
AI, Computer
Science and
Robotics Technology

Citation
Vilmar Steffen (2022), Particle Swarm
Optimization with a Simplex Strategy
to Avoid Getting Stuck on Local
Optimum. AI, Computer Science and
Robotics Technology 2022(0), 1–40.

DOI
https://doi.org/10.5772/acrt.11

Copyright
© The Author(s) 2022.

This is an Open Access article
distributed under the terms of the
Creative Commons Attribution
License (https://creativecommons.
org/licenses/by/4.0/), which permits
unrestricted reuse, distribution, and
reproduction in any medium,
provided the original work is properly
cited.

Published
7 October 2022

R E S E A R C H PA P E R

Particle Swarm Optimization with a
Simplex Strategy to Avoid Getting Stuck
on Local Optimum
Vilmar Steffen*

Federal University of Technology – Parana (UTFPR), Francisco Beltrão, Paraná, Brazil
*Correspondence: E-mail: vilmars@utfpr.edu.br

Abstract
Heuristic methods, for global optimization, have been receiving much interest in the
last years, among which Particle Swarm Optimization (PSO) algorithm can be
highlighted. However, the application of heuristic methods can lead to premature
convergence. In this work, the addition of a step on the PSO algorithm is proposed.
This new step, based in Nelder–Mead simplex search method (NM), consists of
repositioning the current particle with global best solution, not for a better position,
but away from the current nearest local optimum, to avoid getting stuck on this local
optimum. There are other PSO-NM algorithms, but the one we are proposing, has a
different strategy. The proposed algorithm was also tested with the repositioning
strategy in other particles beyond the current global best particle, depending on the
repositioning probability. To evaluate the effectiveness of the proposed methods,
and study its better parameters, were used various test functions, and for each test
function, various number of particles were used in combination with various
probabilities of particles repositioning. A thousand runs were performed for each
case, resulting in more than two millions runs. The computational studies showed
that the repositioning of of global best particle increases the percentage of success
on reaching the global best solution, but better results can be obtained applying the
repositioning strategy to other particles with repositioning probabilities between
1–5%.

Keywords: particle swarm optimization, Nelder–Mead simplex search,
unconstrained optimization, hybrid optimization method, global optimum

1. Introduction
Function minimization (or maximization) is extensively employed in various
science fields. It refers to determination of the decision variables of a function, so
that the function would be at its minimum (or maximum) value. A majority of
problems, especially engineering ones, are optimization problems (function
minimization or maximization) in which the decision variables should be

AI, Computer Science and Robotics Technology 1/40

https://doi.org/10.5772/acrt.11
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:vilmars@utfpr.edu.br
mailto:vilmars@utfpr.edu.br
mailto:vilmars@utfpr.edu.br
mailto:vilmars@utfpr.edu.br
mailto:vilmars@utfpr.edu.br
mailto:vilmars@utfpr.edu.br
mailto:vilmars@utfpr.edu.br
mailto:vilmars@utfpr.edu.br
mailto:vilmars@utfpr.edu.br
mailto:vilmars@utfpr.edu.br
mailto:vilmars@utfpr.edu.br
mailto:vilmars@utfpr.edu.br
mailto:vilmars@utfpr.edu.br
mailto:vilmars@utfpr.edu.br
mailto:vilmars@utfpr.edu.br
mailto:vilmars@utfpr.edu.br
mailto:vilmars@utfpr.edu.br
mailto:vilmars@utfpr.edu.br
mailto:vilmars@utfpr.edu.br
mailto:vilmars@utfpr.edu.br

determined in a way, that the systems will operate at their best operation points in
relation to a specific objective [1]. Since most engineering and other science fields
problems are non-linear, complicated and with various local optima, it is necessary
to use methods with good ability of finding global optima. No method guarantees
convergence to the global optimum, but recently a lot of heuristic methods have
been proposed, and this class of methods present great potential in obtaining the
global optimum.

The heuristic optimization methods are mostly inspired by nature as
evolutionary, physical based, or based on animals or human behavior. The common
characteristic among these models is that a global search is executed using
movements of the search points, which is driven by a vector quantity given by its
dynamic system, such as the distance to the best position already reached by all
points [2]. The various methods include Simulated Annealing [3], Differential
Evolution [4], Artificial Chemical Reaction Optimization Algorithm [5], Water
Evaporation Optimization Algorithm [6], Lightning Search Algorithm [7],
Lightning Attachment Procedure Optimization [1], Gravitational Search
Algorithm [8], Black Hole Algorithm [9], Particle Swarm Optimization [10],
Multi-Particle Collision Algorithm [11], Firefly Algorithm [12], Crow search
algorithm [13], Whale Optimization Algorithm [14], Monkey Search Algorithm [15],
Bat-inspired Algorithm [16], Artificial Bee Colony algorithm [17], Grey Wolf
Optimization algorithm [18], Fruit Fly algorithm [19], Dragonfly algorithm [20],
Social Spider Optimization [21], Cuckoo Optimization Algorithm [22], Lion
Optimization Algorithm [23], Tabu Search [24, 25], League Championship
Algorithm [26], Soccer League Competition Algorithm [27], Fireworks
Algorithm [28], Colliding Bodies Optimization [29], Tug of War Optimization [30],
Thermal Exchange Optimization [31], Ions Motion Algorithm [32], Pathfinder
Algorithm [33], Black Widow Optimization Algorithm [34], Turbulent Flow of
Water-based Optimization [35], and many others.

Immature convergence and stagnation at local minimum are some common
deficiencies in the majority of heuristic optimization methods. Hence, researchers
are often concerned to improve them through modifying previous optimizers, for
example, modification on: Grey Wolf Optimization algorithm [36], Bat
Algorithm [37], Particle Swarm Optimization [38–43], Firefly Algorithm [44], Fruit
Fly Algorithm [45], Ant Colony Algorithm [46], Artificial Bee Colony [47–49], and
so on.

It is difficult to predict the best algorithm for every optimization problem.
However, a hybrid method of different optimization algorithms could be a potential
solution and more efficient than using one single algorithm for solving complex
problems [50]. Hybridization of heuristic algorithms with other heuristic or
deterministic algorithms has been an active research area in recent years. For

AI, Computer Science and Robotics Technology 2/40

example, Particle Swarm Optimization and Simulated Annealing [51], Particle
Swarm Optimization and Genetic Algorithm [52, 53], Particle Swarm Optimization
and Support Vector Machines [54], Particle Swarm Optimization, Ant Colony
Optimization and 3-Opt algorithms [55], Artificial Bee Colony Algorithm and
Differential Evolution [56], Gravitational Search Algorithm and Genetic
Algorithm [57], Extended Random Search and Conjugate Gradient Method [58],
Scatter Search and Nelder–Mead [59], Genetic Algorithm and Newton Method [60],
Simulated Annealing and Genetic Algorithm [61], Simulated Annealing and Tabu
Search Algorithm [62], Particle Swarm Optimization, Spider Monkey Optimization
and Ageist Spider Monkey Optimization algorithms [63], Whale Optimization
Algorithm, Lévy Flight and Differential Evolution [64], Particle Swarm
Optimization and Gravitational Search Algorithm [65], etc. Other hybrid methods
are obtained by combining, in many ways, the Nelder–Mead simplex search (NM)
and Particle Swarm Optimization (PSO), proposed respectively by Nelder and
Mead [66] and Kennedy and Eberhart [10]. These methods are commonly called
PSO-NM [67–72].

The focus in this work is to use a hybrid PSO-NM method for solving
unconstrained optimization problems. The idea is to add a step in PSO algorithm
where the particle with current global best value is repositioned, by a simplex
methodology (the simplex is formed by the current global best and other particles)
taking it away from the current nearest local minimum. This aims to avoid the global
best particle from getting stuck in a local minimum, resulting in a premature
convergence. This repositioning strategy is applied to another particles beyond the
global best. The effectiveness of the proposed method is evaluated by computational
studies comparing the rate of successful on reaching the global minimum for many
test functions.

2. Literature review
Over the past few decades, heuristic algorithms have been increasingly popular in
dealing with challenging optimization problems in all kinds of engineering fields.
This is because such techniques are more inexpensive and efficient than
conventional numerical approaches. The merits of heuristics lie in many aspects. The
first is their randomness, which can ensure success in avoiding local extrema and
exploring the search space. The second is the black box concept, in which the input
and output of considered problems are used without the need of gradient
information. In addition, heuristic algorithms are easy to implement and their
mathematical models are simple [73].

Heuristic methods have gained popularity. They are approximate
non-deterministic optimization techniques that draw on specialized knowledge to
address a particular issue. Then, from heuristics, meta-heuristic algorithms emerged.

AI, Computer Science and Robotics Technology 3/40

They trended and appeared as an attempt to acquire strategies for
problem-independent decision making. Meta-heuristic algorithms are created to
address a variety of optimization problems by directing the search process and
trying to explore the search area fully. They have a greater level of abstraction than
heuristics, allowing for the incorporation and management of many heuristics as
well as the integration of methods for escaping from local optima to reach the global
optimum [74]. The advantages and disadvantages of various meta-heuristic
algorithms are mentioned in brief.

Evolutionary Programming (EP) is simple to implement and suitable for many
problems, but there is an uncertainty on determining the best resolution.
Differential Evolution (DE) does not become stuck in a local minimum but the
tuning parameters need improvement. Genetic Algorithm (GA) has good coverage
of initial solutions in the search space, but the convergence is slow [74]. Another
advantage of GA over traditional optimization is its treatment of more practical,
dynamic, and highly nonlinear problems.

Bio-inspired optimization (BIO) easily copes with failure and consequently,
real-world engineering challenges. The BIO system always finds the best solution.
However, broadening the range and development of bioinspired methods for
analysing new areas of application is necessary to overcome one of its drawbacks,
which is the lack of balance amongst its elements [74–76].

Jaya Algorithm is a human-based and can be used to solve numerous
optimization challenges. However, Jaya algorithm might be stuck in local optima
when trying to address complex optimization issues because of minimal population
information in its only learning strategy [77].

