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Abstract

Researchers have developed numerous artificial fish to mimic the swimming abilities
of biological species and understand their biomechanical subaquatic skills. The
motivation arises from the interest to gain deeper comprehension of the efficient
nature of biological locomotion, which is the result of millions of years of evolution
and adaptation. Fin-based biological species developed exceptional swimming
abilities and notable performance in highly dynamic and complex subaquatic
environments. Therefore, based on research by the scientific community, this
mini-review concentrates on discussing the mechanical devices developed to
implement the caudal propulsive segments of robotic fish. Caudal mechanisms are
of considerable interest because they may be designed to control inertial and
gravitational forces, as well as exerting great dynamic range in robotic fish. This
manuscript provides a concise review focused on the engineering implementations
of caudal mechanisms of anguilliform, subcarangiform, subcarangiform,

thunniform and ostraciiform swimming modes.

Keywords: robot fish, biomechanisms, swimming modes, tail-fin propulsion,

compliant robotics, rigid robotics
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1. Introduction

For decades, remotely operated and autonomous underwater robots have been a
choice for a large kind of underwater missions. Modern industry faces important
changes that demand an increase of locomotive-efficient vehicles than the use of
conventional propelled ones. Not to mention a costly demand of numerous missions
and operations deploying conventional underwater vehicles. A number of electric
rotary actuators are widely deployed for self-propelled marine vehicles using
actuating rotors. Rotary electric actuators can afford precision and keep torque
magnitudes overtime. Nevertheless, propelling actuators are rigid devices

representing considerable energy consumption, adding mass, inertia and friction to
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a mechanical system. Rotary-based propelling actuation systems are inherently
noisy and are prone to harm subaquatic fauna and flora. This mini review presents
relevant published implementations of bioinspired robotic fish. Rather than
comparing different mechanical developments, it is purposed to illustrate
fundamental ideas of mechanical configurations used to implement undulatory

caudal systems.

A number of review papers on a robot fishes have reported a diversity of common
theories on biological fish-inspired robots and bionics, a considerable number of
which are summarized in work [1]. The present manuscript specifically focuses on
caudal motion mechanisms deployed in different technological implementations
that fall into five general swimming modes: anguilliform, subcarangiform,
carangiform, thunniform and ostraciiform. Therefore, fin-based biological species
are worth noting models, which inspire to build a variety of artificial biomechanical
prototypes capable to mimic biological efficient musculoskeletal structures to

improve engineering designs.

The physiology and properties of muscle fiber types of fish, their principles of
actuation and control has already been described in [2]. Similarly, the inner
muscular and tendon geometrical structure for swimming of cetaceans were
reported in [3]. Additionally, multiple comparative studies on fish-inspired robots
have been reported. For instance, control of specific locomotion patterns [4],
development of robot fish platforms [5], control and modeling [6], analysis on
robotic swimming locomotion such as multi-mode swimming, trajectory tracking,
maneuverability, perturbations and power-efficiency [7]. Moreover, important
studies of biological anatomy, swimming modes and locomotion, which disclose

actuation features were reported in [8-11].

This manuscript is organized in the following sections. Section 2 provides a brief
description on the fundamentals of fish swimming and its locomotion physics.
Section 3 describes main anguilliform robotic fish. Section 4 discusses some caudal
mechanisms on subcarangiform robots. Section 5 presents the carangiform types of
artificial fish. Section 6 describes current developments on thunniform-like robotic
fish. Section 7 describes relevant caudal mechanisms implemented in ostraciiform

robots. Finally, Section 8 provides some conclusive comments.

2. Fish swimming biomechanics

This section presents some generalities on undulatory swimmer fishes and their
propulsive biomechanical structures. Fishes’ biomechanical efficiency to swim
exhibits differences in accordance with their body shape, skeletal structures for
mobility and hydrodynamic motion waves performed for propulsion and

maneuverability. Fish-inspired robots may be improved in their design by
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Figure 1. Depiction of fish dynamical parameters and undulatory locomotion modes.

considering inner and external forces involved in the hydrodynamic locomotion
process. Accomplishing a major suitability may depend on locomotion modalities
and hydrodynamic scenarios. Figure 1(a) shows the body of fish’s swimming
hydrodynamic interaction forces: drag and thrust apply horizontally, while lift,
buoyancy and weight apply vertically. The hydrodynamic steady angular orientation
motions are analyzed in terms of the roll-pitch-yaw Euler angles. Thus, the body of
the fish is compounded by propulsive elements (e.g., fins and musculoskeletal
parts), which are segments capable to exert hydrodynamic forces. The fish’s body
propulsive elements advantageously produce linear and angular momentum during

a locomotive interaction with the water surrounding it.

