)
Classification Area (m2) Percentage cover (%)

Degradation 478,926,000 59.99
Persistence 319,371,300 40.01

798,297,300 100.00

observed (Figure 9) in the Mindolo and Twatasha areas as a result of heavy mining
activities, with much of the region being used as garbage disposal sites or tailings
dams. When compared to the opportunity cost of using the land for other purposes
such as agriculture and recreation, this is a loss of productive land. With the
majority of the land transformed into a waste storage area, dangers from the loss of
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Figure 9. Map showing Kitwe’s district change direction.

isolated, unique microhabitats within an otherwise undisturbed habitat have been
discovered [59] to cause the local extinction of certain plant and animal
species.

3.1.3. Relative abundance of urban trees in Kitwe

As expected, the majority of Kitwe’s built-up regions are composed of evergreen
species rather than deciduous plants, and their continuous presence in the town is
extremely likely to be the result of intentional introduction. Both introduced and
indigenous species predominate. A post-hoc analysis using the Bonferroni correction
found that there were no significant differences between the species groups in any of
the urban tree species categories. This supports the theory that, because this is part
of Kitwe’s urban tree inventory, it could have come from secondary urban forest
programmes that happened at varied times following the city’s expansion. The
top-ranking species identified (see Figure 10) as the most abundant species within
the urban built-up region were Delonix regia (15.9%) and Mangifera indica (12.3%).
More intriguingly, despite the fact that it was assumed that largely built-up areas
would have introduced species rather than indigenous species, this was not the case.
The more indigenous trees were less numerous within the built-up natural
environment due to extensive forest loss caused by clearance during urbanisation.

Despite the city having lost most of its indigenous green spaces, which have been
converted into residential or commercial sectors over time, more indigenous species
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Figure 10. Relative abundance of urban trees species in Kitwe.

are regularly scattered about the city in small spaces. Albizia antunesiana, Albizia

versicolor, Baphia bequaertti, Branchiostegal boehmii, Brachystegia utilis, Isoberlinia

angolensis, Julbernardia paniculata, Pericopsis angolensis, Uapaca kirkiana, and Uapaca

nitida are among the indigenous species identified in Kitwe City. These findings are

consistent with local authority reports [38], which reveal that many of the current

green spaces still support the identified species as well as many additional

indigenous species.

In comparison to other towns like Mufulira, Kalulushi, Ndola, and Lusaka, these

species are located along comparable sidewalks, roads, and avenues surrounding the

city’s main metropolitan areas, forming homogenous habitats or green spaces. This

analysis indicated that the prevalent selection procedures were derived from

Commonwealth town planning systems, which were modelled after British practise

and legislation. The study refers to research by Home [60], who confirms that the

roots of these introduced species can be traced back to pre-colonial Northern

Rhodesian times (now known as Zambia), when these areas were still being planned

for as townships. Home [60] goes on to explain Lusaka’s reputation as a garden city,

referring to “Dutton’s initiative” that constructed a chain of nurseries and planted

various trees in Lusaka and sections of the Copperbelt, including the ones in this

article.
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3.1.4. Adaptive capacity of Kitwe’s urban trees

After determining the most abundant species, the study analysed the plants’ ability
to cope with environmental conditions by measuring plant sensitivity to their
surroundings and carbon sequestration. The tree’s sensitivity was characterised in
connection with its exposure to its environment and air pollution, which was very
likely to occur in built-up areas. The focus of adaptive capacity was the ability of
species groupings to respond to specific sorts of hazards—in this example, drought,
plant health, and biochemical air pollution. These responses assist the urban trees in
regenerating and/or adapting in order to reduce susceptibility and increase reaction
time. According to Flórez Bossio et al. [61], urban adaptive capacity traits can be
viewed as a collection of variables that allow urban trees to adapt. After all, the
resilience of urban trees and their socioeconomic value influence their abundance as
well as the health of any urban forest.