Teaching learning-based optimization (TLBO) has the capacity to balances global
search capability with convergence rate and the ability for local and global search,
but the exploration process needs to be improved. Social evolution and learning
optimization (SELO) is effective in finding global optimum solutions for
unconstrained problems, however has a relatively slow convergence speed.
Gravitational search algorithm (GSA) can explore the local solution and is simple to
implement, nonetheless, has a poor convergence rate and high computational
time [74]. Although GSA surpasses traditional PSO and GA approaches in many
issues, there are still some shortcomings such as exploration–exploitation
discrepancy and local convergence [78].

Water Cycle Algorithm (WCA) is an effective population based optimization
algorithm, but the algorithm still resorts to premature convergence or gets stuck in
local optima in attempting to solve problems and requires a substantial calculation
time [78, 79]. An evaluation of several tests provides varying levels of complexity
that confirm the effectiveness of the electromagnetism optimization (EMO)

AI, Computer Science and Robotics Technology 4/40

technique regarding accuracy, speed and consistency [21, 74]. Multiverse Optimizer
Algorithm (MVO) requires less effort in computation, however the algorithm gets
stuck in the local optimal solution [74]. Sine Cosine Algorithm (SCA) solves a large
variety of optimization challenges, has the ability to look into diverse areas of a
search space, avoiding local optima, converging towards global optimization and
searching for promising regions on the search space [74, 80].

By combining the two phases (fusion and fission), Nuclear Reaction
Optimization (NRO) maintains a balance between its exploration and exploitation
abilities. The tests indicated that this optimization method is a potentially powerful
and an efficient global optimization algorithm [74].

Among heuristic intelligent optimization algorithms, swarm heuristic
intelligence optimization algorithms have been widely used to solve global
optimization problems due to simplicity, flexibility, and high efficiency. By
introducing randomness in the optimization process, swarm intelligence
optimization algorithms can determine the global optimal solution accurately and
reasonably, which makes the solution of swarm intelligence optimization algorithm
have practical significance [81]. Among heuristic intelligence optimization, Particle
Swarm Optimization (PSO) is one of the most widely used; it is a simple, easy to
implement, effective but can get stuck on local minimum and is unsatisfactory in
solving multi-objective optimization problems [74].

Although several novel metaheuristics and solvers have been published and made
available, the need to develop robust and intelligent systems is the need of the hour.
This can be achieved by combining the known advantages of conventional methods
with novel strategies or designing hybrid algorithms [82].

2.1. PSO-NM hybrid methods

The PSO-NM method proposed by Liu and Yang [70] uses the NM search method to
improve the efficiency of PSO by increasing the convergence rate. This method, in
each iteration, applies NM search method with a simplex composed by each particle
and other n particles with best fitness value. Following this, all particles will be
closer to the nearest local optimum. To justify the methodology proposed, the
authors says that PSO method resists easily falling into local optimum, what is not
entirely true, as will became clear later in this work. The method proposed by Liu
and Yang [70] is a modification of the method proposed by Zahara and Hu [69], in
which the NM method is applied in just one simplex, for each iteration, composed
by n + 1 particles with best fitness value to improve the position of (n + 1)th particle,
and other particles position are adjusted by PSO by taking in account the position of
all particles used in the NM method.

Fan et al. [67] proposed a hybridization strategy of combining NM and PSO
methods in a way to accelerate convergence. For an n dimensional problem, the

AI, Computer Science and Robotics Technology 5/40

procedure proposed by the authors uses 3 n + 1 particles, the particles are sorted by
fitness, and the best n particles are saved for subsequent use. The top n + 1 particles
are fed into the modified simplex search method to improve the (n + 1)th particle.
Joined by the n best particles and the (n + 1)th particle, the last 2 n particles are
adjusted by the modified PSO method.

The PSO-NM hybrid approach proposed by Hsu and Gao [68] aims to improve
both convergence rate and accuracy of the proposed optimization algorithm, using
an enhanced NM method to improve Gbest position and the help of a center particle,
because the center particle is generally closer to the optimum than Gbest during the
search. Due to frequent appearance as the best particle of swarm, it often attracts
other particles and guides the search direction of the whole swarm, improving the
convergence rate.

A PSO-NM method for crack detection in cantilever beams was proposed by
Vakil Baghmisheh et al. [71], and used by Mesbahi et al. [72] in order to obtain the
optimal parameters for Li-ion batteries model for vehicles. The hybrid PSO-NM is
made-up of a modified particle swarm optimization algorithm (PSO), aimed at
identifying the most promising areas, and a NM simplex algorithm for performing
local search within these areas. For the modification of PSO method, a mutation
operator is incorporated, in each iteration two randomly selected particles are
deleted and two new particles are introduced and positioned randomly in the search
space. In addition, to increase the precision of the answer the authors added the NM
local search algorithm after the PSO.

3. Proposed new algorithm
The optimization techniques can be classified into two categories: deterministic (e.g.,
NM simplex search method, Steepest descent, Powell’s conjugate direction method,
Rosenbrock method, etc.) and heuristic (e.g., PSO, simulated annealing algorithm,
genetic algorithm, firefly algorithm, etc.). The advantage of deterministic methods
is the lower computational time required, but for heuristic methods the probability
of reaching the global minimum is greater. So the idea of this work is to propose an
improvement of PSO method by using a repositioning methodology, of some
particles, using the simplex approach proposed by Nelder and Mead [66], to avoid
premature convergence provoked by the particles stuck in a local minimum, i. e., an
hybridization strategy, to further increase the probability of global optimization
success. The NM, PSO and PSO-NM (that we propose) methods are presented below.

3.1. Particle swarm optimization (PSO)

The Particle Swarm Optimization algorithm is based on the movement of organisms
in a bird flock or fish school motivated by social exchange of information. Birds and

AI, Computer Science and Robotics Technology 6/40

Figure 1. PSO algorithm.

fish adjust their physical moment to avoid predator, seek food, mate, optimize
environmental parameters as temperature, etc. Humans adjust not only physical
movement but cognitive or experiential variable as well [10]. So, the idea of this
method is to randomly generate a swarm of m points (called “particles”), in the
search region of dimension n, with initial random velocities. The function value of
each particle are evaluated at each iteration. These function values are used to
update particles velocities. It can be used to solve unconstrained as well as
constrained optimization problems [83].

The procedure of PSO algorithm, illustrated by the figure 1, is composed of the
following steps:

(1) Positions initialization: randomly generate the initial positions (Xi) of m
particles, within the limits of the n-dimensional search region. Considering that
the search region has an upper bound, Xupper, and a lower bound, Xlower, a
possible way to initialize the position is:

Xi = Xlower + rand() (Xupper – Xlower) (1)

where rand() is a n-dimensional vector of random numbers between 0 and 1.
(2) Velocities initialization: randomly generate the initial velocities (Vi) of m

particles. It is not recommended that initial velocities have large values, so a
possible way is to initialize as zero for all particles, another way is using the

AI, Computer Science and Robotics Technology 7/40

equation (2);

Vi = Xlower + rand() (Xupper – Xlower)
10 . (2)

(3) Evaluate objective function: for each current particle position, it is also called
fitness (objective function value, Fobj);

(4) Identify the best locations: for each particle, compare current objective function
value with its best value reached ever, so, if current value is better than previous
one, attribute particles best location (Pbest) is equal to current value. Identify the
best value of objective function obtained with the current particles position, and
compare it with previous global best location (Gbest), if the current value is better,
update it;

(5) Update particles velocities: the particles velocities are updated by equation (3);

Vnew
i = w Vi + rand() C1 (Pbest – Xi) + rand() C2 (Gbest – Xi) (3)

where, w is the inertia weight, C1 is the cognitive parameter and C2 is the social
parameter. Generally C1 = C2 = 2 and the inertia weight can be calculated by
many equations, among which, the one commonly used is represented by
equation (4) [84];

w = 0.5 + rand()
2 (4)

(6) Update particles positions: the particles positions are updated by applying
equation (5);

Xnew
i = Xi + Vnew

i (5)

(7) Stop condition: if stopping criteria was reached, go to step (8), otherwise return
to step (3); In this work we used two stopping criteria, the iterative process is
interrupted when one of then is satisfied. The stopping criteria are:

(a) A large number of consecutive iterations (5000) with no changes larger than
1 × 10−7 in the value of objective function evaluated for Gbest;

(b) All particles are very close to the Gbest:√√√√ n∑
j=1

(xj i – xj igbest)2 ≤ 1 × 10–7 ∀ i

(8) Print results: print the position of global best location and its fitness as the
minimum reached.

AI, Computer Science and Robotics Technology 8/40

Figure 2. Nelder–Mead simplex substitution of Ph.

3.2. Nelder–Mead simplex search method (NM)

The idea of simplex method for function minimization of n variables without
constraints, proposed by Nelder and Mead [66] based on an ingenious idea
introduced by Spendley et al. [85], by comparing the function values at n + 1 vertices
of a general simplex, followed by the replacement of the vertex with the highest
objective function value by another point. This replacement is made until finding an
approximation of local minimum.

In this method, initially, n + 1 points, i.e., P0, P1, P2, … , Pn are considered with
function values, y0, y1, y2, … , yn respectively. So, the point with highest function
value is defined as yh = max(yi) at Ph, the point with lowest function value as yl =
min(yi) at Pl and the centroid, Pcent, of all points with i ≠ h. At each iteration a new
simplex is formed by substituting Ph by reflection, contraction or expansion (these
are illustrated in figure 2). The first operation consists in choosing a point, with
lower function value than yh, away from Ph through Pcent by applying reflection
equation (6)

Pref = (1 + α) Pcent – α Ph (6)

where the reflection coefficient, α, is a positive constant (usually α = 1).

If the function value of Pref is lower than yl, i.e., the reflection resulted in a new
minimum, so it is possible to obtain a function value even lower by applying
expansion equation (7).

Pexp = γ Pref + (1 – γ) Pcent (7)

where the expansion coefficient, γ, is a positive coefficient greater than unity
(usually γ = 2).

