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Abstract

Electrocardiography (ECG) has been a subject of research interest in human
identification because it is a promising biometric trait that is believed to have
discriminatory characteristics. However, features of ECGs that are recorded at
different times are often likely to vary significantly. To address the variability of
ECG features over multiple records, we propose a new methodology for human
identification using ECGs recorded on different days. To demonstrate the
applicability of our method, we use the publicly available ECG ID dataset. The main
goal of this work is to extract the most significant and discriminative wavelet
components of the ECG signal, followed by utilizing the ECG spectral change for
human identification using multi-level filtering technique. Our proposed
multi-channel identification system is based on using the Maximal Overlap Discrete
Wavelet Transform (MODWT) and its inverse (the IMODWT) to create multiple
filtered ECG signals. The discriminative feature that we utilize for human
identification is based on modeling the dynamic change of the frequency
components in these multiple filtered signals. To reach the best possible
identification performance, we use the Weighted Majority Voting Method (WMVM)
for ECG classification. We evaluated the robustness of our proposed method over
several random experiments and obtained 92.29% average identification accuracy,
0.9495 precision, 0.9229 recall, 0.0771 FRR and 0.0013 FAR. These results indicate
that filtering some of the ECG wavelet components along with performing data

fusion technique can be utilized for human identification.

Keywords: random signals, ECG biometric, Fréchet distance, ECG features, ECG

classification, wavelet transform, data fusion, weighted majority vote
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1. Introduction

In recent years, physiological signals have showed great potential in human
recognition [1-3]. In addition, it has been demonstrated that physiological
signal-based identification systems are more robust against counterfeit than the
existing conventional and traditional biometric systems [4, 5]. Therefore,
researchers have presented various methods to investigate the possibility of human
recognition via biomedical signals [6-8]. Specifically, among different biomedical
signals, the electrocardiogram (ECG) has been widely studied as a new approach in
human identification. It has been shown that ECG based biometric systems achieve
satisfactory identification accuracy in a wide range of applications [3]. In fact, the
ECG has some key advantages, including mainly its hidden nature and its liveness
assurance, which make it preferable to other biometric modalities such as face,
fingerprint and iris [3, 5] since they can be damaged or stolen. Additionally, the ECG
has several characteristics that are required for any biometric modality. In general, a
biometric trait should satisfy the following requirements to be used for human

recognition [9, 10]:

(1) Universality: the trait should be present in living population.

(2) Uniqueness: major differences in trait characteristics should be derived among
different people.

(3) Collectability: the trait should be quantitatively measurable and easily
accessible.

(4) Acceptability: the trait should be user friendly and widely acceptable.

(5) Resistance to circumvention: the trait should be resistant to the various
spoofing attacks.

(6) Permanence: the extent to which the trait features should remain stable over

time.

The ECG satisfies most of the abovementioned requirements because it is
essentially a vital sign and is present in all living people [11-13]. In addition, it has
been proven that the ECG has unique patterns among individuals [3] and it can be
easily recorded using a single lead [14, 15]. Moreover, the ECG can be hardly forged
due to its biological nature and liveness indicator [16]. However, the stability of ECG
features is one of the most controversial characteristics because it has been
demonstrated that cardiac signals are highly affected by many geometrical,

individual, and technical factors [5, 17].

To illustrate, geometrical attributes such as heart size, cardiac muscle thickness,
heart shape and the number of cardiac cells involved in the electrical activity directly
dictate the routes of the electrical current inside the heart [5, 18, 19]. On the other

hand, personal characteristics including mainly the health status, age and weight
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could cause changes in the heart position and orientation [20]. Hence, these factors
shift the electrical current orientation, and also change the conductivity of the
heart [5, 20]. Additionally, the electrode features such as the type, quantity, degree
of dryness and position may cause some changes in the electrical properties of the
electrodes [5, 18, 20]. Consequently, all these previously mentioned factors create
morphological variations in the ECG signals which are highly remarkable in ECGs
that are recorded on different times [18]. This changeability of the ECG features is
usually categorized as intra-subject variability and inter-subject variability [21].
Where the former one refers to the variations within or between ECGs of a single

subject, the latter refers to the variations of ECGs of different subjects [3, 5].

In fact, the inter-subject variability is highly desired for human identification
because the uniqueness of the ECG signal can be explained through finding the core
differences between cardiac signals of different individuals [5, 20]. On the other
hand, the intra-subject variability could be beneficial because the dynamic change
between ECG features of a single subject can be modeled to create individual based
biometric signatures [3, 18]. Hence, a perfect biometric trait should have a very high
inter-subject variability. In contrast, it should have very low intra-subject variability
[3, 5, 16]. However, the stability of these parameters over time, i.e. their permanence,

remain the main challenge in using multiple ECGs for human identification.

The variability of ECG features can be clearly noticed when analyzing the fiducial
and non-fiducial characteristics of such a biomedical signal. For example, in figure 1
we show the heart beats of two subjects from the ECG-ID database. Obviously, the
inter-subject variability can be observed by the various morphologies that form the
personal heartbeats of these two individuals. On the other hand, the intra-subject
variability can be noticed as the significant fluctuations in the amplitude of the QRS
complexes. In addition, figure 2 shows the intra-subject variability which can be
seen as the rapid changes in the ECG frequency components when the data are
recorded on different days. Moreover, figure 3 shows the various morphological
bundles of the ECG heartbeat such as the right bundle branch block beat, the left

bundle branch block beat and normal beat [22].