The laboratory test findings revealed biochemical differences (p-value 0.05) in
the means of pH, RWC, AA, and total chlorophyll content (TChl) among the three
urban tree species groups (Table 8). There are significant comparison pairings in the
post-hoc comparisons using the SPSS Bonferroni correction. Trees are more flexible
due to their drought resilience and water efficiency. The study looked at how
different tree species react to air pollution. This research is founded on three
fundamental assumptions. As high pH increases stomatal sensitivity, urban trees are
more resistant to air pollution. Urban tree species with high RWC maintain
physiological balance and improve drought resilience. Ascorbic acid is required for
cell wall growth, defence, and cell division in trees, in addition to photosynthesis for
carbon dioxide fixation and antioxidant defence in urban plants. As TChl decreases
with pollutant levels, urban trees with high TChl can survive air pollution and are
healthier.

The overall pH ranged between 4.67 and 6.80, with Bauhinia variegate and Toona
ciliate having the highest pH. As a result, urban trees in Kitwe’s built-up area have
better tree health and are more resistant to diseases caused by stomatal sensitivity as
a result of air pollution. Compared to Pinus oocarpa, Jacaranda mimosifolia, and
Eucalyptus grandis, which had the lowest pH and were below the supposed ideal pH
(between 6.0 and 7.0), at pH levels above 6.4, urban trees are vulnerable to insect
attacks, while at pH levels below 6.4, trees are vulnerable to specific diseases.

Table 8 shows that the RWC was regularly distributed, with a mean of 65.39% (SD
= 1.17). RWC values for urban tree species in Kitwe were in the higher range, i.e.,
between 50% and 90%. This was greatest in Schefflera actinophylla and Bauhinia
variegate and lowest in Jacaranda mimosifolia. Since urban trees can improve water
resilience in cities, the majority of Kitwe urban tree species identified have sufficient
RWC to maintain tree physiological balance and improve other key sensitivity

Green Energy and Environmental Technology 25/43



Ta
bl
e8

.
A

PT
Iv

al
ue

fo
rc

om
m

on
ur

ba
n

tr
ee

si
n

Ki
tw

e.

SN
Sp
ec
ie
sn

am
e

D
BH

(c
m
)

H
ei
gh
t(
m
)

N
o
of

tr
ee
s(
N
)

N
o
of
le
af

sa
m
pl
es

(n
)

pH
A
sc
or
bi
ca
ci
d

RW
C
(%

)
TC

hl
A
PT

I
Ca

te
go
ri
za
tio

n

1
D
elo

ni
x
re
gi
a

47
.20

±
13

.4
10

.9
9

±
2.9

5
4

12
5.8

21
±

0.
28

1
0.

09
28

±
0.

08
5

59
.36

8
±

18
.0

68
0.

69
2±

0.
70

4
5.9

9
±

1.7
6

In
te

rm
ed

ia
te

2
To
on
a
cil
ia
ta

43
.6

4
±

22
.32

17
.29

±
2.

39
12

12
6.

41
5±

0.
26

3
0.

08
01

±
0.

02
7

70
.4

59
±

25
.6

93
1.2

25
±

0.
41

9
7.1

1±
2.5

8
H

ig
hl

y
to

le
ra

nt

3
Ja
ca
ra
nd

a
m
im

os
ifo
lia

29
.18

±
3.4

7
12

.33
±

0.
96

12
12

4.
99

7
±

0.
41

3
0.

03
27

±
0.

01
7

56
.0

25
±

7.9
24

1.1
32

±
0.

69
1

5.6
2±

0.
79

In
te

rm
ed

ia
te

4
Ba

uh
in
ia

va
ri
eg
at
a

22
.0

9
±

5.1
1

10
.55

±
2.0

7
12

12
6.

81
5±

0.
57

7
0.

05
37

±
0.

03
4

78
.8

00
±

5.8
00

2.
38

7
±

4.
33

4
7.9

3±
0.

60
H

ig
hl

y
to

le
ra

nt

5
Se
nn

a
sia

m
ea

(C
as
sia

 si
am

ea
)

31
.18

±
18

.0
6

10
.56

±
1.7

1
9

12
6.

14
8

±
0.

45
6

0.
11

31
±

0.
09

5
50

.7
34

±
23

.0
44

1.7
63

±
3.2

57
5.1

6
±

2.
27

In
te

rm
ed

ia
te

6
Sp
at
ho
de
a
ca
m
pa

nu
la
ta

(S
.n

ilo
tic
a)

47
.7

2±
18

.16
10

.31
±

5.2
3

11
12

5.9
55

±
0.