If the function value at Pexp is lower than the function value at Pl, the new
simplex is formed by replacing Ph by Pexp, otherwise Ph is replaced by Pref.

If a point, obtained on reflection operation, with a function value of Pref lower
than yh and at least another one yi, Ph is replaced by Pref, otherwise if the fitness of

AI, Computer Science and Robotics Technology 9/40

Pref is higher than yi for all i ≠ h, it has obtained a new maximum. In this case, it is
necessary to try taking a better new point by contraction, what is done by applying
equation (8).

Pcont = β Ph + (1 – β) Pcent (8)

where the contraction coefficient, β, lies between 0 and 1 (usually β = 1∕2). The
value of Pcont is accepted unless the function value at this point remains higher than
the values at Ph. In case the contraction fails, the simplex vertices are substituted
applying equation (9).

Pi = Pi + Pl
2 . (9)

3.3. PSO method with particle repositioning based on NM simplex
(PSO-NM)

The PSO method we propose has a different purpose from all PSO-NM methods
presented before. Starting from the possibility of one particle, at the beginning of
optimization process, gets closer to a local minimum, this can attract other particles
to this local minimum, and lead the algorithm to converge to this value, in other
words, a premature convergence. An attempt to avoid getting stuck in a local
minimum, we propose in this work, is using the reflection of NM simplex search
method for the particle with global best fitness ever reached. As illustrated in
figure 3, this reflection, of current global best particle, is done through a center
obtained by n particles after (randomly chosen). This reflection operation takes the
particle to a position away from current nearest local minimum, aiming to avoid
getting stuck on local optimum.

But the repositioning of just one particle cannot be satisfactory, aiming to fix this,
we propose that this repositioning operation by NM reflection can occur, depending
on a probability of particles repositioning, in other particles beyond that with global
best fitness. This additional of repositioning, can improve the ability of avoiding
premature convergence, besides that can aid better exploration of the search domain.
This procedures are done after the update of positions (step 6) of PSO algorithm, as
shown in figure 4.

4. Numerical simulations methodology
The numerical simulations were implemented through two codes in ForTran. In the
first code the PSO method was implemented, as presented in subsection 3.1, to
obtain the minimal function value, and the possibility to use any number of
particles. The proposed PSO-NM heuristic optimization method was implemented,

AI, Computer Science and Robotics Technology 10/40

Figure 3. Repositioning of particle with current global best location.

Figure 4. Proposed PSO-NM algorithm.

AI, Computer Science and Robotics Technology 11/40

as presented in subsection 3.3, in a way that the user can choose the number of
particles and the probability of particles repositioning.

For both methods, we used simultaneously two stopping criteria, the first one
verifies if, for too many iterations (5000), the value change in the global best fitness
is less than the tolerance (tol = 1 × 10−7), and the last one verifies if all particles are
so close to current global best (a distance less than the tolerance, tol = 1 × 10−7). If at
least one of these stopping criteria is reached, the optimization method terminated
successfully.

To make the comparison of effectiveness between PSO and the proposed
PSO-NM method, we used various test functions (presented in Appendix A, where
most of them have various local minima), where for each test function, were used
various numbers of particles (5, 7, 10, 15, 20, 30, 40, 50, 100, 200, 300 and 500) and,
for the PSO-NM method, were applied various probabilities of particles
repositioning (0, 1, 2, 3, 4, 5, 7 and 10%) beyond the current particle with best
position in the search domain.

4.1. Percentage of global minimization

The optimization task for each case, on each test function, was performed 1000
times. After the convergence, the result obtained in each test was compared to the
global optimum (the global optimum is known for all test functions used), so it was
possible to evaluate the percentage of global optimization.

4.2. Evaluating the percentage of particles repositioning percentage

In order to evaluate the effect of the particles repositioning in the particles positions
throughout the iterations, the function value mean (of all 1000 performed tests for
each case) at global best position was calculated to make a comparison between the
PSO and the proposed PSO-NM with various probabilities of particles repositioning.
These tests were performed for various numbers of particles. Furthermore, for some
simulations, the positions of all particles were stored to make a visual comparison
between the methods.

5. Numerical simulation results and discussion
In this section, we present the comparison of effectiveness between PSO and the
proposed PSO-NM method. The rate of successful optimization, for all cases and test
functions studied in this work, are presented in Appendix B.

Shown in figures 5, 6, 7 and 8 are the percentages of function minimization with
respect to particle numbers, for Ackley’s function (2-D), Griewank function (2-D),
Rastrigin function (3-D) and Rastrigin function (4-D), respectively. It can be seen
in these figures, as expected, the larger number of particles, the greater the

AI, Computer Science and Robotics Technology 12/40

Figure 5. Percentage of success in minimization of Ackley’s function (2-D).
A comparison of PSO and PSO-NM with varying probabilities of repositioning.

Figure 6. Percentage of success in minimization of Griewank function (2-D).
A comparison of PSO and PSO-NM with varying probabilities of repositioning.

percentage of function minimization, but the particles repositioning presents
benefits only for percentages up to 5%, percentages of repositioning greater than 5%
leads to poor performance. The large amount of results presented in B makes this
clearer, although this is not true for all test functions, in few cases 10% of particles
repositioning probability it was obtained best results.

Figures 9, 10, 11 and 12 show the particle positions, in the search region, at some
iterations for the PSO and proposed PSO-NM methods, for the Griewank function
(2-D), with global minimum at X = (0, 0). In these figures, it is clear that the

AI, Computer Science and Robotics Technology 13/40

Figure 7. Percentage of success in minimization of Rastrigin function (3-D).
A comparison of PSO and PSO-NM with varying probabilities of repositioning.

Figure 8. Percentage of success in minimization of Rastrigin function (4-D).
A comparison of PSO and PSO-NM with varying probabilities of repositioning.

particle repositioning causes a greater exploration of search region, which explains
the reason of the higher percentage of success in obtaining the global minimum.
Also, can be seen in figures 9 and 10 the particles getting stuck on a local minimum,
and particles stay there, at least until the iteration of number 500, but in the figures
11 and 12, the global best particles move away from the local minimum just after 20
iterations. These facts reinforces the idea that the proposed methods is efficient in
avoiding the PSO method of getting stuck in a local minimum, but the repositioning
of just the particle with the current global best position is not good enough.

AI, Computer Science and Robotics Technology 14/40

Figure 9. Particles positions, at some iterations, for PSO method with 50 particles
applied to Griewank function (2-D). A black triangle (▴) for current global best and
gray circle (∙) for particles.

AI, Computer Science and Robotics Technology 15/40

Figure 10. Particles positions, at some iterations, for PSO-NM method with 50
particles and 0% of particles repositioning applied to Griewank function (2-D).
A black triangle (▴) for current global best and gray circle (∙) for particles.

AI, Computer Science and Robotics Technology 16/40

Figure 11. Particles positions, at some iterations, for PSO-NM method with 50
particles and 3% of particles repositioning applied to Griewank function (2-D).
A black triangle (▴) for current global best and gray circle (∙) for particles.

AI, Computer Science and Robotics Technology 17/40

Figure 12. Particles positions, at some iterations, for PSO-NM method with 50
particles and 10% of particles repositioning applied to Griewank function (2-D).
A black triangle (▴) for current global best and gray circle (∙) for particles.

AI, Computer Science and Robotics Technology 18/40

Figure 13. Progress, in initial iterations, of mean function values at G best position,
for PSO and PSO-NM methods with 50 particles and various probabilities of
particles repositioning applied to Griewank function (2-D).

Figure 14. Progress of mean function values at G best position, for PSO and PSO-NM
methods with 50 particles and various probabilities of particles repositioning
applied to Griewank function (2-D).

Figures 13 and 14 depicts the mean of Griewank function (2-D) value at global
best position ever reached. Figure 13 shows the behavior for the first 200 iterations
and figure 14 shows the behavior of mean function values until 5000 iterations.
Initially, PSO method converges faster than PSO-NM, but analyzing the figure 13, it
can be seen that the particles get stuck at a local minimum, and a higher probability
of particles repositioning easily to escape from a local minimum. However, using
10% of particles repositioning presented some difficulty on the convergence process

AI, Computer Science and Robotics Technology 19/40

even after escaping from the local minimum. Again, it was clear that the proposed
PSO-NM method presents advantages, but the percentage of particles repositioning
should not be so high.

6. Conclusions
In this work we studied the effect of adding a step on PSO algorithm regarding to the
percentage of success on reaching the global minimum of functions with several
local minima. In this new step, the repositioning of the global best and other
particles was performed, depending on a repositioning probability, which aims to
avoid the global best particle getting stuck in a local minimum. Several simulations
were carried out by computational studies, which demonstrated that this new step
works very well. The repositioning of particle of global best solution increases the
percentage of success on reaching the global best solution, but better results can be
obtained applying the repositioning strategy to other particles with repositioning
probabilities up to 5%. Repositioning probabilities greater than 5% should be
avoided because, in various cases, this presented worse results. The strategy, which
we proposed to avoid getting stuck on local optimum is very simple and can be easily
adapted to other heuristic optimization methods.

Conflict of interest
The authors declare no conflicts of interest.

Acknowledgement
The author would like to thank Marcel Joly for his comments, which helped in the
construction of this method and improved the quality of this work.