All the previously presented factors reflect that utilizing the cardiac signal for
human recognition does not only depend on choosing the appropriate features, but
also relies on categorizing the variability of ECG features over time [23]. In this
work, we focus on investigating the feasibility of human identification using ECGs
that are recorded on two different days. Specifically, we selected the ECG-ID data
because it was originally recorded for biometric purposes. For each subject, two
20-second ECG recordings were chosen. These ECG signals were recorded over a
six-month period [24, 25]. The original ECG-ID data have ECG recordings of 9o
subjects; however, we only choose signals of 62 subjects who have normal ECG

waveforms, where the QRS complex has the highest amplitude. The remaining
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Figure 1. The variability of morphological features using ECGs recorded on different

days of two subjects.
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Figure 2. The variability of spectral features using ECGs recorded on two different

days of one subject.

subjects were excluded because their T wave is tall and higher than the QRS

complex. In addition, we designed our method to decompose the ECG using SYM4

which generally detects the QRS features. Therefore, including all the database and
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Figure 3. Normal heart beats of five different subjects from the ECG ID database.

treating it equally without changing the mother wavelet or classifying the reference
data according to the heartbeat morphology, would have affected the performance
of our methodology because there is a significant difference between features of

normal heartbeats and other types of heart beats with larger T waves.

2. Literature review

The use of ECG in various clinical diagnostic applications has significantly
demonstrated different characteristics of this human cardiac signal. Therefore, the
potential use of ECG for human identification was driven by utilization of these
features to create a new biometric modality. To the best of our knowledge, the first
attempt to utilize the ECG for human recognition was presented by Biel et al. [1].
The authors used 12 fiducial heartbeat features and reported 95% identification
accuracy. However, most of the ECG based human identification systems have

increasingly been presented in the last decade.

Dar et al. [26] have presented a method based on discrete wavelet transform
(DWT) for human recognition. Technically, the preprocessing stage [26] involved
removal of baseline wonder and power interference followed by normalization of
the signal with R peak detection. The DWT was applied using Har wavelet
coefficients at five level decomposition to extract the ECG features. Additionally, the
Best First Search (BFS) method was performed for feature reduction and the k
nearest neighbor method was utilized for feature classification. Consequently, Dar

et al. [26] reported 82.03% identification accuracy.

On the other hand, Morteza et al. [27] used the Daubechies wavelet (Db3)

coefficients at five level decomposition for ECG feature extraction. In the
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classification stage, the Euclidean distance between the test data and the mean of
100 training data was determined for ECG classification. As a result, the authors

in [27] reported 100% identification accuracy using ECG data of 21 subjects. Lee

et al. [28] proposed an algorithm based on a time frequency representation of the
ECG data. Both the robust principal components analysis network (RPCANet) and
DWT methods were utilized for feature extraction. The support vector machine
(SVM) was used for ECG classification [28]. Similarly, Arwa et al. [29] introduced a
wavelet-based method which utilizes the ECG power and energy features for
personal identification. The authors reported that their method can identify
individuals with 83.3% recognition accuracy using Euclidean and linear discriminant

analysis (LDA) classifiers.

Abdeldayem et al. [30] have presented an algorithm based on modeling the
spectro-temporal dynamic characteristics of the ECG signal using short time Fourier
transform (STFT) and Morse wavelets for feature extraction. At the processing
stage, the band pass filter was applied to remove any frequencies other than
0.05-40 Hz, which is generally the normal frequency range of the ECG [30]. The
authors in [30] used the 2D convolutional neural networks (CNN) for ECG feature
classification and reported an average identification rate of 97.86%.

Ciocoiu et al. [31] introduced a comparative study on four different spatial
representations of the ECG data using the STFT, Gramian angular field, the
recurrence plot and state-space representation algorithms. The method proposed by
Ciocoiu et al.is based on converting the temporal ECG data into 2D/3D images,
followed by applying CNN for image classification and individual authentication.
The best reported identification accuracy by the work of Ciocoiu et al. is 99.01%.
Similarly, Choi et al. [32] presented a method by converting the ECG data into 2D
resized spectrograms that are classified for user identification. Choi et al. reported

that their method achieved 93% average identification performance.

Further, Kim et al. [33] proposed a method which is based on a generalized
likelihood ratio test (GLRT) and composite hypothesis testing. Based on the results,
Kim et al. [33] reported 93% detection probability for user authentication. Tan
et al. [34] introduced a sparse representation learning framework that utilizes the
time frequency distribution of the ECG signal for biometric purposes and reported
98% average identification accuracy. Their work was based on using the statistical
n-best adaptive Fourier decomposition (SAFD) method for reducing the

intra-subject variability and increasing the inter-subject variability of ECG features.

Furthermore, the research investigations in [35] reported that the QRS complex
exhibits significant features among different individuals and such features can be
utilized for human authentication. The authors in [36] and [23] have shown that the
ECG signal reveal varied and unique patterns. The research findings in [37] showed

that ECG based biometric identification highly relies on the type of methods that are
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utilized for feature selection (fiducial vs non fiducial methods). The work in [7] also
showed that deep learning networks such as CNN can be employed to extract
discriminatory features among multiple ECGs. Generally, utilizing the ECG for
human identification depends on many factors including mainly, noise filtering,
features selection, features extraction, ECG classification and addressing the

variability of the ECG data [2, 3, 23].