20
9

5.9
55

3±
0.

20
9

56
.4

32
±

24
.6

08
0.

58
6

±
0.

61
8

5.6
8

±
2.

45
In

te
rm

ed
ia

te

7
Pl
um

er
ia

ru
br
a

17
.9

1±
8.

07
9.

18
±

2.9
4

10
12

5.8
84

±
0.

20
8

0.
01

09
±

0.
00

6
74

.6
73

±
29

.4
67

0.
72

7
±

0.
59

8
7.4

7
±

2.9
5

H
ig

hl
y

to
le

ra
nt

8
G
m
eli
na

ar
bo
re
a

43
.27

±
8.

06
13

.9
2±

1.4
9

12
12

6.
30

3±
0.

39
0

0.
12

60
±

0.
08

6
61

.54
9

±
32

.19
0.

24
2±

0.
23

9
6.

24
±

3.1
8

To
le

ra
nt

9
Sc
he
ffl
er
a
ac
tin

op
hy
lla

15
.53

±
13

.0
0

8.
11

±
5.4

2
4

12
5.9

26
±

0.
49

9
0.

01
99

±
0.

01
6

80
.9

96
±

16
.0

18
0.

50
7

±
0.

57
0

8.
11

±
1.6

1
H

ig
hl

y
to

le
ra

nt

10
Pi
nu

so
oc
ar
pa

10
.0

9
±

1.0
1

6.
96

±
0.

8
4

12
4.

66
9

±
0.

17
9

0.
15

23
±

0.
09

0
70

.6
33

±
13

.6
02

0.
63

8
±

0.
79

1
7.1

5±
1.3

7
H

ig
hl

y
to

le
ra

nt

11
Eu

ca
ly
pt
us

gr
an

di
s

20
.7

8
±

1.5
6

15
.35

±
2.

18
4

12
5.2

67
±

0.
21

3
0.

08
58

±
0.

11
0

59
.6

17
±

31
.0

06
0.

82
6

±
0.

60
3

6.
01

±
3.0

5
To

le
ra

nt

94
13
2

5.
84

±
0.
34
0

0.
61

±
0.
07

65
.39

±
20
.6
8

0.
98

±
1.
17

6.
59

±
2.
35

Green Energy and Environmental Technology 26/43



aspects such as drought tolerance. Drought tolerance indices [62] can be used to
learn more about how environmental conditions influence this.

There was a statistically significant difference in the means of TChl between the
various urban tree species groups. When compared to other species, Toona ciliate
and Jacaranda mimosifolia have the highest TChl, while Delonix regia and Bauhinia
variegate have the lowest. The presence of a high concentration of chlorophyll in
these urban trees boosts their tolerance to air pollution and serves as an indirect
indication of urban tree health. It should be emphasised, however, that the TChl
declines as pollution levels rise. Significant comparison pairings were discovered
using post-hoc comparisons with the SPSS Bonferroni correction.

Pinus oocarpa had the highest ascorbic acid concentration, while Plumeria rubra
had the lowest (Table 8). These urban tree species with a high ascorbic acid content
are more suitable because ascorbic acid is required for cell wall synthesis, defence,
and cell division in trees, is required for photosynthesis for carbon fixation, and acts
as an antioxidant, increasing urban tree resistance to their natural environment.

Vulnerability, as it relates to the socioeconomic elements of the tree species,
covered numerous aspects such as the aesthetic value of trees as well as the minimal
demand for care and maintenance, which is the major criterion for use, particularly
in urban management [63]. Take, for example, Delonix regia, the most prominent
species in the research area, which is known for its dense clusters of orange-red
flowers that bloom in early summer and have a vibrant hue that makes it appealing.
Furthermore, the species was discovered to be native to Madagascar and Zambia
and has been introduced in many other countries, becoming widespread in most
tropical and subtropical areas of the world [64]. Another popular species is
Jacaranda mimosifolia, which is known for its clusters of beautiful bell-shaped,
blue-violet flowers that provide both beauty and shade.