Biomechanical and morphological differences of fishes exhibit natural propulsive
undulatory motions based on swimming waves, essentially involving wave-like
along caudal body segments. Figure 1(b) shows five fundamental caudal-based
locomotion types of fish’s undulatory propelling modes [12], which will be discussed
in the following sections. Undulatory swimming transfers the linear momentum to
the boundary’s adjacent fluid via the drag forces and consequently yields changes of
velocity. Hence, when acting forces and moments are nearly balanced with respect
to a reactive hydrodynamic environment, fishes basically reach a constant speed,
otherwise a lift and an acceleration are produced (i.e., effects of elevation and/or
braking). Swimming acceleration reaction is a result of inertial forces generated by
water resistance around the fish’s boundary occurring during speeding up with
respect to hydrodynamic changes. For instance, the fish’ lift force is experienced

when it is perpendicular to the hydrodynamic caudal/flow direction. Likewise, the
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fish’s body shape causes specific flow patterns as a result of the hydrodynamic flow
drag pressure. Thus, the swimming drag is a friction between fish’s skin and a
boundary layer of water. Summing up all these fish’s biomechanical hydrodynamic
locomotive properties, numerous families of fish can naturally maneuver, accelerate
and cruise. Moreover, fish are featured by exhibiting particular swimming

capabilities such as gliding, jet propulsion, burrowing, jumping and even flying.

3. Anguilliform swimmer robots

Anguilliform swimmers (i.e., muraenidae, snakes, eels, etc.) are constituted by
propulsive body’s elements that allow the whole fish’s spine performing wide
amplitude undulation as a means for an underwater locomotion. Biological
anguilliform hydrodynamic propulsive efficiency has been studied previously

in [13]. In this type of locomotion, at least one complete wavelength must be
performed by a body to carry out either longitudinal displacements or lateral
maneuvers. Common anguilliform-type robot fish are built with sets of modular
links that are serially connected, dubbed propelling elements (figure 2), which work

in a way that allows either wide or narrow undulatory waves.

The authors in [14] developed an autonomous efficient marine anguilliform robot
with fifteen propulsive slim modules resembling the structure depicted in
figure 2(a). The caudal elements are cleverly undulated by a semi-rigid twisted inner
helix (a rod element being rotated by an electric motor) passing throughout the

middle of all caudal elements, ending with a plain flexible tail.

In a more traditional manner, work [15] presented a modular 5-link eel-like robot
and its kinematic model is illustrated in figure 2(b), which is compounded from
serial active joints (servomotors). Similarly, the type of the structure depicted in
figure 2(c) approaches the 4-link biomimetic robot of [16] compounded of serially
connected rigid modules, interconnected by a servo in each undulating element.
Here, driving forces and joint torques have been modeled and controlled using
underactuated reference angles for a trajectory tracking. Figures 2(b) and 2(c) are of
a similar type having mechanical differences in implementation, degrees of
modularity, variations of kinematic models, hydrodynamic parameters [17], and
exist by engineering underwater snakes with propulsive modules of orthogonal joint

axes [18].

The work reported in [19] was on development of an anguilliform modular
structure with two actuators in its head-joint for active undulation and active
steering (a helm), as shown in figure 2(d). As for the rest of the serpentine modules,
they are connected by springs as passive joints. The spring-based joints are elastic
devices to store rotatory mechanical energy during swimming undulation. Hence,
this swimming motion approach is efficiently performed by its compliant bending

with spring-based joints.
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Figure 2. Types of anguilliform caudal mechanisms.