In this paper, we focus on identifying individuals using multiple ECGs. These
multiple ECGs are recorded on different days, and they are more likely to have some
variability in features. Based on our previous work in [38], modeling the dynamic
change in ECG spectral features and using Fréchet based distance measurement for
ECG classification have shown excellent results on individual recognition. However,
when we select the ECG data from different days, the identification performance
decreases significantly. This is expected because of the above-mentioned reasons on
the variability of ECG features. To solve this problem, the main contributions of this

paper include:

(1) Addressing the variability of ECG features at the preprocessing stage by
decomposing the signal and performing data filtering methods. Unlike the
previous works where the processing stage involved noise removal and signal
correction [26, 30-32], in this paper we focus on partitioning the signal variability
according to its wavelet components. The variability of the ECG features can be
analyzed by decomposition of the signal into its wavelet components [39]. To
accomplish our objective, we show that filtering some of the high frequency
wavelet components in a set of parallel processes can be modeled for human
identification. The main advantage of this process is to reduce the variability of
the ECG features at the fundamental wavelet components while keeping majority
of the signal information [40].

(2) Proposing a new technique for data fusion at the classification stage to reach
true identification. To achieve our goal, we show that utilizing the minimum
Fréchet distances between filtered versions of multiple ECGs can be modeled to
create a weighted scoring technique based on majority voting for reaching correct
identification. The main advantage of our proposed weighted majority voting
includes using the minimum distance between multiple ECGs - a unique feature

that has an effective role in decision making [41].

3. Materials and methods

In this work, we propose a method for individual identification using multiple ECGs
that are recorded on two different days. The general flowchart of our proposed

methodology is shown in figure 4.
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Figure 4. The flowchart of the proposed methodology.

3.1. The ECG referencing and testing data

As mentioned above, we used the public ECG ID database of 62 subjects because it
was originally recorded for biometric purposes [25]. For each subject, we selected
two ECG recordings. The public ECG ID data do not have information about the
exact time and date in which the ECGs were recorded. However, all the ECG
recordings were taken over a six-month period. We grouped the ECG ID data into
two categories, namely the referencing data and testing data. To achieve our goal of
identifying individuals using multiple ECGs, we use the ECGs from the former
group for referencing purposes and we use the ECGs from the latter group for

testing purposes.

3.2. Preprocessing using Maximal Overlap Discrete Wavelet
Transform (MODWT)

The Maximal Overlap Discrete Wavelet Transform (MODWT) like the Discrete
Wavelet Transform (DWT) is a linear filtering process which is used to decompose a
signal into a set of time dependent wavelet and scaling coefficients [39]. However,
MODWT is non-orthogonal transform compared to DWT [39]. The MODWT basic
idea relies on using the values that are removed from DWT by down sampling.
Therefore, MODWT is a highly redundant transform compared to DWT since it is
defined for all samples sizes. Like the DWT, the MODWT is utilized to perform
multiresolution analyses (MRAs) and the redundancy of the MODWT enables
instantaneous comparison between the original time series and its decomposition at
each level. Most importantly, the MODWT coeflicients of various scales are usually
not correlated. Thus, it is a useful transform to partition the variability of the

signal [39].
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Figure 5. ECG analysis using sym4 wavelet.

The ECG is a nonstationary signal, and its features are often localized in time and
frequency [22]. Therefore, it is better to analyze such a signal using wavelets because
they are utilized to decompose the signal and provide sparser representation [3].
However, choosing the most appropriate wavelet function depends on the ECG
features of interest [2]. Specifically, the QRS complex is the prominent wave of the
ECG; therefore, we selected the sym4 as an analyzing wavelet to decompose the
ECG into time-varying frequency (scale) components. In addition, the QRS
complex can be easily segmented compared to the P and T waves since they require
expert labeling to achieve proper segmentation [42, 43]. The sym4 wavelet
resembles the QRS complex and is an appropriate choice to detect most of the ECG

information [14].

In figure 5, we show a comparison between the sym4 wavelet and the QRS
complex. The figure shows that the sym4 resembles the QRS complex. Although
symy4 is generally utilized to detect QRS features, it also can detect non QRS features
by changing the scale and translation parameters [44]. In this paper, the wavelet
coefficients are computationally returned based on utilizing different versions of the
analyzing wavelet. The small scales, compressed versions of sym4, are utilized to
detect the high frequency components of the signal. In contrast, the large scales,

stretched versions of SYM4, are utilized to detect the low frequency components of

the signal [44, 45].

In signal processing, real world biological signals such as the ECG are sampled
over finite intervals of discrete times [46]. Therefore, the ECG data can be written as
a discrete function f (x) recorded at #; samples. The f(x) can be expressed as a linear

combination of two main functions, i.e., a scaling function ¢ (x) and an analyzing
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wavelet  (x) at varying scales and translations [39]. The linear representation of

f(x) can be written as:

ni-1 Jo
F@) =Y 2T oGTox—k) + Y fix) (1)
k=0 j:l
where
n;—1 X
fi6) = Y djg b aTx-k) (2)
k=0

and ], is the number of levels of wavelet decomposition.

According to equations (1) and (2), the MODWT returns #; scaling coefficients
(c) and Jo x n; detail coefficients (d]k) However, the detail coefficients are
generated at each levelj such thatj = 1, 2, ..., Jo, but the scaling coefficients are

generated only at the final decomposition level /. Therefore, X can be written as:

Jo
X=) W;+V), (3)
j=1

where X is the ECG data, W consists of the detail coefficients at scalej and Vj, are

the final level scaling coeficients.