The observations in Kitwe reveal that natural indigenous plants are subject to
challenges from invasive species that are known to enter forest gaps, plantations,
roadsides, and riparian zones (banks of watercourses) (ibid.). These have a large
impact on Kitwe’s urban forest inventory because they are abundant in the built-up
areas. CAB International classifies Jacaranda mimosifolia as an invasive species
because this urban tree, which is native to South America, is highly competitive and
does not allow other urban trees to grow beneath it [63]. T. ciliate and S.
campanulate are two other instances. While both are invasive species, it was
discovered that T. ciliate is a more aggressive invasive species than S. campanulate.
Furthermore, S. campanulate is a more popular ornamental tree than T. ciliate,
which has no attractive flowery attributes but is widespread due to its indigenous
status [63, 65]. Other species, such as Mangifera indica, are abundant because of
their fruit-bearing ability and ability to provide shade for residents [66]. As a result,
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these evergreen trees are more sheltered and grow well in locations with a short
dry season.

Kitwe city land use dynamics posed an additional threat to the city’s urban
forest’s ability to survive change. According to Phiri et al. [55], while examining
trends in spatial distribution of such urban green areas improves understanding of
forest management, this is not always the case. Kitwe is distinguished by complex
terrain changes induced by natural and man-made forces interacting with one
another. Threats such as a lack of soil naturing programmes to enhance soil quality,
on the other hand, continue to shorten the life span of trees in what were formerly
green regions with degraded soils [67]. This became an opportunity and the primary
focus of urban forest management.

3.1.4.1. APTI of urban trees Following the biochemical analysis, the APTI was used
to determine which trees are appropriate species for urban greening programmes
focused on mitigating or adapting to air pollution. According to the APTI data
(Table 8), Schefflera actinophylla is the most tolerant, followed by Plumeria rubra.
Senna siamea (Cassia siamea) was the least tolerant of the eleven species tested.
Furthermore, the analysis revealed that the APTI results differed significantly
between species types (F (10,121) = 2.453, p = 0.0105). The tree species least
vulnerable to air pollution is also the most tolerant. As a result, such plant species
can be prioritised for planting programmes in urban built-up areas and industrial
areas, reducing the effects of air pollution and making the ambient atmosphere clean
and healthy. Popular species such as Cassia siamea and Jacaranda mimosifolia were
discovered to be the least tolerant and thus the most vulnerable to air pollution.

According to the box plots for comparative species groups (see Figure 11), only
four species groups (JM, BV, SA, and PO) have a high level of agreement with each
other, while the rest of the data are dispersed across groups. These could be the result
of various environmental factors, some of which could only be revealed by gaining
access to the biological parameters. The results of the biochemical analysis (Table 8)
of plants revealed species variation, which may be attributed to environmental
variables such as shifting soil profiles throughout the city, which results in varying
soil quality [67], and the age of the tree [68]. Such factors have been shown to have a
direct effect on the two key parameters, ascorbic acid and TChl [69], and have been
identified as the most significant contributors to species differences when compared
to pH and RWC. This means that all common plants in a specific metropolitan
location can be classified according to their sensitivity or tolerance to air pollution.

3.1.4.2. API of urban trees When the results are compared to the plants’
socioeconomic characteristics (Table 9), the highest API is found in Eucalyptus
grandis, Bauhinia variegate, and Gmelina arborea, while Schefflera actinophylla and
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Figure 11. Boxplot of APTI by species.

Plumeria rubra are the least poor-performing tree species. Furthermore, the findings
show that the best species identified, Eucalyptus grandis, has a dense canopy of
evergreen foliage and is well known for its economic value rather than its aesthetic
value [63, 64]. As API is based on various factors influencing plant performance,
including socioeconomic aspects, it contributes to a better understanding of the
sustainability of greening programmes. By ensuring that acceptable plant species
deliver more value, green programmes should try to understand elements of tree
species other than only environmental biochemical parameters. Aesthetics is
typically the decisive element, but it was shown that despite the plant species
lacking flowery features, some species are nonetheless prominent inside Kitwe. This
is due to other characteristics, such as fruit-bearing properties, which were only
found in residential neighbourhoods and not along walkways and parks.