Kinematic swimming patterns, thrust-performance capability, forces and power
propulsion, and wake flow patterns were studied from different technological
approaches. For instance, polyurethane rods representing swimming bodies were
used to generate propulsive waves in [20]. Likewise, anguilliform swimmers using
soft pneumatic actuators with 4-link propulsion to imitate eel’s muscles were
reported in [21]. Finally, studies regarding terrestrial snake robots’ mechanisms [22]
are worth mentioning as they are relevant to anguilliform robot fish because of their

inherent resemblance of their mechanisms [23].

4. Subcarangiform swimmer robots

Subcarangiform swimmers (e.g., salmon, sturgeon, etc.) perform considerable
longer undulation waves to empower a thrust motion, which is localized only in its
body’s posterior portion, starting from very near to its head. Therefore, the caudal
fin locomotive process depends on an actuation of a number of muscles along a
musculoskeletal system. As for the subcarangiform type robots, they are designed to
similarly maintain an extensive part of its anterior portion rigid during swimming.
Unlike artificial anguilliform structures, bioinspired subcarangiform robots exhibit

higher linear velocities.

Figure 3(a) shows the approach presented in [24], which is an artificial
musculoskeletal fish compounded by three ribs. The ribs are mechanically joined by

lateral spring-based muscles built of shape memory alloy (SMA). SMAs are
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Figure 3. Different approaches of subcarangiform artificial fish mechanisms.

particular types of advanced materials, which are deformed by external forces at a
specific temperature, however being heated or cooled, they restore their original
shape. Therefore, the alloy apparently possess a thermomechanical memory. Thus,
such type of a robot fish is implemented with lateral muscles working
antagonistically, pulling and releasing. SMA-based muscles are controlled by
changing their temperature by commuting electrical input currents. A similar caudal
mechanism but with different technology was presented in [25], where instead of
using SMA-based springs, the fish swimming motion was performed by deploying

five ribs pulled by wires inside a compliant body structure.

Furthermore, another similar motion mechanism is shown in figure 3(b),
reported by [26]. A robot fish is propelled by pulling and releasing laterally wires
representing caudal tendons. A compliant material of a swimming body is a flexible
soft material, which is arranged as a non-uniform cantilever beam. The compliant

body oscillates by a plate being pulled by wires.

Figure 2(c) shows a subcarangiform swimming robot fish as the one reported
in [27]. This work presented studies on a trout-inspired multi-functional
soft-robotic fish. This mechanism is an energy harvester that uses flexible
macro-fiber composite structures of piezoelectric composites. The piezoelectric

laminate yields acting forces bending the caudal body. It generates hydrodynamic
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propulsion by laminates’ bending that are synchronized for expanding one side, and

the other one works contractile to create mechanical oscillations.

Figure 3(d) illustrates the work reported in [28], where a smart arrangement of
wriggling laces work as antagonistic “tendons”. The oscillatory body motion is

produced by an L-shape motor shaft rotating continuously.

Work on subcarangiform robot fishes are also built with the traditional approach
of interconnected serial links and servo-based joints, such as in [29] with body’s tail

peduncle and pectoral propulsive fin.

5. Carangiform swimmer robots

The carangiform swimmers deploy an anterior half of their body, and their
biomechanical nature is the fastest swimming of all modes. This mode is exhibited by
a diversity of vertebrates such as swordfish, bonefish, giant trevally, etc. Numerous
lateral movements basically occur at a caudal fin exerting over 90% of the thrust and
at an area near a narrow peduncle. Nevertheless, carangiform musculoskeletal
presents a relative rigidity, compromising its swift capability and turning maneuvers.
Figure 4 shows some different engineering approaches to biomechanical
carangiform swimmers construction. Numerous developments of carangiform

robotic fish use soft materials configured with different stiffness for its caudal fin.

Figure 4(a) depicts a peduncle and a polymer-based caudal tail, which was made
flexible for a particular use in a carangiform swimmer robot to maximize its thrust
propulsion, reported in [30]. The caudal tail was built with different shapes such as
rectangular, delta and triangular. Besides, it was developed with different stiffness

properties and compositions using polyvinyl chloride/polypropylene/acrylic plates.