Appendix A. Test functions
The test functions employed in this work are given below:

• Function 1 (2-D): Rosenbrock function

(a) f(X) = 100 (x2 – x2
1)2 + (1 – x1)2

(b) Global optimum at X∗ = (1.0, 1.0) with f(X∗) = 0.0
(c) Function evaluated in the range xi ∈ [−100, 100] ∀ i

• Function 2 (2-D): Schaffer function no 2

(a) f(X) = 0.5 + sin2(x2
1 – x2

2) – 0.5
(1.0 + 0.001 (x21 + x22))2

(b) Global optimum at X∗ = (0.0, 0.0) with f(X∗) = 0.0
(c) Function evaluated in the range xi ∈ [−100, 100] ∀ i

AI, Computer Science and Robotics Technology 20/40

• Function 3 (2-D): Schaffer function no 4

(a) f(X) = 0.5 + cos2(x2
1 – x2

2) – 0.5
(1.0 + 0.001 (x21 + x22))2

(b) Global optimum at X∗ = (0.0, 1.25313) with f(X∗) = 0.292579

(c) Function evaluated in the range xi ∈ [−100, 100] ∀ i

• Function 4 (2-D): Eggholder function

(a) f(X) = –(x2 + 47.0) sin
(√∣∣∣x1

2 + (x2 + 47.0)
∣∣∣) – x1 sin(

√
|x1 – (x2 + 47.0)|)

(b) Global optimum at X∗ = (512.0, 404.2319) with f(X∗) = −959.6407

(c) Function evaluated in the range xi ∈ [−512, 512] ∀ i

• Function 5 (2-D): Hölder table function

(a) f(X) = –
∣∣∣∣∣sin(x1) cos(x2) exp

(∣∣∣∣∣–1.0 –
∣∣∣∣∣
√
x21 + x22
π

∣∣∣∣∣
∣∣∣∣∣
)∣∣∣∣∣

(b) Global optimum at X∗ = (±8.05502, ±9.66459) with f(X∗) = −19.2085

(c) Function evaluated in the range xi ∈ [−100, 100] ∀ i

• Function 6 (2-D): Ackley’s function

(a) f(X) = –20 exp(0.2
√

0.5 (x21 + x22)) – exp(0.5 (cos(2 π x1) + cos(2 π x2)))

+ e + 20.0

(b) Global optimum at X∗ = (0.0, 0.0) with f(X∗) = 0.0

(c) Function evaluated in the range xi ∈ [−500, 500] ∀ i

• Function 7 (2-D): Beale’s function

(a) f(X) = (1.5 + x1 + x1 x2)2 + (2.25 + x1 + x1 x2
2)2 + (2.625 + x1 + x1 x3

2)2

(b) Global optimum at X∗ = (3.0, 0.5) with f(X∗) = 0.0

(c) Function evaluated in the range xi ∈ [−500, 500] ∀ i

• Function 8 (2-D): Goldstein-Price function

(a) f(X) = (1 + (x1 + x2 + 1.0)2 (19.0 – 14 x1 + 3 x2
1 – 14 x2 + 6 x1 x2 + 3 x2

2))

(30 + (2 x1 – 3 x2)2 (18.0 – 32 x1 + 12 x2
1 + 48 x2 – 36 x1 x2 + 27 x2

2))

(b) Global optimum at X∗ = (0.0, −1.0) with f(X∗) = 3.0

(c) Function evaluated in the range xi ∈ [−500, 500] ∀ i

• Function 9 (2-D): Levy function no 13

(a) f (X) = sin2(3 π x1) + (x1 − 1.0)2 (1.0 + sin2(3 π x2)) + (x2 − 1.0)2

(1.0 + sin2(2 π x2))

(b) Global optimum at X∗ = (1.0, 1.0) with f(X∗) = 0.0

(c) Function evaluated in the range xi ∈ [−500, 500] ∀ i

AI, Computer Science and Robotics Technology 21/40

• Function 10 (2-D): Six-Hump Camel function

(a) f(X) =
(

4.0 – 2.1 x2
1 + x4

1
3

)
x2

1 + x1 x2 + (–4.0 + 4 x2
2) x2

2

(b) Global optimum at X∗ = ±(0.0898, −0.7126) with f(X∗) = −1.0316
(c) Function evaluated in the range xi ∈ [−500, 500] ∀ i

• Function 11 (2-D): Bukin function no 6

(a) f(X) = 100.0
√

|x2 – 0.01 x21 | + 0.01 |x1 + 10.0|
(b) Global optimum at X∗ = (−10.0, 1.0) with f(X∗) = 0.0
(c) Function evaluated in the range x1 ∈ [−15, −5] and x2 ∈ [−3, −3]

• Function 12 (2-D): Cross-in-Tray

(a) f(X) = –0.0001
(∣∣∣∣∣sin(x1) sin(x2) exp

(
100.0 –

√
x21 + x22
π

)∣∣∣∣∣ + 1.0
)0.1

(b) Global optimum at X∗ = (±1.3491, ±1.3491) with f(X∗) = −2.06261
(c) Function evaluated in the range xi ∈ [−100, 100] ∀ i

• Function 13 (2-D): Drop Wave function

(a) f(X) = – 1.0 + cos(12
√
x21 + x22)

0.5
√
x21 + x22 + 2.0

(b) Global optimum at X∗ = (0.0, 0.0) with f(X∗) = −1.0
(c) Function evaluated in the range xi ∈ [−500, 500] ∀ i

• Function 14 (2-D): Rastrigin function

(a) f(X) =
∑n

i=1(10.0 + x2
i – 10 cos(2 π xi)) with n = 2

(b) Global optimum at X∗ = (0.0, 0.0) with f(X∗) = 0.0
(c) Function evaluated in the range xi ∈ [−500, 500] ∀ i

• Function 15 (2-D): Griewank function

(a) f(X) =
∑n

i=1
x2
i

4000.0 –
∏n

i=1 cos
(
xi√
i

)
+ 1.0 with n = 2

(b) Global optimum at X∗ = (0.0, 0.0) with f(X∗) = 0.0
(c) Function evaluated in the range xi ∈ [−600, 600] ∀ i

• Function 16 (2-D): Schwefel function

(a) f(X) =
∑n

i=1(418.9829 – xi sin(
√

|xi|)) with n = 2
(b) Global optimum at X∗ = (420.9687, 420.9687) with f(X∗) = 0.0
(c) Function evaluated in the range xi ∈ [−500, 500] ∀ i

• Function 17 (3-D): Rastrigin function

(a) f(X) =
∑n

i=1(10.0 + x2
i – 10 cos(2 π xi)) with n = 3

(b) Global optimum at X∗ = (0.0, 0.0, 0.0) with f(X∗) = 0.0
(c) Function evaluated in the range xi ∈ [−500, 500] ∀ i

AI, Computer Science and Robotics Technology 22/40

• Function 18 (3-D): Griewank function

(a) f(X) =
∑n

i=1
x2
i

4000.0 –
∏n

i=1 cos
(
xi√
i

)
+ 1.0 with n = 3

(b) Global optimum at X∗ = (0.0, 0.0, 0.0) with f(X∗) = 0.0
(c) Function evaluated in the range xi ∈ [−600, 600] ∀ i

• Function 19 (3-D): Schwefel function

(a) f(X) =
∑n

i=1(418.9829 – xi sin(
√

|xi|)) with n = 3
(b) Global optimum at X∗ = (420.9687, 420.9687, 420.9687) with f(X∗) = 0.0
(c) Function evaluated in the range xi ∈ [−500, 500] ∀ i

• Function 20 (4-D): Rosenbrock function

(a) f(X) = 100 (x2 – x2
1)2 + (1 – x1)2 + 100 (x4 – x2

3)2 + (1 – x3)2

(b) Global optimum at X∗ = (1.0, 1.0, 1.0, 1.0) with f(X∗) = 0.0
(c) Function evaluated in the range xi ∈ [−100, 100] ∀ i

• Function 21 (4-D): Wood Function

(a) f(X) = (10 (x2 – x2
1))2 + (1 – x2

1) + (√90 (x4 – x2
3))2 + (1 – x2

3)
+(
√

10 (x2 + x4 – 2.0))2 +
(

1√
10

(x2 – x4)
)2

(b) Global optimum at X∗ = (1.0, 1.0, 1.0, 1.0) with f(X∗) = 0.0
(c) Function evaluated in the range xi ∈ [−100, 100] ∀ i

• Function 22 (4-D): Schwefel function

(a) f(X) =
∑n

i=1
(
418.9829 – xi sin

(√
|xi|
))

with n = 4
(b) Global optimum at X∗ = (420.9687, 420.9687, 420.9687, 420.9687) with
f(X∗) = 0.0

(c) Function evaluated in the range xi ∈ [−500, 500] ∀ i

• Function 23 (4-D): Rastrigin function

(a) f(X) =
∑n

i=1(10.0 + x2
i – 10 cos(2 π xi)) with n = 4

(b) Global optimum at X∗ = (0.0, 0.0, 0.0, 0.0) with f(X∗) = 0.0
(c) Function evaluated in the range xi ∈ [−500, 500] ∀ i

• Function 24 (4-D): Griewank function

(a) f(X) =
∑n

i=1
x2
i

4000.0 –
∏n

i=1 cos
(
xi√
i

)
+ 1.0 with n = 4

(b) Global optimum at X∗ = (0.0, 0.0, 0.0, 0.0) with f(X∗) = 0.0
(c) Function evaluated in the range xi ∈ [−600, 600] ∀ i

Appendix B. Minimization success of all tested functions
The percentage of success on obtaining the global minimum for all test functions
employed in this work are given in Tables B.1–B.24.