3.1.5. AGB of urban trees

Kitwe’s urban forest had the highest WD (0.662 g cm−3) among Eucalyptus grandis
species and the lowest (0.220 g cm−3) among Spathodea campanulata species, as
shown in Table 10. The variation in WD results could be best described by Deng
et al. [70], who show that such results can be greatly influenced by site quality,
relative heights, tree age, and social class of the forest inventory. These signals must
be used with caution, as there may be minor differences in findings between places.
The results also show that the largest contributors to carbon sequestration are
Delonix regia and Toona ciliate (see Table 11), both of which are the most abundant
species in town when compared to the other nine species. Senna siamea (Cassia
siamea) came in third, and Jacaranda mimosifolia came in fourth, respectively. The
majority of the urban trees discovered contribute to CO2 absorption at the city level.
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Figure 12. Above-ground biomass for the eleven urban trees in Kitwe’s main roads.

However, it was discovered that species with high tolerance, such as Schefflera
actinophylla, contribute less to carbon capture.

The fact that variance is modest (see Figure 12 ) may be attributed to the species’
ability to sequester carbon as well as the species’ abundance in urban areas. The
ability of urban forests to sequester carbon is determined by various aspects,
including (1) the age of the tree, (2) its size, (3) environmental considerations, and
(4) policy and methods of generating deliberate enabling elements that enable such
greening programmes. These considerations stem from the observation that there
are considerable changes in carbon sequestration results between tree species (see
Table 10) due to the difference between young and older urban trees. Anwar [68]
verified this, arguing that older trees have lived longer and have had more time to
store carbon than younger urban forests. According to the findings of this study, the
two commercial tree species are young urban trees with extremely low biomass
(Table 10). This has a substantial impact on each tree’s biochemical characteristics.
For example, TChl varies over the tree’s life cycle. Table 8 displays how TChl changes
depending on species, leaf age, pollution level, and other biotic and abiotic
variables [71]. Certain pollutants increase TChl, while others decrease it [72].

3.1.6. Suitability trees for urban greening

Disaggregating all of the findings from APTI, API, and AGB reveals (see Table 11
and Figures 13–15) that there are disparities between the species groups, with the
data being closely spread, showing a high level of similarity, and the rest of the
results being scattered between groups. These could be the result of exposure to
various environmental factors and the influence of certain functional groups.
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In all comparisons, the overall associations were statistically significant
(Figures 13–15). Three species, B. variegata, T. ciliata, and P. oocarpa, were identified
as the best-performing urban trees for greening programmes that prioritise
tolerance and performance (Figure 13). The overall design of such greening
programmes would consider the quality and purpose of development programmes
that include the vulnerability of urban forests, including climate variability and
adaptive characteristics. This necessitates a shift in focus on how to design robust
and improved city-focused frameworks that deal with air pollution and new
emerging threats [58, 73]. This should provide guidance to urban planning experts
on taking carbon stocks seriously [74, 75]. There is no doubt that the best-ranking
tree species should be resistant to air pollution while also contributing to carbon
capture within Kitwe.

When AGB and APTI (Figure 14) are compared, it is clear that while most species
had low AGB, the species varied in terms of their tolerance to air pollution, implying
a negative association. A statistically significant linear association (r = −0.195, p
< 0.05) exists between an increase in AGB and a drop in APTI. DBH was found to be
a somewhat better predictor of APTI than AGB. Despite its weakness, the negative
relationship can be attributed to the area’s environmental conditions, and it also
suggests that growth parameters are reduced in highly polluted areas compared to
those in low air pollution areas (see Figure 14). The findings of AGB and API
(Figure 15) are comparable to the combination of APTI and AGB. The amount of
biomass accumulated by high-performing urban trees is not the only factor
influencing their performance.

Figure 13. Comparison between urban tree tolerance (APTI) and performance
(API).
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Figure 14. Comparison between species AGB and APTI.

Figure 15. Comparison between tree species AGB and API.

After integrating each assessment evaluation, each species was evaluated from
best (1) to worst (10) (see Table 11). The most suited trees were B. variegate and T.
ciliate, which were placed first and second, respectively. The highest-ranking tree
species are resistant to air pollution while also contributing to carbon capture within
Kitwe. However, it was discovered that species with high tolerance, such as S.
actinophylla, contribute less to carbon capture.