Figure 4(b) shows a multi-link dolphin-like robot fish reported in [31]. The
design is a redundantly kinematic body compounded by multiple rigid links and
actuators, as well as a compliant caudal tail made of silicone. Another similar
structure model was reported in [32], it presented a dolphin prototype with three
active caudal joints, using rigid rotary actuators and a yaw-turning joint with a servo

in-between the lumbar and the caudal body sections.

Likewise, figure 4(c) presents a three active joints of a carangiform type robot
resembling a Pear] Arowana fish, reported in [33] and similar in [34], and two active

joints carangiform in [35].

Figure 4(c) shows a shark-type robot deploying a wire-driven controlled by a
servomotor, an elastic center beam and passive control discs (ribs), which was
reported in [36]. In addition, a similar approach was also reported in [37].
Figure 4(d) depicts an interesting approach reported in [38]. A flexor-extensor
mechanism pulls and releases a 3-link caudal body by different strings, a single

string per link and controlled by a servo.
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Figure 4. Common carangiform-like locomotion caudal mechanisms.

Authors in [39] implemented a multi-link fish and a bionic tail driving system
through a planetary gearing mechanism to provide power during a traveling wave
generation. Moreover, similar to works depicted in figures 3(c), 6(a) and 6(c),
work [40] presented a two active joints (servo and ionic polymer-metal composite)
carangiform-type robot fish, a servo for element propelling and a polymer-metal

composite for tail steering moment.

Some works on control modeling and traveling wave tracking for carangiform

robots were proposed [41, 42].

6. Thunniform swimmer robots

The family of thunniform swimmers, depending on their species, may deploy
between 15% to 30% of their posterior caudal body including a tail fin. This type of
swimming anatomy produces fast traveling undulations. Perhaps, it is the most
efficient locomotion modality in terms of energy spending, and it allows a long-term

thrusting force performance with considerable high cruising speeds.

Figure 5 shows six different styles of mechanisms implemented in order to
resemble the thunniform swimming performances. The work reported in [43]
developed a design of a single link caudal-fin propulsion that mainly takes advantage
of the passive bending capability that a universal joint allows. This coupling
interconnects two rigid links (a front-side body with a caudal body) allowing their
axes being inclined, one with respect to another. A pair of hinges connected and

oriented at 90° to each other, form a cross shaft connection to transmit undulatory
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motion. The mechanism deploys two rotary motors, as depicted by figure 5(a) and

resembles a Tuna-like robot fish where the caudal wave of swimming develops

motion in two degrees of freedom, pitch and roll simultaneously.

In [44] authors presented a leaping dolphin-like multi-actuator robot exhibiting a

caudal mechanism based on two high torque active joints. This thunniform structure

is shown in figure 5(b), which illustrates caudal links for pitching, as well as other

additional servos installed in the rigid front side of the body for balancing and

maneuvering. The system efficiently emulates a biological dolphin swimming.

The work [45] presented a clever mechanism for a thunniform robot fish

resembled by figure 5(c). Here, a single-motor with a gear train transmits rotary

motion to an eccentric wheel. The wheel’s eccentric axis slides through a vertical
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linear guide trail to directly produce a yaw motion to joint 1 of the first body link
segment. The second consecutive body link that is assembled through joint 2, moves
passively in angular motion pushed/pulled as a result of an angular moment
transmitted by link 1. The Z-shape rod connecting both body links works as a brake

to limiting serpentine motion of link 2.

In [46] authors reported an ingenious mechanism based on an oscillatory Scotch
Yoke device (figure 5(d)) for a robot resembling a dolphin-like robot. This type of
joint is a slotted link mechanism that reciprocates motion by converting a rotary
motion into a linear motion sliding along a trail slider engaged by an eccentric pin.
The piston is a linear reciprocating rack directly coupled to the sliding yoke with a
slot. The rack’ linear displacement versus time produces a harmonic motion with
constant amplitude and frequency, at a constant rotary speed. Moreover, the rack
transmits swinging tangential motion to a rotary semi-circle pinion, where the latter
reciprocates rotation. Essentially, the tail undulates, and the fin’s servo adds an extra

maneuvering tail’s oscillation.