AI, Computer Science and Robotics Technology 23/40

Table B.1. Percentage of success in minimization of Rosenbrock function (2-D).
A comparison of PSO and PSO-NM with varying probabilities of repositioning.

n PSO PSO-NMwith probability of repositioning
0% 1% 2% 3% 4% 5% 7% 10%

5 39.9 99.9 100.0 100.0 100.0 99.0 95.7 67.7 18.6
7 100.0 100.0 100.0 100.0 100.0 99.9 99.5 90.1 40.8

10 100.0 100.0 100.0 100.0 100.0 100.0 99.9 98.5 66.9
15 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 90.0
20 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 96.3
30 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.1
40 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.5
50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
200 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
300 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
500 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table B.2. Percentage of success in minimization of Schaffer function no 2 (2-D).
A comparison of PSO and PSO-NM with varying probabilities of repositioning.

n PSO PSO-NMwith probability of repositioning
0% 1% 2% 3% 4% 5% 7% 10%

5 92.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
7 99.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

10 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
15 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
20 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
30 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
40 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
200 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
300 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
500 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

AI, Computer Science and Robotics Technology 24/40

Table B.3. Percentage of success in minimization of Schaffer function no 3 (2-D).
A comparison of PSO and PSO-NM with varying probabilities of repositioning.

n PSO PSO-NMwith probability of repositioning
0% 1% 2% 3% 4% 5% 7% 10%

5 85.4 99.7 99.6 99.4 99.2 99.4 99.2 97.3 89.6
7 98.5 100.0 100.0 99.9 99.6 100.0 99.7 99.4 97.5

10 99.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.4
15 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.8
20 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
30 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
40 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
200 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
300 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
500 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table B.4. Percentage of success in minimization of Eggholder function (2-D).
A comparison of PSO and PSO-NM with varying probabilities of repositioning.

n PSO PSO-NMwith probability of repositioning
0% 1% 2% 3% 4% 5% 7% 10%

5 0.3 1.3 5.6 9.1 15.6 24.3 23.9 22.6 19.0
7 0.3 2.0 5.7 14.0 22.1 36.1 42.5 55.1 53.3

10 0.8 1.9 7.5 15.4 27.2 41.7 55.7 66.0 77.8
15 1.7 2.6 8.7 18.5 27.2 42.4 56.8 78.0 87.5
20 1.4 3.2 12.0 20.2 31.5 44.4 61.2 80.4 91.7
30 2.3 3.2 20.4 28.8 39.1 52.6 64.8 84.2 94.7
40 4.0 5.0 26.9 36.8 48.4 58.9 71.9 88.3 94.8
50 2.8 4.2 31.4 43.6 58.7 69.1 76.3 89.1 97.0

100 4.7 6.0 49.5 66.4 79.2 88.1 94.4 98.4 99.6
200 6.0 7.0 70.2 85.8 95.1 98.2 99.2 99.9 100.0
300 6.5 7.0 84.0 95.2 97.9 99.8 99.9 100.0 100.0
500 9.4 7.8 94.0 98.6 99.6 100.0 100.0 100.0 100.0

AI, Computer Science and Robotics Technology 25/40

Table B.5. Percentage of success in minimization of Hölder table function (2-D).
A comparison of PSO and PSO-NM with varying probabilities of repositioning.

n PSO PSO-NMwith probability of repositioning
0% 1% 2% 3% 4% 5% 7% 10%

5 31.2 57.8 78.9 87.3 92.0 93.4 93.3 93.7 94.2
7 33.5 65.9 84.0 86.8 93.5 96.9 96.7 97.1 98.4

10 51.8 70.4 92.7 94.6 96.4 97.4 99.1 99.1 99.5
15 64.3 76.5 98.3 98.7 99.1 99.3 99.9 99.9 100.0
20 77.6 85.7 99.7 99.8 99.9 99.9 99.9 100.0 100.0
30 89.3 94.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0
40 94.9 96.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0
50 97.5 98.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0

100 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
200 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
300 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
500 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table B.6. Percentage of success in minimization of Ackley’s function (2-D).
A comparison of PSO and PSO-NM with varying probabilities of repositioning.

n PSO PSO-NMwith probability of repositioning
0% 1% 2% 3% 4% 5% 7% 10%

5 15.9 37.7 60.3 74.5 78.0 79.5 81.5 56.1 7.9
7 28.1 41.1 55.7 68.8 77.1 81.1 82.8 74.2 20.7

10 38.5 48.0 62.4 66.5 75.6 81.3 84.9 81.0 43.9
15 55.1 54.9 67.3 73.2 78.4 83.8 89.1 89.2 64.7
20 61.1 67.0 69.1 75.7 80.8 84.6 90.5 94.7 74.9
30 73.5 76.9 81.1 85.3 87.9 91.2 94.1 97.4 89.1
40 83.1 85.3 88.0 87.1 91.9 94.2 97.2 99.3 95.2
50 90.1 88.7 89.6 92.5 93.3 97.4 97.8 99.8 96.3

100 98.5 98.0 97.1 98.8 99.3 99.9 99.9 100.0 99.1
200 100.0 100.0 100.0 99.8 100.0 100.0 100.0 100.0 100.0
300 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
500 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

AI, Computer Science and Robotics Technology 26/40

Table B.7. Percentage of success in minimization of Beale’s function (2-D).
A comparison of PSO and PSO-NM with varying probabilities of repositioning.

n PSO PSO-NMwith probability of repositioning
0% 1% 2% 3% 4% 5% 7% 10%

5 30.7 66.6 69.6 70.6 68.5 67.6 66.6 72.5 74.0
7 64.6 69.7 70.8 72.3 76.2 74.9 70.6 73.9 74.5

10 70.4 71.3 72.1 73.3 83.6 82.9 81.1 77.7 77.3
15 79.5 77.8 76.4 80.6 84.3 88.4 90.6 89.2 83.8
20 82.0 83.0 82.7 84.0 87.4 91.9 93.7 94.0 89.8
30 83.5 88.2 89.2 88.3 89.6 94.1 96.3 98.4 96.1
40 90.2 89.8 89.4 90.4 94.0 95.6 98.5 99.3 98.7
50 92.9 93.3 94.2 95.1 94.6 96.4 98.1 99.9 99.7

100 97.8 98.9 98.6 99.0 98.7 99.1 99.7 100.0 100.0
200 99.7 99.9 99.7 100.0 100.0 100.0 100.0 100.0 100.0
300 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
500 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table B.8. Percentage of success in minimization of Goldstein-Price function (2-D).
A comparison of PSO and PSO-NM with varying probabilities of repositioning.

n PSO PSO-NMwith probability of repositioning
0% 1% 2% 3% 4% 5% 7% 10%

5 17.6 93.3 98.5 98.0 98.8 98.7 99.6 99.2 77.3
7 47.1 97.8 99.6 99.3 98.7 99.5 99.9 99.7 94.6

10 78.0 99.5 100.0 99.8 99.8 100.0 99.9 100.0 99.8
15 98.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0 99.2
20 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.2
30 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.9
40 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.8
50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
200 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
300 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
500 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

AI, Computer Science and Robotics Technology 27/40

Table B.9. Percentage of success in minimization of Levy function no 13 (2-D).
A comparison of PSO and PSO-NM with varying probabilities of repositioning.

n PSO PSO-NMwith probability of repositioning
0% 1% 2% 3% 4% 5% 7% 10%

5 81.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.4
7 97.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.8

10 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
15 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.8
20 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.9
30 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
40 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
200 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
300 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
500 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table B.10. Percentage of success in minimization of Six-Hump Camel function
(2-D). A comparison of PSO and PSO-NM with varying probabilities of
repositioning.

n PSO PSO-NMwith probability of repositioning
0% 1% 2% 3% 4% 5% 7% 10%

5 74.5 100.0 100.0 100.0 99.9 100.0 99.8 99.7 97.8
7 97.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

10 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
15 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.7
20 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
30 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
40 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
200 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
300 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
500 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

AI, Computer Science and Robotics Technology 28/40

Table B.11. Percentage of success in minimization of Bukin function (2-D).
A comparison of PSO and PSO-NM with varying probabilities of repositioning.

n PSO PSO-NMwith probability of repositioning
0% 1% 2% 3% 4% 5% 7% 10%

5 0.4 3.7 2.7 5.5 4.7 5.8 8.6 10.0 13.8
7 0.5 1.3 2.1 3.8 5.0 6.8 7.0 11.0 12.1

10 0.4 2.0 1.8 3.1 5.0 6.4 5.5 11.3 14.7
15 0.4 1.2 2.2 2.4 4.1 6.2 5.2 10.7 14.8
20 0.7 0.9 1.3 2.1 3.4 6.3 8.3 10.8 14.7
30 0.7 0.7 1.4 2.3 2.7 5.4 6.7 10.2 14.8
40 0.8 0.3 0.7 1.0 2.8 5.3 4.9 9.1 14.7
50 0.7 0.5 1.1 1.7 3.0 4.0 5.8 10.5 12.1

100 0.5 0.7 1.6 1.5 2.1 4.0 7.2 9.1 14.1
200 0.6 0.4 0.7 2.1 2.6 4.0 5.1 9.7 14.7
300 0.6 0.2 0.6 1.2 2.5 4.7 5.8 10.8 15.6
500 0.7 0.9 1.2 1.6 2.2 5.0 6.7 10.5 15.3

Table B.12. Percentage of success in minimization of Cros-in-Tray function (2-D).
A comparison of PSO and PSO-NM with varying probabilities of repositioning.

n PSO PSO-NMwith probability of repositioning
0% 1% 2% 3% 4% 5% 7% 10%

5 96.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
7 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

10 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
15 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
20 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
30 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
40 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
200 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
300 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
500 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

AI, Computer Science and Robotics Technology 29/40

Table B.13. Percentage of success in minimization of Drop Wave function (2-D).
A comparison of PSO and PSO-NM with varying probabilities of repositioning.

n PSO PSO-NMwith probability of repositioning
0% 1% 2% 3% 4% 5% 7% 10%

5 31.0 69.2 86.2 90.5 91.2 90.9 91.0 91.9 80.6
7 51.9 74.8 91.7 95.2 96.6 96.3 96.7 97.3 95.9

10 66.8 85.2 94.4 97.4 99.0 99.1 99.4 99.5 99.1
15 82.1 90.7 97.0 99.2 99.7 99.8 100.0 99.9 99.0
20 87.7 96.1 99.0 100.0 100.0 100.0 99.9 100.0 98.9
30 95.5 98.7 99.9 99.9 100.0 100.0 100.0 100.0 99.5
40 98.9 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0
50 99.6 99.8 99.9 100.0 100.0 100.0 100.0 100.0 100.0

100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
200 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
300 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
500 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table B.14. Percentage of success in minimization of Rastrigin function (2-D).
A comparison of PSO and PSO-NM with varying probabilities of repositioning.

n PSO PSO-NMwith probability of repositioning
0% 1% 2% 3% 4% 5% 7% 10%

5 42.2 98.9 99.9 100.0 99.9 100.0 100.0 100.0 84.8
7 69.1 99.2 100.0 100.0 100.0 100.0 100.0 100.0 96.8