In this work, we set ], to 10 to provide redundant MRAs of the ECG signal. In
figure 6, we show the 10 level wavelet coefficients of a random ECG signal. The
figure shows the details coefficients for scales 2" to 2'°. In addition, it shows the final
level scaling coeflicients. These coefficients permit an easier analysis of the ECG
because they provide sparser (reduced) representation of the signal. These wavelet
components are likely to have some variations when it is extracted from multiple
records. To address the variability of ECG features, we filter some of the wavelet

components to obtain the most significant information.

3.3. Filtering and reconstruction using the Inverse Maximal Overlap

Discrete Wavelet Transform

The ECG is an aperiodic random signal whose value at any instant is unknown and it
is generally unpredictable [22]. In addition, the ECG features exhibit some changes
over time, specifically, the mean and variance of the ECG are a function of time,
and they can vary significantly from heartbeat to heartbeat [46]. The variability of
ECG features is caused by physiological and non-physiological factors which we
have explained in the introduction [3, 5]. Consequently, it has been demonstrated
that utilizing the ECG for human recognition highly requires building identification
systems that are adaptable to the variability of ECG features [23]. To achieve our

objective, we developed a multi-channel wavelet-based filtering system because we
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Figure 6. The ten level wavelet coefficients of the ECG using MODWT.

expect that by filtering some of the wavelet components, the variability of ECG

features will reduce, and the performance of the identification process will increase.

In fact, all the ECG wavelet-based features including the high frequency and the
low frequency components can be useful for the identification process [38, 45].
Therefore, we designed our filtering systems to remove different wavelet
components at different levels of the filtering process [46]. The proposed system is
designed to filter the high frequency components in a set of parallel processes. The
main goal here is to remove some of the components which may have high
variability between ECGs that are recorded at different times. To illustrate, we
applied a windowing technique based on short time Fourier transform (STFT) to
see how the variance of detail coefficients at each scale changes over time. In
addition, each window contains an ECG time segment that approximately has a full
heartbeat. According to figure 7, the variance of detail coefficients at scales 1—4
(the high frequency wavelet components of the ECG signal) shows significant
change across multiple heartbeats compared to the variance of details coefficients at
scales 5-10 (the low frequency wavelet components of the ECG signal). However,
the change in the variance over time of the detail coefficients at scales 1—4 is
subject based. Therefore, filtering different high frequency wavelet components of
the ECG signal in a set of parallel processes helps to reduce the variability of ECG

features.

However, our filtering system is not designed to filter the low frequency
components, which are calculated by utilizing larger scales of the analyzing wavelet,
because we expect that such components have most of the permanent information
of the ECG (see figure 7). Technically, because we eliminated some of the wavelet

information, the reconstructed signals are named as filtered ECGs [39]. Since we
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Figure 7. 'The variance in the frequency components of the ECG wavelet components

over multiple records from one subject.

apply different levels of filtration, we create different types of filtered ECGs [40].
The main goal here is to find the most significant wavelet components of the ECG

signal which are utilized to create our multi-channel identification system.

In figure 8, we show our Parallel High Frequency Filtering System (PHFFS)
which consists of five channels. In addition, table 1 shows the wavelet coefficients
that are removed at each level of the filtering system. The PHFFS removes the detail
coefficients from levels W, to W in a parallel process. Moreover, the PHFFS
consists of an additional channel which removes the detail coefficients of levels W
to W, (figure 8).

Then, the ECG is reconstructed using the Inverse Maximal Overlap Discrete
Wavelet Transform (IMODWT) at each level of these filtering processes [39].
Therefore, the output of the PHFFS consists of several filtered ECGs. According to
table 1, the PHFFS constructs five types of filtered ECGs which are defined as X,
X, X3, X 4and X 5. Each of these signals is independently analyzed for the
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Figure 8. The block diagram of the parallel high frequency filtering system (PHFFS).

Table 1. Reconstruction of the ECG signal using the multichannel wavelet-based

filtering system.

Filtering channel p Removed coefficients using Filtered signal
PHFFS system notation
1 W, Vj, X,
2 W,, Vj, X,
3 W3, VJ, X;
4 W, vy, X4
5 Wi, Wy, W3, W, Vj X

identification process and utilized as a unique personal identifier. In figure 9,
we show an example of all the reconstructed signals. Generally, the high frequency
components of the ECG have slightly larger statistical variation than the low
frequency components [47]. This variation may influence the overall identification
performance for some individuals. Therefore, we apply the PHFFS to remove
multiple wavelet components and investigate the applicability of the identification

system using reduced amount of the signal information [40].

3.4. Spectral feature extraction (STFT)

The feature extraction stage involves utilizing significant characteristics from the
ECG for human identification. Since ECG is a random time varying signal, it generally
has intra feature variability between multiple heartbeats [4, 22]. Therefore, the most
appropriate way to utilize the ECG for human identification does not only depend
on filtering some of the wavelet components but also involves tracking the dynamic
change of features among multiple heartbeats [2]. In our previous work [38],

we introduced a new feature that is based on modeling the dynamic change of

ECG spectral components. This feature, extracted from the main signal, has shown
excellent results for individual recognition. Differently, in this work we extract

the dynamic change of the spectral components in each of the filtered ECG signals.

The complete process of extracting the dynamic change of the ECG frequency

components can be found in [38]. In short, let X" be the referencing ECG from
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Figure 9. Multiple filtered versions of the ECG using the PHFFS.

day 1, we first divide each of the filtered signals (e.g., Xpr ) into multiple short
segments and create the time matrix f(; . Then, we apply STFT on each row of Xpr
and obtain the frequency matrix F pr . The ﬁ; matrix contains the spectral activity of
multiple overlapped time segments of the filtered ECG f{; . Thus, it represents the
dynamic change of the frequency components between several consecutive heart
beats, i.e., we utilize this change as a unique characteristic for individual recognition.
Similarly, let X* be a testing ECG from day 2, we obtain the spectral feature matrix
ﬁ'pt using the same procedure. For each subject, the process of randomly selecting

testing data is repeated many times to evaluate the performance of our method.