Figure 5(e) mainly resembles the passive linkage mechanism developed in [47]
for automating a swimming pattern of a tuna-mimetic robot. A high torque motor
transmits rotary motion to the link bar 1 through active joint 1. One of the link 1's
extreme side slides rotating engaged in a curved trail slider. The link-1 opposite side
pulls/pushes link 3, which in order to maintain its suitable reciprocating oscillatory
motion, one side of link 3 is mechanically constrained by the linear motion of link 2.

Basically, link 3 reciprocates rotations and transmits serpentine motion to the caudal

fin.

Another work [48], presented an underactuated type of a flexor-extensor
mechanism based on pulling/releasing nylon cables at lateral sides, as shown in
figure 5(f). Two servos are lined up longitudinally at the rigid head body and are
synchronized for a yaw rotation. The servos’ double horn pulls/releases six cables
per side passing throughout a rigid support with holes between a head and a caudal
body. The cables are strapped (three strings for each servo) to six ribs per side. The
ribs are rigid material firmly fastened to a flexible rubber spine. When the
compliant caudal spine is subjected to servos force, which contracts and extends the

cables, the caudal body bends laterally producing a serpentine locomotion.

7. Ostraciiform swimmer robots

Ostraciiform swimmers oscillate dorsal, pectoral and anal fins to balance, maneuver
and control hydrodynamic movements while a fish’s body basically prevails rigid
and inflexible. This section focuses on the ostraciiform caudal fin mechanism, which
completely develops a propulsion oscillatory motion that augments its thrusting

force, although lacks of considerable hydrodynamic efficiency.
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Figure 6. Ostraciiform artificial caudal mechanisms.

The work [49] developed a flexible underwater robot based on a thin structure of
macro fiber composite (MFC), shown in figure 6(a). It is essentially a set of piled up
film layers of polyimide electrodes, epoxy and piezoceramic fibers. This structure is
a piezoelectric composite (PZC) fiber that bends when input is supplied with
electric energy. The robot fish body is a flexible carbon plate, which undulates by
commuting electric pulses to the PZC fixed laterally. The PZC vibrates by expanding

and contracting continuously, resulting in caudal fin oscillatory motion.

A similar approach [50], instead of piezoelectric film, used double face
magnetostrictive films to deflect a thin micro-robot when subjected to controlled

magnetic fields.

Figure 6(b) illustrates the approach presented in [51], which is an ingenious
mechanism based on dual mini solenoids. These are electromagnetic coils with
ferromagnetic shafts/pistons, magnetically commuted for attraction and repulsion.
The coils are arranged in parallel functioning synchronized transmitting linear
motion to a swing device. The swing mechanism oscillates the fin tail, which yields
ostraciiform mode swimming propulsion. Similar ostraciiform electromagnetic

approaches were reported in [52] and [53].
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Figure 6(c) illustrates a mechanism proposed by [54] and [55] deploying SMA

wires. This morphological implementation might look similar to mechanisms of
figures 6(a) (piezoelectric fiber), 4(a) (flexible polymer) and 3(c) (piezoelectric
laminate), however it differs in their technological approach. Although, Z. Wang

et al. developed a Carangiform robot fish, its locomotion model fits suitable for some
class of the ostraciiform family, such as Spotted boxfish (Ostracion meleagris) and
Buffalo trunk fish (Lactophrys trigonus). The mechanism shown in figure 6(c)
presents a caudal fin with SMA-based lateral wires resembling longitudinal tendons
functioning as flexor-extensor. Unlike figure 3(a), it approaches SMA-based
multiple serially connected springs to emulate damping muscles. In the ostraciiform
version of figure 6(c), such alloy, when mechanically deformed, returns to its
original shape once heated at a certain temperature. The lateral SMA wires overlaid
an elastic substrate (in the middle) that provides mechanical resistance and stores
elastic energy. Therefore, the caudal fin is a noiseless actuation compliant device yaw

bending.

A work that used polyethylene terephthalate (PET) as a soft material peduncle,
and a flexible caudal tail was reported by [56], which resembles figure 6(d). A basic
propulsion mechanism consists of a rotary motor directly rotating a screw shaft to
reciprocate a linear motion to a rigid plate. The rigid plate moves linearly
overlapping the PET area, as the effective deflection length varies, the PET’s
undulation apparent stiffness changes its bending capability. Therefore, this

effective length is modeled as a spring device with apparent changing stiffness.