10 86.8 99.6 100.0 100.0 100.0 100.0 100.0 100.0 99.5
15 96.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.9
20 98.3 99.8 100.0 100.0 100.0 100.0 100.0 100.0 99.8
30 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
40 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
200 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
300 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
500 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

AI, Computer Science and Robotics Technology 30/40

Table B.15. Percentage of success in minimization of Griewank function (2-D).
A comparison of PSO and PSO-NM with varying probabilities of repositioning.

n PSO PSO-NMwith probability of repositioning
0% 1% 2% 3% 4% 5% 7% 10%

5 3.9 61.7 70.1 80.1 83.0 81.1 81.3 78.9 77.0
7 8.9 59.0 71.4 80.6 85.4 90.9 88.6 88.7 85.7

10 21.3 64.3 68.6 80.0 86.4 93.0 94.5 93.3 92.6
15 38.0 65.2 76.2 82.6 86.3 92.1 95.9 97.2 99.9
20 54.7 70.0 79.0 82.6 87.3 93.4 95.9 97.3 96.3
30 64.9 77.2 82.7 86.6 90.3 94.6 97.0 99.5 97.2
40 73.8 80.3 88.3 91.2 93.2 96.7 97.9 99.7 99.2
50 89.0 84.4 88.5 92.5 93.7 97.0 97.8 99.9 99.6

100 89.0 92.5 96.1 97.4 98.9 99.3 99.9 100.0 100.0
200 95.6 96.5 98.9 99.7 100.0 100.0 100.0 100.0 100.0
300 97.5 98.0 100.0 100.0 100.0 99.9 100.0 100.0 100.0
500 99.2 99.8 99.9 100.0 100.0 100.0 100.0 100.0 100.0

Table B.16. Percentage of success in minimization of Schwefel function (2-D).
A comparison of PSO and PSO-NM with varying probabilities of repositioning.

n PSO PSO-NMwith probability of repositioning
0% 1% 2% 3% 4% 5% 7% 10%

5 5.8 8.3 20.5 48.8 58.4 64.8 67.8 69.4 44.0
7 10.0 9.3 22.4 49.7 70.9 77.0 81.4 85.2 83.6

10 16.6 14.4 29.3 48.9 74.0 85.6 90.8 93.6 97.5
15 24.8 20.2 38.1 52.4 77.0 89.9 97.0 98.3 99.6
20 29.8 27.3 47.7 61.9 81.3 94.5 97.5 99.3 100.0
30 45.5 36.5 58.6 78.1 91.3 97.0 99.5 100.0 100.0
40 52.2 43.9 74.5 90.2 96.7 98.9 99.9 100.0 100.0
50 62.2 52.5 85.2 94.7 98.2 100.0 100.0 100.0 100.0

100 82.6 77.3 97.4 99.9 100.0 100.0 100.0 100.0 100.0
200 97.2 96.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0
300 99.9 99.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0
500 100.0 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0

AI, Computer Science and Robotics Technology 31/40

Table B.17. Percentage of success in minimization of Rastrigin function (3-D).
A comparison of PSO and PSO-NM with varying probabilities of repositioning.

n PSO PSO-NMwith probability of repositioning
0% 1% 2% 3% 4% 5% 7% 10%

5 5.9 92.0 99.2 100.0 99.9 99.9 99.3 84.9 14.2
7 25.2 91.3 99.6 99.9 100.0 100.0 100.0 96.9 39.5

10 50.4 95.8 99.8 100.0 100.0 100.0 100.0 99.8 72.9
15 75.4 97.3 100.0 100.0 100.0 100.0 100.0 100.0 93.0
20 83.9 97.9 100.0 100.0 100.0 100.0 100.0 100.0 98.8
30 94.5 98.7 100.0 100.0 100.0 100.0 100.0 100.0 99.8
40 97.2 99.5 100.0 100.0 100.0 100.0 100.0 100.0 99.9
50 98.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

100 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
200 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
300 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
500 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table B.18. Percentage of success in minimization of Griewank function (3-D).
A comparison of PSO and PSO-NM with varying probabilities of repositioning.

n PSO PSO-NMwith probability of repositioning
0% 1% 2% 3% 4% 5% 7% 10%

5 0.0 13.1 16.5 19.7 20.8 20.7 15.3 13.7 10.8
7 0.4 11.3 17.4 20.9 25.8 26.0 20.3 23.1 19.2

10 1.2 11.4 14.9 22.7 29.2 34.7 32.9 29.9 27.5
15 3.4 15.7 20.2 26.9 33.7 44.1 42.5 38.4 39.6
20 11.1 14.5 21.6 27.8 38.5 45.6 49.4 50.7 49.4
30 16.3 22.9 28.7 33.5 43.7 49.2 56.3 61.0 58.1
40 25.5 31.5 32.4 37.6 46.0 53.6 60.3 66.7 67.8
50 30.9 34.0 39.3 45.3 49.2 59.6 64.8 76.2 74.3

100 50.3 54.2 59.0 60.4 64.6 72.4 80.5 88.2 91.0
200 67.4 71.2 70.0 77.6 80.3 85.3 90.5 97.8 99.1
300 77.9 79.9 83.2 87.1 89.8 93.6 95.8 99.2 99.4
500 87.0 89.9 92.9 93.9 96.0 98.0 98.1 99.9 100.0

AI, Computer Science and Robotics Technology 32/40

Table B.19. Percentage of success in minimization of Schwefel function (3-D).
A comparison of PSO and PSO-NM with varying probabilities of repositioning.

n PSO PSO-NMwith probability of repositioning
0% 1% 2% 3% 4% 5% 7% 10%

5 1.0 1.7 1.8 3.2 4.4 7.5 6.7 3.9 0.0
7 1.4 2.0 2.5 4.3 12.9 27.6 40.3 45.7 17.3

10 2.4 2.8 3.6 6.0 13.5 25.8 49.7 67.2 59.1
15 4.7 3.8 6.3 5.9 14.8 27.4 46.4 78.7 89.2
20 6.2 4.7 7.4 11.7 20.6 33.3 50.4 84.1 95.0
30 8.3 5.9 10.8 21.4 27.2 43.6 60.8 91.1 98.9
40 9.7 8.1 14.7 27.7 39.7 55.3 70.4 93.6 99.6
50 17.4 8.2 19.4 32.9 47.6 64.7 78.4 95.8 99.9

100 26.7 16.2 41.3 62.5 78.6 91.4 96.2 99.7 100.0
200 45.3 31.4 71.8 87.5 98.2 99.6 99.9 100.0 100.0
300 59.1 46.4 86.1 97.6 99.8 100.0 100.0 100.0 100.0
500 76.7 65.2 96.6 99.8 100.0 100.0 100.0 100.0 100.0

Table B.20. Percentage of success in minimization of Rosenbrock function (4-D).
A comparison of PSO and PSO-NM with varying probabilities of repositioning.

n PSO PSO-NMwith probability of repositioning
0% 1% 2% 3% 4% 5% 7% 10%

5 1.4 92.5 83.1 63.3 26.5 1.9 0.2 0.0 0.0
7 93.0 96.6 92.6 83.3 53.5 14.1 1.7 0.0 0.0

10 99.0 98.2 97.1 90.7 75.5 38.4 8.5 0.1 0.0
15 99.7 99.5 98.9 97.3 91.8 66.1 32.1 1.3 0.0
20 99.8 99.9 99.4 98.6 96.3 85.7 56.3 3.2 0.0
30 100.0 100.0 100.0 100.0 99.2 95.0 80.0 11.6 0.2
40 100.0 100.0 100.0 99.7 99.6 98.7 91.7 25.2 0.2
50 100.0 100.0 99.9 99.9 100.0 99.6 93.9 41.5 0.3

100 100.0 100.0 100.0 100.0 100.0 99.9 99.5 85.6 6.2
200 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.4 27.0
300 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 56.0
500 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 83.6

AI, Computer Science and Robotics Technology 33/40

Table B.21. Percentage of success in minimization of Wood function (4-D).
A comparison of PSO and PSO-NM with varying probabilities of repositioning.

n PSO PSO-NMwith probability of repositioning
0% 1% 2% 3% 4% 5% 7% 10%

5 0.1 99.4 98.3 93.2 56.2 4.8 1.3 0.0 0.0
7 85.2 99.8 98.8 97.2 83.5 31.6 3.8 0.2 0.0

10 99.9 99.9 99.4 97.8 93.6 68.6 19.1 1.0 0.1
15 99.7 99.9 99.8 98.8 98.0 90.2 57.8 2.7 0.1
20 100.0 99.9 99.8 99.4 99.3 96.1 82.0 9.2 0.8
30 100.0 100.0 100.0 99.8 99.8 99.6 95.0 32.4 1.2
40 100.0 100.0 100.0 99.9 99.9 99.9 98.9 58.5 3.5
50 100.0 100.0 100.0 100.0 100.0 100.0 99.5 76.6 4.0

100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.1 25.2
200 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 73.7
300 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 91.9
500 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.5

Table B.22. Percentage of success in minimization of Schwefel function (4-D).
A comparison of PSO and PSO-NM with varying probabilities of repositioning.

n PSO PSO-NMwith probability of repositioning
0% 1% 2% 3% 4% 5% 7% 10%

5 0.0 0.2 0.4 0.2 0.5 0.5 0.3 0.0 0.0
7 0.1 0.1 0.7 0.3 0.4 0.9 1.1 2.2 0.5

10 0.1 0.5 0.2 1.2 1.0 1.6 2.2 9.5 20.6
15 1.2 0.3 0.7 1.5 2.1 2.5 3.5 11.0 41.6
20 1.6 0.9 1.0 1.2 3.0 3.7 5.1 14.2 50.0
30 1.0 0.8 1.9 2.7 4.0 7.1 10.0 23.7 58.9
40 2.8 1.1 2.0 2.6 5.9 10.2 16.6 30.9 68.5
50 2.4 1.0 2.2 4.1 6.5 11.3 20.1 36.4 76.5