3.5. Classification using Fréchet distance

ECG classification for human identification purposes is the process of correctly
assigning a class for the transformed feature matrices [9, 16, 30, 44, 47]. Technically,
the procedure for choosing the right classifier highly depends on the geometrical
characteristics of the feature matrix [38]. Here, we also refer to our previous
findings on the robustness of utilizing the Fréchet distance for correctly classifying
the covariance matrices of the ECG dynamic features [38]. In short, let 7, be the
total number of subjects, we use equation (4) g, many times to compute the

Fréchet distance (fd) between a single testing feature matrix of random subject and
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the reference feature matrices of all subjects such that:

fy - \/ Tr(AL ;) + Tr(Ay ) ~2Tr (x/ATm W) @

where
. .y oy T
Apn = FpnFpn (5)
\ . o T
Al - F! F! (6)

where 1 <m < ngy, is the index of one subject, n = 1, 2, 3, ..., ng, refers to the subject
number with a total of n, subjects and p is the index of the filtering channel (see
table 1).

In this work, the scaling coefficients (V7 ) are larger than the detail coefficients
which may make the feature matrices to be singular [46]. Consequently, these two
square roots in equation (4) ( A;,)m and \/IE ) may not exist. To address this
problem, we removed the scaling coefficients in all the filtered channels (see table 1).
However, the scaling coefficients may have distinctive information that can be used
in other biometric applications such as ECG data clustering. According to
equation (4), we use the referencing data of all subjects to obtain the Fréchet
distance; however, the scaling coefficients could be utilized to address this problem
by clustering the referencing data to reduce the computational time of classification.

After finding the Fréchet distances, we use equation (7) to classify the testing data to

”f") ()
1

where FD), is a vector that has ny, individual Fréchet distances.

a specific class (person) such that:

In addition, equation (8) returns the minimum Fréchet distance:

1

where d, is the minimum Fréchet distance that is obtained by using filter p.

dp = min (FDP

Since our PHFFS consists of p filtering channels, we obtain C, € R"” which isa
vector that has n, classes where each filtering channel returns one class. In this work,
the total number of classes is equivalent to the total number of subjects. We also
obtain D), € R"? which is a vector that has 7, minimum Fréchet distances. For each
subject, we repeated all the previously explained processes many times by changing
the testing ECG data to examine the stability of our method. Thereafter, the C, and

D,, vectors were transmitted to the data fusion algorithm.
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Figure 10. The outcome of the classification process.

3.6. Decision fusion using weighted majority voting method

Data fusion is a process of combining information collected from a multisensory
system to form a final decision [41]. The use of multisensory data has been widely
applied in many fields including medical applications [48]. In general, the data
collected from a multisensory system are incomplete or overlapping which may
cause improper decision making. Therefore, data fusion is an essential step that

improves the overall performance of a multisensory system [49-51].

In this work, we utilize the reconstructed ECG signals as information collected
from multiple detectors. To reach a common final decision, we aim to combine the
multiple decisions that are obtained from the wavelet-based filtering channels [41].
As explained in the previous stage, C, is a vector that has a maximum of )
identities which are selected using 7, minimum Fréchet distances (see figure 10).
Each of these filtering channels picks one identity and it also returns the

corresponding minimum Fréchet distance.

Here we propose a scoring technique to reach a final decision using the weighted
majority voting method (WMVM) [40, 41]. Our technique is based on computing a
weighted score for each person picked by the classification process. For each person

in C, (e.g., person n), the scoring weight is calculated using the following equation:

p 1
wscy = Z npp = X Vpn (9)
p=1 Zp:l @

where vy, , is the vote given for person 7 using filter p such that:

1 ifc, =n
P
I (10)
P {o ifcp, #n.
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Figure 11. Three examples of the identities picked at each filtering channel based on

the minimum Fréchet distance.

Consequently, we obtain WSC € R" where n; <n,, is the total number of
identities selected by the classification process. In figure 11 we show an example of
three experiments. The left side of the figure shows the minimum Fréchet distances
obtained from each of the filtering channel, and the right side of the figure shows
the corresponding identities that are picked by each filter. If the number of picked
subjects is equivalent to the number of filters, each person is a given a weighted
score that is based mainly on the corresponding minimum Fréchet distance.

Therefore, the identity with the smallest distance will be picked as a final decision.

However, if more than one filtering channel picked a similar identity as seen in
figure 11, a higher weighted score is calculated for that person according to
equations (9) and (10) respectively. In data fusion, adding a measurement-based
higher score for decisions which have been made using a multisensory system
depends on the statistical parameters of the corresponding measurement [41]. To
illustrate, figure 12 shows an example of the range of minimum Fréchet distance
which are obtained after randomly choosing multiple testing data and applying
equations (4)—(6) and (8) respectively. For any of the filtering channels if the range
of the minimum distance is very low, it will result in higher weighted scores which

make the WMVM method very biased to one filter. In contrast, if the range of the
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Figure 12. The range of minimum Fréchet distance using multiple testing data of one

subject.

minimum distance is very high, it will result in lower weighted scores which make
the outcome of the corresponding filtering channel less effective to reach a final
decision. According to figure 12, the range of the minimum distances obtained from
each filter is very close, which makes our scoring method sufficient to reach a true

final decision.