In addition, there are works reported on ostraciiform swimming mode,
implemented by using gearing trains as active fin-tail servo-based propellers [57, 58],
or direct connection servo-tail [59]. Finally, [60] reported a dual-caudal fin robot

that yields synchronized double wave propulsion that improved a velocity.

8. Conclusion

This mini review assimilated few of the main ideas on ingenious caudal propulsive
mechanisms of different artificial fish types. The caudal mechanisms were classified
by the commonly known five undulation modes: anguilliform, subcarangiform,

carangiform, thunniform and ostraciiform.

The anguilliform type of robotic fish is one of the most complex mechanisms to
model and implement, physically and functionally as it requires sets of serially
connected modules (links and joints) to work synchronized and exert vigorous
propulsive locomotion. The anguilliform is the most undulatory biomechanical
system as it implicates majority of its body (from a head to a tail) to yield locomotive
waves. Numerous reported works built up mechanically redundant systems

(multiple active joints), requiring considerable amounts of electrical energy.
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Nevertheless, anguilliform and subcarangiform exhibit high maneuverability and
considerable locomotive dexterity degrees, as compared with the rest of the
swimming modes. Anguilliform biomechanics exhibits the greatest maneuverability,

although does not perform as the fastest one.

Carangiform and thunniform modes allow a wide range of diverse mechanism
approaches. They perform with the highest efficiency in terms of swimming speeds.
The types of mechanisms for carangiform and thunniform allow a wide diversity of
caudal mechanisms. Thus, still numerous approaches may be explored as an

implementation of these swimming structures.

Contrary to anguilliform, the ostraciiform mechanisms merely require a tail
bending, being the least energy spending systems. They require at least one active
joint, which particularly reduces amount of energy requirements. According to the
large list of reported works, the carangiform is likely one of the most artificially
implemented robots for the purpose of academic research. Robotic ostraciiform fish
exhibit the highest feasibility, the simplest mechanical complexity, the smoothest

locomotion mode and reduced in terms of physical space requirements.

Numerous reported mechanical systems in caudal segments (e.g., dorsal spines,
ribs, vertebrae) are mostly compounded by servomotors, cables or flexion-extension
strings, springs devices, compliant linear artificial muscles, electromagnetic devices,

piezoelectric plates and shape memory alloy components.

Linear-based artificial muscles were developed by using different technological
approaches. Among electrical properties polymers, pneumatic and hydraulic control
devices, the electrical ones are the most interesting due to their small size and
energy costs. In addition, underactuated mechanisms are compounded by a reduced
number of active joints and exhibit one of the best efficient devices capable to

resemble realistic biological swimming behaviors.

It is certain that in the near future, gradually emerging novel artificial muscles
technologies will provide increased desired properties. Future robotic fish will be
integrated with novel artificial tendons and muscles closely behaving as biological
muscles with augmented mechanical power, reduced weight and volume, efficient

linear extension/contractile motions electrically commuted.

Nowadays compliant robot fishes are constituted by soft material technology
providing suitability to perform efficient swimming maneuverability and are

comprised of complex dynamic control models.

At first glance, the most descriptive implementations of fish mechanisms in
discussed works, provided us a perspective on a still long way to explore a diversity
of novel ingenious mechanical marvels, particularly, for future underactuated

robotic platforms. While a broad variety of underactuated subaquatic soft robots
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had been developed (octopus, bell-shaped medusa, etc.), these types are out of this

manuscript’s scope.

The present work’s authors, suggest the use of mechanisms mostly developed
with a reduced number of electric rotary actuators and involving a major number of
underactuated components. Likewise, a particular exploitation and improved
applications of electrical linear electromagnetic devices (e.g., solenoids) are
suggested. A countless number of additional mechanism components with
considerable mechanical advantage rates can be explored as robot fish’s
biomechanical structures, such as combining gyroscopic linkages, mechanical
oscillators based on electrostatic and/or helicoid springs, systems of pulleys,
hydraulic pistons, bar linkages, etc. In addition, the application of mechanical
synthesis techniques may provide addition degrees of sophistication such as

locomotive reconfiguration and adaptive maneuverability.
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