100 3.5 2.1 5.3 10.4 20.3 31.7 44.8 76.2 96.1
200 7.9 4.5 12.8 26.9 48.9 67.9 82.4 96.6 100.0
300 14.4 8.8 22.2 46.5 68.0 84.3 94.5 99.6 100.0
500 20.3 10.6 39.5 69.2 87.4 97.6 99.6 100.0 100.0

AI, Computer Science and Robotics Technology 34/40

Table B.23. Percentage of success in minimization of Griewank function (4-D).
A comparison of PSO and PSO-NM with varying probabilities of repositioning.

n PSO PSO-NMwith probability of repositioning
0% 1% 2% 3% 4% 5% 7% 10%

5 0.0 0.8 0.5 1.4 1.7 1.4 1.5 1.7 0.7
7 0.2 1.0 1.6 3.8 3.0 2.2 2.4 1.6 1.1

10 0.0 0.9 2.8 4.1 6.8 4.6 5.7 3.8 1.6
15 0.1 2.5 3.6 6.9 11.5 11.0 10.3 6.3 4.5
20 0.7 2.8 3.7 7.5 10.9 15.8 14.4 11.0 8.0
30 2.3 4.2 6.3 9.1 13.3 18.2 19.9 15.6 13.1
40 3.1 5.1 7.8 11.6 16.1 19.6 28.1 22.4 17.5
50 5.5 6.8 13.9 13.4 17.7 23.8 27.0 27.4 22.1

100 15.6 16.6 19.2 21.2 25.3 30.9 39.1 42.6 37.0
200 29.9 29.8 33.8 36.6 39.2 44.2 55.0 66.1 62.2
300 39.5 36.6 39.7 45.7 49.5 55.7 62.6 78.8 71.8
500 54.2 54.0 57.3 59.0 61.9 68.1 76.0 91.9 86.9

Table B.24. Percentage of success in minimization of Rastrigin function (4-D).
A comparison of PSO and PSO-NM with varying probabilities of repositioning.

n PSO PSO-NMwith probability of repositioning
0% 1% 2% 3% 4% 5% 7% 10%

5 0.3 78.5 97.8 98.9 98.2 96.2 89.0 35.3 0.5
7 7.0 86.3 98.8 99.9 99.9 99.5 97.8 74.7 3.4

10 21.9 90.7 99.4 100.0 100.0 99.9 99.8 95.1 14.3
15 40.8 93.3 99.7 100.0 100.0 100.0 100.0 99.4 45.4
20 55.9 94.2 99.9 100.0 100.0 100.0 100.0 100.0 73.7
30 71.7 94.1 99.7 100.0 100.0 100.0 100.0 100.0 92.7
40 84.4 96.2 99.8 100.0 100.0 100.0 100.0 100.0 97.4
50 91.8 97.3 99.8 100.0 100.0 100.0 100.0 100.0 98.9

100 98.7 99.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0
200 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
300 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
500 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

AI, Computer Science and Robotics Technology 35/40

References
1 Foroughi Nematollahi A, Rahiminejad A, Vahidi B. A novel physical based meta-heuristic optimization

method known as Lightning Attachment Procedure Optimization. Appl Soft Comput. 2017 Oct;59: 596–621.

2 Okamoto T, Hirata H. Global optimization using a multipoint type quasi-chaotic optimization method.
Appl Soft Comput. 2013 Feb;13(2):1247–1264.

3 Kirkpatrick S, Gelatt CD Jr, Vecchi MP. Optimization by simulated annealing. Science.
1983;220(4598):671–680.

4 Storn R, Price K. Differential evolution – a simple and efficient heuristic for global optimization over
continuous spaces. J Glob Optim. 1997;11(4):341–359.

5 Alatas B. ACROA: Artificial Chemical Reaction Optimization Algorithm for global optimization. Expert
Syst Appl. 2011 Sep;38(10):13170–13180.

6 Kaveh A. Water evaporation optimization algorithm. In: Advances in metaheuristic algorithms for optimal
design of structures. Cham: Springer International Publishing; 2017. p. 489–509.

7 Shareef H, Ibrahim AA, Mutlag AH. Lightning search algorithm. Appl Soft Comput. 2015 Nov;36: 315–333.

8 Rashedi E, Nezamabadi-pour H, Saryazdi S. GSA: A Gravitational Search Algorithm. Inf Sci. 2009
Jun;179(13):2232–2248.

9 Hatamlou A. Black hole: a new heuristic optimization approach for data clustering. Inf Sci. 2013 Feb;222:
175–184.

10 Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of International Conference on Neural
Networks. vol. 4, 1995. p. 1942–1948.

11 Pacheco da Luz EF, Becceneri JC, de Campos Velho HF. A new multi-particle collision algorithm for
optimization in a high performance environment. J Comput Interdiscip Sci. 2008;1(1):3–10.

12 Yang X-S. Firefly algorithms for multimodal optimization. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), LNCS, vol. 5792,
Berlin, Heidelberg: Springer; 2009. p. 169–178.

13 Askarzadeh A. A novel metaheuristic method for solving constrained engineering optimization problems:
Crow search algorithm. Comput Struct. 2016 Jun;169: 1–12.

14 Mirjalili S, Lewis A. The whale optimization algorithm. Adv Eng Softw. 2016 May;95: 51–67.

15 Mucherino A, Seref O, Seref O, Erhun Kundakcioglu O, Pardalos P. Monkey search: a novel metaheuristic
search for global optimization. In: AIP Conference Proceedings, AIP. vol. 953, Melville, NY: AIP Publishing;
2007. p. 162–173.

16 Yang XS. A new metaheuristic Bat-inspired Algorithm. Studies in Computational Intelligence, vol. 284,
Berlin, Heidelberg: Springer; 2010. p. 65–74.

17 Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: artificial
bee colony (ABC) algorithm. J Glob Optim. 2007 Oct;39(3):459–471.

18 Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Adv Eng Softw. 2014 Mar;69: 46–61.

19 Pan W-T. A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowl
Based Syst. 2012 Feb;26: 69–74.

20 Mirjalili S. Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective,
discrete, and multi-objective problems. Neural Comput Appl. 2016 May;27(4):1053–1073.

AI, Computer Science and Robotics Technology 36/40

21 Cuevas E, Cienfuegos M. A new algorithm inspired in the behavior of the social-spider for constrained
optimization. Expert Syst Appl. 2014 Feb;41(2):412–425.

22 Rajabioun R. Cuckoo optimization algorithm. Appl Soft Comput. 2011 Dec;11(8):5508–5518.

23 Yazdani M, Jolai F. Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm.
J Comput Des Eng. 2016 Jan;3(1):24–36.

24 Glover F. Tabu Search—Part I. ORSA J Comput. 1989 Aug;1(3):190–206.

25 Glover F. Tabu Search—Part II. ORSA J Comput. 1990 Feb;2(1):4–32.

26 Husseinzadeh Kashan A. League championship algorithm (LCA): an algorithm for global optimization
inspired by sport championships. Appl Soft Comput. 2014 Mar;16: 171–200.

27 Moosavian N, Kasaee Roodsari B. Soccer league competition algorithm: a novel meta-heuristic algorithm
for optimal design of water distribution networks. Swarm Evol Comput. 2014 Aug;17: 14–24.

28 Tan Y, Zhu Y. Fireworks algorithm for optimization. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), LNCS, vol. 6145,
Berlin, Heidelberg: Springer; 2010. p. 355–364.

29 Kaveh A, Mahdavi VR. Colliding bodies optimization method for optimum design of truss structures
with continuous variables. Adv Eng Softw. 2014 Apr;70: 1–12.

30 Kaveh A. Tug of war optimization. Advances in Metaheuristic Algorithms for Optimal Design of
Structures, Cham: Springer International Publishing; 2017. p. 451–487.

31 Kaveh A, Dadras A. A novel meta-heuristic optimization algorithm: thermal exchange optimization. Adv
Eng Softw. 2017 Aug;110: 69–84.

32 Javidy B, Hatamlou A, Mirjalili S. Ions motion algorithm for solving optimization problems. Appl Soft
Comput. 2015 Jul;32: 72–79.

33 Yapici H, Cetinkaya N. A new meta-heuristic optimizer: pathfinder algorithm. Appl Soft Comput J. 2019
May;78: 545–568.

34 Hayyolalam V, Kazem AAP. Black widow optimization algorithm: a novel meta-heuristic approach for
solving engineering optimization problems. Eng Appl Artif Intell. 2020 Jan;87: 103249.

35 Ghasemi M, Davoudkhani IF, Akbari E, Rahimnejad A, Ghavidel S, Li L. A novel and effective
optimization algorithm for global optimization and its engineering applications: Turbulent Flow of
Water-based Optimization (TFWO). Eng Appl Artif Intell. 2020 Jun;92: 103666.

36 Heidari AA, Pahlavani P. An efficient modified grey wolf optimizer with Lévy flight for optimization
tasks. Appl Soft Comput. 2017 Nov;60: 115–134.

37 Yılmaz S, Küçüksille Ecir U. A new modification approach on bat algorithm for solving optimization
problems. Appl Soft Comput. 2015 Mar;28: 259–275.

38 Beheshti Z, Shamsuddin SM. Non-parametric particle swarm optimization for global optimization. Appl
Soft Comput. 2015 Mar;28: 345–359.

39 Wang L, Yang B, Orchard J. Particle swarm optimization using dynamic tournament topology. Appl Soft
Comput. 2016 Nov;48: 584–596.

40 Yan B, Zhao Z, Zhou Y, Yuan W, Li J, Wu J, Cheng D. A particle swarm optimization algorithm with
random learning mechanism and Levy flight for optimization of atomic clusters. Comput Phys Commun.
2017 Oct;219: 79–86.

41 Yan J, He W, Jiang X, Zhang Z. A novel phase performance evaluation method for particle swarm
optimization algorithms using velocity-based state estimation. Appl Soft Comput. 2017 Aug;57: 517–525.