The findings for APTI, API, and carbon sequestration are consistent with those of
Jim [67] and Bowler et al. [76], who advocated a more empirical selection criterion
for Zambian urban planners that considers factors other than aesthetics. Urban trees
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Table 11. Scoring and rank of urban trees in Kitwe score.

SN Species name AGB
rank

APTI
rank

API
rank

Score Overall
rank

1 Bauhinia variegata 8 2 2 12 1
2 Toona ciliata 2 5 5 12 1
3 Gmelina arborea 6 6 3 15 2
4 Eucalyptus grandis 7 7 1 15 2
5 Delonix regia 1 8 7 16 3
6 Pinus oocarpa 11 4 4 19 4
7 Senna siamea (Cassia siamea) 3 11 6 20 5
8 Plumeria rubra 9 3 9 21 6
9 Spathodea campanulata (S. nilotica) 5 9 8 22 7
10 Schefflera actinophylla 10 1 11 22 7
11 Jacaranda mimosifolia 4 10 10 24 8

Note: A species with the best score out of 11 for each criterion, is rated as 1, second spp as 2.

with high APTI and API ratings are proposed as species for the area’s urban greening
programmes. Because they are based on parameters with significant biological and
socioeconomic characteristics, APTI and API can be used.

To address the vulnerability dynamics of urban forests, urban planners should
establish socioeconomic scenarios and follow and trace development trends and
routes while designing adaptation solutions. Understanding urban trees’ sensitivity
to air pollution, socioeconomic performance, and capacity for carbon sequestration
will help in achieving these goals the best. Having high APTI and API values, as well
as high carbon sequestration, should be promoted for new development areas
employing properly developed urban greening programmes and giving specific
adaptive capacity ranges [61]. These tree species could be incorporated into the
design of an urban greening programme to help with long-term air pollution
planning.

Kitwe’s main metropolitan areas have made considerable contributions to
reducing air pollution and boosting carbon absorption, thereby increasing the city’s
carbon stocks (see Table 10). All of the urban trees evaluated in Kitwe perform
admirably in their surroundings, and there are substantial variances in tree species
APTI, adaptive capacity metrics, and cumulative biomass. Gmelina arborea, Toona
ciliata, and the two commercial trees are the best performing trees for
high-pollution areas because they can tolerate the significant pollution from
emissions. The best five species identified using rank analysis were Bauhinia
variegate, Toona ciliate, Gmelina arborea, Eucalyptus grandis, and Delonix regia.
Tables 9 and 10 indicate that each index revealed that greening programmes could
combine species during the design or planning stage to achieve specific programme
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objectives. As a result, the decision should always be based on the purpose, location,
and area development requirements.

Depending on the objective goals of the greening programme, one can compare
one tree species to another to find the most effective combination that meets
developmental needs that prioritise the climate variability of urban tree species as
well as air pollution tolerance. The combination in Figure 15 allows urban planners
and managers to assess trees suited for greening programmes aimed at improving air
quality, providing shade, and improving aesthetics in low-pollution green spaces,
houses, and sidewalks.

The application of APTI, API, and carbon sequestration in green infrastructure
design gives planners a notion of which tree species might ameliorate air pollution
and provide effective ecosystem services for urban greening programmes. The lack
of air pollution data to establish a pollution gradient to compare our data between
highly contaminated and less polluted areas is one of the study’s limitations.
Furthermore, there was insufficient data on urban tree care services near the trees
sampled to provide a comprehensive methodological approach to forest
management. According to Nayak et al. [77], growth characteristics are lowered in
highly polluted areas compared to species found in low-polluted areas. This agrees
with Escobedo et al. [78], who state that urban greening strategies suggest that
planners develop networks of areas to better harness their socio-ecological
components in a way that can conserve ecosystems while providing essential
benefits to a given society.