3.7. Identification

In this stage, the identification step is a process of picking one identity from the
multiple identities obtained by the classification process. As explained above, the
WMVM assigns a weighted score for each person selected by the classification

process. To reach a final decision, the identity which has the higher weight is chosen,

such that:
i > (11)
1

In short, features of multiple ECGs which belong to a same class might be

¢f = max wsC
n

where cr is the final class (subject).

different whenever it is recorded [19]. Utilizing the complete information of
multiple ECGs (e.g., the wavelet components) might not adequately obtain the
required minimum distance to reach the right class. The variability in the ECG
features might be due to the variability in the individual bases of the ECG wavelet
components [18]. Therefore, we developed our multichannel Fréchet based scoring
method to achieve the maximum possible similarity between multiple ECGs by
parallelly filtering some of the wavelet components [39]. Finally, we combine the
outcome of this multi-level filtering technique to reach a final class using

equations (9), (10), and (11) respectively.
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4. Experiment setups

We have applied our proposed method using multiple ECGs of 62 subjects from the
ECG ID database. The experiments set up are designed according to the following
steps:

1. For each subject (), starting from subject 1 to subject 62 (ny,):

1.1 A random test data X}/, is selected from day 2-ECG.

1.2 Next, the five filtered test ECGs are created using equations (1)-(3) and they

St ot ot ot ot
are labeled as X, ,,, X, 1, X5, Xy 1 and X .

1.3 Then, the five spectral feature matrices are computed from each of the
filtered test ECGs and labeled as F/,,, F{ ,, Ff,,, F1  and }A?'St’m.

1.4 After that, for each subject (#) starting from subject 1 to subject 62,
1.4.1 Arandom reference data X, is selected from day 1-ECG.

1.4.2 Next, step 1.2 is repeated to create the five filtered reference ECGs and
N P P TS ) ~ 7
labeled as X, ,,, X, ,,, X5 ,,, X, , and X ;.

1.4.3 Then, step 1.3 is repeated to extract the five spectral feature matrices and
labeled as F,,, 1, FJ,, FY, and FZ,.

1.5 After that, the Fréchet distance between each test feature in step 1.3 and its
corresponding many reference features in step 1.4.3 is calculated using
equation (4). In addition, the results are stored in the following distance vectors
FD,,, € R", FD, ,, € R", FD;,;, € R",FD, ,, € R" and FDs, € R,

1.6 Then using equation (7), the classification process is performed based on the
minimum Fréchet distance in each of the five distance vectors that are obtained

from step 1.5 and the results are stored in the C, € R"” vector.

1.7 Also, the values of the corresponding five minimum distances are stored in
the D, € R" vector.

2. Next, equations (9), (10) are used to find a weighted score for each identity
that is picked by step 1.6.

3. After that, the final level classification is performed using equation (11).

4. Next, steps 1-3 are repeated 50 times (#exp) for each subject.

5. Finally, we obtained the ID € R"#*"$ matrix which contains the final
classification results of all the experiments, according to figure 13, where the rows
of the ID matrix represent the actual identities (the true subjects), and the
columns represent the rate of predicted identities to the total number of
experiments per row (the identities that are obtained by the classification

process).
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Figure 13. The output of the classification process using WMVM.

In addition, for each subject (row), the elements of the ID matrix are defined as:

(i) TPy which is the diagonal element (id;, ;) representing the total number of
times the mth subject is truly identified using WMVM (when the test data was
selected from the mth subject).

(ii) FN,, which represents the total number of times the mth subject is falsely not
identified using WMVM when the test data was selected from the mth subject

(the corresponding row elements except the diagonal element). The FNy, is

calculated using equation (12):
FNy, = nexp — TPp. (12)

(iii) FPy, which represents the total number of times the mth subject is falsely
identified using WMVM when the test data was selected from different subjects
(the corresponding column elements except the diagonal element). The FP,, is

calculated using the equation (13):

Nsp

FPm = idm,m - Z idm,n. (13)

n=1
(iv) TNy, which represents the total number of times the mth subject is truly not
identified using WMVM when the test data was selected from different subjects

(the corresponding off diagonal elements). The TN, is calculated using the
equation (14):

TN,, = (nexp —1) X ng, — FPy,. (14)
5. Results

5.1. Identification results based on using the wavelet filters individually

We examined the performance of our method in terms of the personal identification

accuracy using equation (15) such that:

TPm.p

accpm = X 100 (15)

Nexp

Digital Medicine and Healthcare Technology

—— 20/32



IntechOpen Journals

Table 2. Total subjects identified per accuracy range using each filter.

Personal identification 91-100 81-90 71-80 Less MODWT

accuracy (%) (%) (%) than filter
70%
Total subjects identified 42 4 5 11 P1
40 4 7 11 b2
40 5 4 13 P3
34 6 6 16 Pa
24 8 5 25 Ps

where accy , is the personal identification accuracy of the mth subject using the pth
filter, exp is the experiment number with a total of #exp random experiments and
TPy,p is the number of times that the mth subject is correctly identified using the
pth filter.

In addition, we evaluated the average identification accuracy of each filter using
equation (16):

Nsp

1
accy = — Zaccp,m (16)

njb m=1
where accy is the average identification accuracy of the pth filter.