AI, Computer Science and Robotics Technology 37/40

42 Kiran MS. Particle swarm optimization with a new update mechanism. Appl Soft Comput. 2017 Nov;60:
670–678.

43 Chen Y, Li L, Peng H, Xiao J, Yang Y, Shi Y. Particle swarm optimizer with two differential mutation.
Appl Soft Comput J. 2017 Dec;61: 314–330.

44 Yelghi A, Köse C. A modified firefly algorithm for global minimum optimization. Appl Soft Comput. 2018
Jan;62: 29–44.

45 Meng T, Pan Q-K. An improved fruit fly optimization algorithm for solving the multidimensional
knapsack problem. Appl Soft Comput. 2017 Jan;50: 79–93.

46 Wan Y, Wang M, Ye Z, Lai X. A feature selection method based on modified binary coded ant colony
optimization algorithm. Appl Soft Comput. 2016 Dec;49: 248–258.

47 Karaboga D, Akay B. A modified artificial bee colony (ABC) algorithm for constrained optimization
problems. Appl Soft Comput. 2011 Apr;11(3):3021–3031.

48 Nasiri MM. A modified ABC algorithm for the stage shop scheduling problem. Appl Soft Comput J. 2015
Mar;28: 81–89.

49 Ghambari S, Rahati A. An improved artificial bee colony algorithm and its application to reliability
optimization problems. Appl Soft Comput. 2017 Oct;62: 736–767.

50 Lynn N, Suganthan PN. Ensemble particle swarm optimizer. Appl Soft Comput. 2017 Jun;55: 533–548.

51 Javidrad F, Nazari M. A new hybrid particle swarm and simulated annealing stochastic optimization
method. Appl Soft Comput. 2017 Nov;60: 634–654.

52 Mousa AA, El-Shorbagy MA, Abd-El-Wahed WF. Local search based hybrid particle swarm optimization
algorithm for multiobjective optimization. Swarm Evol Comput. 2012 Apr;3: 1–14.

53 Razmara Shooli A, Vosoughi AR, Banan MR. A mixed GA-PSO-based approach for performance-based
design optimization of 2D reinforced concrete special moment-resisting frames. Appl Soft Comput J. 2019
Dec;85: 105843.

54 García Nieto PJ, García-Gonzalo E, Alonso Fernández JR, Díaz Muñiz C. A hybrid PSO optimized
SVM-based model for predicting a successful growth cycle of the Spirulina platensis from raceway
experiments data. J Comput Appl Math. 2016 Jan;291: 293–303.

55 Mahi M, Baykan ÖK, Kodaz H. A new hybrid method based on particle swarm optimization, ant colony
optimization and 3-opt algorithms for traveling salesman problem. Appl Soft Comput. 2015 May;30:
484–490.

56 Jadon SS, Tiwari R, Sharma H, Bansal JC. Hybrid Artificial Bee Colony algorithm with Differential
Evolution. Appl Soft Comput. 2017 Sep;58: 11–24.

57 Sun G, Zhang A, Yao Y, Wang Z. A novel hybrid algorithm of gravitational search algorithm with genetic
algorithm for multi-level thresholding. Appl Soft Comput. 2016 Sep;46: 703–730.

58 Gnandt C, Callies R. CGRS — An advanced hybrid method for global optimization of continuous
functions closely coupling extended random search and conjugate gradient method. J Comput Appl Math.
2018 May;333: 99–115.

59 Khojaste Sarakhsi M, Fatemi Ghomi SMT, Karimi B. A new hybrid algorithm of scatter search and
Nelder–Mead algorithms to optimize joint economic lot sizing problem. J Comput Appl Math. 2016
Jan;292: 387–401.

60 Noack MM, Funke SW. Hybrid genetic deflated Newton method for global optimisation. J Comput Appl
Math. 2017;325: 97–112.

AI, Computer Science and Robotics Technology 38/40

61 Torkaman S, Fatemi Ghomi SMT, Karimi B. Hybrid simulated annealing and genetic approach for solving
a multi-stage production planning with sequence-dependent setups in a closed-loop supply chain. Appl
Soft Comput. 2017 Oct;71: 1085–1104.

62 Lin Y, Bian Z, Liu X. Developing a dynamic neighborhood structure for an adaptive hybrid simulated
annealing – tabu search algorithm to solve the symmetrical traveling salesman problem. Appl Soft Comput.
2016 Dec;49: 937–952.

63 Dey A, Dey S, Bhattacharyya S, Platos J, Snasel V. Novel quantum inspired approaches for automatic
clustering of gray level images using Particle Swarm Optimization, Spider Monkey Optimization and
Ageist Spider Monkey Optimization algorithms. Appl Soft Comput J. 2020 Mar;88: 106040.

64 Liu M, Yao X, Li Y. Hybrid whale optimization algorithm enhanced with Lévy flight and differential
evolution for job shop scheduling problems. Appl Soft Comput J. 2020 Feb;87: 105954.

65 Mosa MA. A novel hybrid particle swarm optimization and gravitational search algorithm for
multi-objective optimization of text mining. Appl Soft Comput J. 2020 May;90: 106189.

66 Nelder JA, Mead R. A simplex method for function minimization. Comput J. 1965;7(4):308–313.

67 Fan SKS, Zahara E. A hybrid simplex search and particle swarm optimization for unconstrained
optimization. Eur J Oper Res. 2007;181(2):527–548.

68 Hsu CC, Gao CH. Particle swarm optimization incorporating simplex search and center particle for global
optimization. In: SMCia/08 - Proceedings of the 2008 IEEE Conference on Soft Computing on Industrial
Applications. 2008. p. 26–31.

69 Zahara E, Hu C-H. Solving constrained optimization problems with hybrid particle swarm optimization.
Eng Optim. 2008 Nov;40(11):1031–1049.

70 Liu A, Yang M-T. A new hybrid nelder-mead particle swarm optimization for coordination optimization
of directional overcurrent relays. Math Probl Eng. 2012;2012: 1–18.

71 Vakil Baghmisheh MT, Peimani M, Sadeghi MH, Ettefagh MM, Tabrizi AF. A hybrid particle
swarm-Nelder–Mead optimization method for crack detection in cantilever beams. Appl. Soft Comput..
2012;12: 2217–2226.

72 Mesbahi T, Khenfri F, Rizoug N, Chaaban K, Bartholomeüs P, Le Moigne P. Dynamical modeling of
Li-ion batteries for electric vehicle applications based on hybrid Particle Swarm-Nelder–Mead (PSO-NM)
optimization algorithm. Electr Power Syst Res. 2016;131: 195–204.

73 Wang L, Cao Q, Zhang Z, Mirjalili S, Zhao W. Artificial rabbits optimization: A new bio-inspired
meta-heuristic algorithm for solving engineering optimization problems. Eng Appl Artif Intell. 2022;114:
105082.

74 Khalid OW, Mat Isa NA, Mat Sakim HA. Emperor penguin optimizer: A comprehensive review based on
state-of-the-art meta-heuristic algorithms. Alex Eng J. 2022;63: 487–526.

75 Rahman I, Mohamad-Saleh J. Hybrid bio-inspired computational intelligence techniques for solving
power system optimization problems: a comprehensive survey. Appl Soft Comput. 2018 Aug;69: 72–130.

76 Devi SA, Vijayalakshmi C. Bio inspired optimization algorithms in disaster. Procedia Comput Sci. 2020;172:
176–180.

77 Vinh Luu T, Nguyen NS. Parameters extraction of solar cells using modified JAYA algorithm. Optik. 2020
Feb;203: 164034.

78 Azad AS, Rahaman MdSA, Watada J, Vasant P, Gamez Vintaned JA. Optimization of the hydropower
energy generation using meta-heuristic approaches: a review. Energy Rep. 2020;6: 2230–2248.

79 Ahmadianfar I, Khajeh Z, Asghari-Pari S-A, Chu X. Developing optimal policies for reservoir systems
using a multi-strategy optimization algorithm. Appl Soft Comput. 2019 Jul;80: 888–903.

AI, Computer Science and Robotics Technology 39/40

80 Mirjalili S. SCA: a sine cosine algorithm for solving optimization problems. Knowl Based Syst. 2016 Mar;96:
120–133.

81 Lu D, Ma Y, Kong F, Guo C, Miao J, Du X. Support vector regression with heuristic optimization
algorithms for predicting the ground surface displacement induced by epb shield tunneling. Gondwana
Res. 2022; doi:10.1016/j.gr.2022.07.002.

82 Krishna Reddy AKV, Venkata Lakshmi Narayana K. Meta-heuristics optimization in electric vehicles-an
extensive review. Renew Sustain Energy Rev. 2022;160: 112285.

83 Machado-Coelho TM, Machado AMC, Jaulin L, Ekel P, Pedrycz W, Soares GL. An interval space reducing
method for constrained problems with particle swarm optimization. Appl Soft Comput. 2017 Oct;59:
405–417.

84 Eberhart R, Shi Y. Tracking and optimizing dynamic systems with particle swarms. In: Proceedings of the
2001 Congress on Evolutionary Computation. 2001. p. 94–100.

85 Spendley W, Hext GR, Himsworth FR. Sequential application of simplex designs in optimisation and
evolutionary operation. Technometrics. 1962;4(4):441–461.

AI, Computer Science and Robotics Technology 40/40

http://dx.doi.org/10.1016/j.gr.2022.07.002

	1. Introduction
	2. Literature review
	2.1. PSO-NM hybrid methods

	3. Proposed new algorithm
	3.1. Particle swarm optimization (PSO)
	3.2. Nelder–Mead simplex search method (NM)
	3.3. PSO method with particle repositioning based on NM simplex (PSO-NM)

	4. Numerical simulations methodology
	4.1. Percentage of global minimization
	4.2. Evaluating the percentage of particles repositioning percentage

	5. Numerical simulation results and discussion
	6. Conclusions
	Conflict of interest
	Acknowledgement
	Appendix A. Test functions
	Appendix B. Minimization success of all tested functions