4. Conclusion
The goal of this study was to assess how the land cover of the city of Kitwe had
changed and to pinpoint any impacts on the urban forest that predominates there.
The study’s findings suggest that remote sensing can help with SDG 11 objectives 6
and 7, which are concerned with reducing the negative environmental effects of
urbanisation and enhancing the layout of green places. In addition to providing
visualisation in the form of maps of Kitwe, remote sensing and GIS also assist in
providing a clear indicator of change and tracking and monitoring the direction and
scale of city expansion. The study was successful in developing a thorough picture of
how the vegetation changed between 1990 and 2015. According to the study, LC
changes have occurred in Kitwe partly as a result of mining activity and urban
growth. While the central business district still exhibits a persistent presence as a
result of the town’s age, having sprung up before the 1990s with more expansions in
the newly developed areas, the areas being monitored showed low and medium
change intensity, mostly in the northeast of the district. According to the data
gathered, Kitwe City’s built-up area is home to a variety of native and exotic tree
species. Plant sensitivity to their environment and their capacity to store carbon in
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built-up areas were used in the study to evaluate the plants’ capacity to deal with
environmental conditions.

Kitwe has the top 24 common tree species, 11 of which were evaluated out of the
1758 trees found in the built-up region along the main roads and highways. The
majority of the urban forests in Kitwe are made up of a variety of ornamental trees,
which are frequently grown for their aesthetic value, attractiveness, and shade.
According to the research, this mixture also includes opportunistic urban trees
(invasive species) and fruit-bearing trees intermingled with native species. The
study found the most common species and the direction of the city’s land changes,
and it concluded that the newer areas for land development would need greening
programmes that could incorporate an efficient plan that satisfies both the city’s and
the plant’s capacity for adaptation at the design/planning stage. Therefore, the
decision should always be based on the objective, geographic location, and needs of
local development in areas northeast of the district. Schefflera actinophylla was
exceptional for urban greening because of its high tolerance and strong ability to
adapt to air pollution, but it fell short in terms of being a top performer. In terms of
total ranking, Bauhinia variegata came in second. Popular species like Cassia siamea
and Jacaranda mimosifolia received low scores, indicating that they were the species
least resistant to air pollution among those evaluated in Kitwe. Delonix regia,
Mangifera indica, Toona ciliate, Jacaranda mimosifolia, and Bauhinia variegate were
the top five most commonly encountered tree species.

4.1. Recommendations

Informing the public about the importance of vegetation, as some of these trees may
be donated and planted in public places such as schools as part of city-wide
programmes to maintain and conserve urban forests. Although all eleven species
may live in low-pollution environments, it is best to keep them away from highly
polluted areas such as industrial zones, roads, and highways. The study found that
policy and regulation should be strengthened to be more reliable in terms of
providing standard regulatory tools that impact green infrastructure (GI) expansion
within cities and towns. This will aid in the development of robust, efficient, and
successful urban regions.

The amount of carbon that could hypothetically be absorbed would provide
annual carbon sequestration. Such data is useful for measuring urban forest
production and ensuring the long-term viability of air pollution mitigation
techniques, even when they are part of GI. It is also advised that local governments
promote suitable species to counteract the biodiversity loss brought on by various
urban development initiatives by deliberately creating an enabling environment. It
is strongly advised that the API grading process include a broader range of
appropriate stakeholders. Expert panels and focused interviews should be used to
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help understand the socioeconomic issues. It is recommended to use APTI and API
together since API improves the selection criteria for acceptable plants.
Furthermore, local governments should attempt to safeguard some of the
endangered species by developing habitats for them and/or building
neighbourhoods that not only provide food, shelter, and shade but also improve air
quality, thereby avoiding species extinction.

4.2. Future research recommendations

It is recommended that the existing urban management system be replaced and that
additional studies be performed to construct a selection framework. (1) The
framework would expand on this study to offer a theoretical comprehension of the
methods used to choose suitable plants. (2) Evaluate the regulatory structure and
determine whether or not the measuring system is current. (3) Make sure the
metrics align with regional and national standards. (4) Make it easy to compile a
database of findings. It is recommended that future studies investigate the effects of
climate change on urban tree species as well as the connections between APTI and
carbon sequestration.
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Acronyms and abbreviations
AGB Above-ground biomass
ANOVA Analysis of variance
API Anticipated performance index
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CBU Copperbelt University
CO2 Carbon dioxide
[CO2] Atmospheric CO2 concentration
DBH Diameter at breast height
DW Dry weight
FW Fresh weight
GPS Global positioning system
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KCC Kitwe City Council
MRML Most recent mature leaf
NBS Natural-based solutions
RA Relative abundance
RWC Relative water content
TChl Total chlorophyll
TW Turgid weight
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