The personal identification accuracy using our filtering system has shown good
results. Consequently, figure 14 shows full details of the personal identification
accuracy at each filter. In addition, table 2 shows that most of the subjects are
identified with an identification accuracy ranging from 91% to 100%, with best
findings of 42 subjects. Furthermore, figure 15 shows the average identification
accuracy using each filter individually with the best findings of 85.55% for filter p,.
These results indicate that all the ECG wavelet components are informative;
however, utilizing only a single filtering channel does not appropriately identify
majority of the subjects. Therefore, fusing the information obtained from all of these

filters is a mandatory task to achieve the best possible performance.

5.2. Identification results based on data fusion using the WMVM

We evaluated the performance of our proposed method after we performed data
fusion using the WMVM. The personal identification accuracy is calculated using

equation (17):

P,

accymm = X 100 (17)

Nexp

where accym,m is the personal identification accuracy of the mth subject.
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Figure 14. The personal identification accuracy using each filter individually.
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In addition, we evaluated the average identification accuracy of our proposed

method using equation (18):

ACCpm = — E ACCm m-
Ngh me1

Nsp

(18)

Consequently, the personal identification accuracy significantly increased as

shown in table 3. After we combined the information using the WMVM, 53 subjects

were identified with an identification accuracy ranging from 91% to 100%. In

addition, figure 16 shows the full details of the personal identification accuracy for
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Personal identification accuracy using WMVM
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Figure 16. The personal identification accuracy using the WMVM.

Table 3. Total subjects identified per accuracy range using the WMVM.

Personal identification 91-100 81-90 71-80 Less than
accuracy (%) (%) (%) 70%
Total subjects identified 53 3 2 4

Table 4. Average identification accuracy of the proposed method.

Average identification accuracy 92.29% 97.24% 98.07%
Number of subjects 62 58 56

each subject. Moreover, table 4 shows the average identification accuracy of the

proposed method.

According to table 4, we excluded six subjects who have less than 80%
identification accuracy (subjects with red and yellow bars in figure 16). These
subjects were excluded because none of the filtering channels were able to identify
them indicating that their ECG features from multiple days had significant
variability. As a result, our proposed method for ECG based human identification
which is based on filtering some of the wavelet components and applying the
WMVM for data fusion has achieved 98.07% identification accuracy. These findings
indicate that applying the WMVM is significantly useful since it accurately
combines information obtained from multiple filtering channels to correctly reach

the final class.
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5.3. Performance evaluation of the proposed method

We evaluated the general performance of our proposed method using the following

parameters:

Precision: the rate of truly identifying subjects to the total number of

identifications:

Nsp T Pm

Precision = — % ——-"
N nshmZ:lTPm+FPm

(19)
Recall/True Positive Rate (TPR): the rate of truly identifying subjects to the total

number of identification attempts:

Ngp
Recall = L TP

gy mZi TPy + FNpy" (20)

False Rejection Rate (FRR): the rate of falsely not identifying subjects to the total

number of identification attempts:

Ngh
FN,,
FRR = — _.
g le TPy, + FNyy, (21)
False Acceptance Rate (FAR)/False Positive Rate (FPR): the rate of falsely
identifying subjects to the total number of rejection attempts:
Ngh
FAR = FPo (22)

@mZ:lTNWFPm‘

Accordingly, table 5 shows the precision, recall, FAR and FRR parameters
computed by performing classification at each filter. As a result, the best findings are
achieved via applying the p, filter with 0.8631 precision, 0.8555 recall, 0.1445 FRR,
and 0.0024 FAR. Consequently, after performing data fusion using the WMVM, the
precision/recall parameters had significantly increased and the FRR/FAR had
significantly decreased. As a result, we achieved 0.9495 precision, 0.9229 recall,
0.0771 FRR and 0.0013 FAR. Additionally, figure 17 shows the performance
comparison using each filter individually and after performing data fusion using

WMVM.

Moreover, we evaluated the performance of the proposed method using the
receiver operating characteristic curve (ROC), which shows the tradeoff between
the true positive rate and false positive rate. Consequently, figure 18 shows the ROC
of the proposed method with the closest curve to the top left corner achieved via
performing data fusion. In addition, we obtained our highest area under the curve
(ROC AUC) that is equal to 0.9608 via applying the WMVM.
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Table 5. Performance evaluation of the proposed method.
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Filter/data fusion Precision Recall FRR FAR
P1 0.8624 0.8519 0.1481 0.0024
P2 0.8631 0.8555 0.1445 0.0024
P3 0.8680 0.8423 0.1577 0.0026
P4 0.8069 0.7919 0.2080 0.0034
Ps 0.6787 0.6878 0.3213 0.0053
WMVM 0.9495 0.9229 0.0771 0.0013
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Figure 20. The cross validation results.

Furthermore, we analyzed the performance using the precision recall curve (PR)
as shown in figure 19. Consequently, the best results were also obtained after
performing data fusion. According to figure 19, the closest curve to the top right
corner with PR AUC equal to 0.9362 is achieved via using the WMVM. As previously
mentioned, we repeated the process of randomly selecting the test data 50 times for
each subject. Consequently, figure 20 shows the cross-validation results in terms of
the average identification accuracy of each experiment. These results further show
that filtering some of the wavelet components and performing data fusion using the

proposed voting method can be utilized to identify subjects from multiple ECGs.
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6. Discussion

In general, the use of ECG for human identification is a challenging task that
depends mainly on choosing the appropriate features and classifiers [1, 2, 5, 22].
Different studies have presented different ECG features which can be utilized for
biometric purposes [3]. In our previous work, we had proposed a study on the most
appropriate features and classifiers [38]. However, the variability of ECG features
remains a major challenge for utilizing the cardiac signal as a biometric modality for
real applications [23]. Previous studies have achieved excellent identification results;
however, topics regarding the variability of ECG features were not discussed [4, 22,
38, 52]. Therefore, we proposed a methodology to investigate the feasibility of

human identification using multiple ECGs that are recorded at different days.

Table 5 shows performance comparison with state-of-the-art methods and
summarizes the main algorithms that are used in these previous approaches. The
performance of our method has shown excellent results compared to some of the
approaches in the literature [26, 29, 32, 33] as shown in table 6. In addition, our
performance slightly exceeded some of the recent methods in ECG biometrics which
are based on time frequency analysis of the cardiac signal [28, 30, 34]. Although
method [27] reported 100% accuracy, the authors used ECG data of 21 subjects
which makes the use of this method very limited due to the small data size. The
method of Ciocoiu et al. [31], which is based on converting the ECG heartbeat
segments into images and utilizing the CNN for classification, has slightly exceeded
our performance. However, the performance of method [31] considering the
variability of ECG features among multiple records was not reported. In comparison,
this paper presents a contribution that is based on MODWT to address the
variability of ECG features. In addition, we present our WMVM which is used to
combine the multiple decisions obtained from our multi-channel filtering system to
reach a single common decision for identification purposes. Finally, our proposed
method has shown excellent experimental results of up to 98.07% identification
accuracy, with 53 subjects having a personal identification accuracy ranging from

90% t0 100%.

In addition, to make our proposed method clinically applicable, the ECG can be
utilized in multibiometric identification systems. The combination of the intrinsic
characteristic of the ECG with the extrinsic characteristics of some of the existing
biometrics such as voice and iris recognition can increase patient security in clinics.
Furthermore, clinics can benefit from deploying the ECG biometrics in telemedicine
to update the personal records periodically for identification purposes. Generally,
ECG records should be updated according to the personal health status and age to be

utilized for human identification [20].

However, there are some limitations to our methodology. Specifically, topics on

optimizing the number of filters, ECG data clustering and personal ECG selection
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Table 6. Summary of the previous state-of-the-art and the proposed methodology

on the ECG based human identification.

Authors

Methodology

Accuracy
(%)

Dar et al. [26]

Lee et al. [28]

Arwacet al. [29]

Abdeldayem

et al. [30]

Choi et al. [32]

Kim et al. [33]

Tan et al. [34]

Proposed
method

Proposed a multiresolution analysis of the
DWT features using the Har wavelet
coefficients of the heartbeats

Proposed a time frequency representation of
the ECG data using the robust RPCANet and
DWT

Developed a wavelet-based method to extract
the ECG power and energy features and
utilizing Euclidean and linear discriminant
analysis (LDA) classifiers for identification
Proposed a methodology based on the
spectro-temporal dynamic characteristics of
the ECG signal using short time Fourier STFT,
Morse wavelets and CNN

Introduced a method to convert the ECG data
into 2D resized spectrograms that are utilized
for identification

Proposed a method based on likelihood ratio
test (GLRT) and composite hypothesis testing
Presented a methodology that is based on the
time frequency distribution of the ECG and
the statistical n-best adaptive Fourier
decomposition (SAFD)

Proposed a filtering system that is based on
MODWT to test the ECG feasibility of human
identification using multiple signals and
performing weighted majority voting method
(WMVM) for decision fusion

823

97:5

83.3

97.86

93

93

98

98.07

for enrolment purposes need to be addressed in future work. According to figure 13,

the number of MODWT filters that are required to correctly identify individuals is

subject relevant, which may limit the applicability of our method due to the long

computational time. However, optimizing techniques might address this problem to

reduce the number of required filters. Also, implementing our method requires to

cluster the ECG into different groups to further reduce the screening time since our
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[

method depends on finding the minimum Fréchet distance of one random testing
data and all the referencing data. In our future work, we will address this problem by
utilizing the MODWT scaling coefficients to cluster the ECG referencing data.
Moreover, our method was evaluated based only on two ECG records per subject.
Therefore, the applicability of our method should be investigated on larger ECG
records. Accordingly, future work should focus on selecting the most appropriate
personal ECG records which may require to perform similarity measurements

algorithm at the enrolment stage of the biometric system.

7. Conclusion

One of the main challenges to utilize ECG for human identification is to address the
variability of ECG features across multiple records [5, 22]. To solve this problem, we
proposed a methodology for human identification using multiple ECGs via applying
data filtering and data fusion techniques. To model the changeability of ECG
features over multiple records, we utilized the MODWT to create a multi-channel
filtering system that is used for partitioning the variability of ECG features
according to its wavelet components followed by removing different wavelet
components at different levels of the filtering system [39]. The proposed filtering
system is utilized to identify subjects with reduced amounts of the signal
information through filtering the wavelet components that may have significant
change across multiple ECG records [40]. In addition, we proposed the WMVM
technique which is utilized to combine information obtained from multiple filtering
channels [41]. The WMVM is a scoring technique based on the minimum Fréchet
distances and is utilized to obtain a common final decision for reaching correct
identification. The experimental results have shown that our proposed method has
achieved an identification accuracy ranging from 92.29% to 98.07%. In addition, we
achieved 0.9495 precision, 0.9229 recall, 0.0771 FRR and 0.0013 FAR. In conclusion,
ECG based human identification using multiple ECGs is feasible. However, it
requires implementing methods that are adaptable with variability ECG features

because it may adversely influence the performance of biometric applications.
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